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Abstract

Self-Organization Experiments for a Neuromorphic Hardware Device

This thesis presents methods, investigations and experiments aiming at the realization
of self-organization experiments on a neuromorphic hardware device. The utilized chip
implements a network of leaky integrate-and-fire neurons and spike-timing dependent
plasticity in every synapse, operatable with a high speedup factor compared to biological
real-time. In order to exploit these features, a self-optimizing winner-take-all architecture
is chosen which represents a task with a widely adjustable complexity. Preparatory
studies are presented and methods introduced which solve problems on the way towards
the winner-take-all implementation in hardware, often utilizing the software simulator
NEST. A purely spike-based technique for testing the total conductance of a silicon
membrane is proposed and successfully applied in both hardware and NEST. A quality
measure for cross-inhibition architectures is defined and utilized for extensive studies
on parameters for an appropriate cross-inhibition operation regime in hardware. The
self-optimization of a winner-take-all classificator via long-term synaptic plasticity is set
up and investigated using the NEST simulator. Remaining technical obstacles which
avoid the application of this experiment in hardware are analysed. Most of them are
chip inherent and will be addressed by future revisions of the hardware.

Selbstorganisationsexperimente für eine Neuromorphe Hardware

Die vorliegende Arbeit präsentiert Methoden, Untersuchungen und Experimente zur Re-
alisierung von Selbstorganisationsexperimenten auf einem neuromorphen Hardwaresys-
temssystem. Der verwendete Mikrochip implementiert ein Netzwerk von leaky integrate-
and-fire Neuronen mit Aktionspotential-Intervall-abhängiger Plastizität (STDP) in allen
Synapsen. Relativ zur biologischen Echtzeit läuft das System mit stark erhöhter Ge-
schwindigkeit. Um diese Eigenschaften nutzbringend anzuwenden, wird eine selbstopti-
mierende Winner-Take-All Architektur ausgewählt, deren Komplexität in der Problem-
stellung über einen großen Bereich skaliert werden kann. Vorbereitende Studien und
Methoden zur Lösung von Schwierigkeiten bei der Implementierung dieser Architektur
auf der Hardware werden vorgestellt. Hierzu wird häufig der Simulator NEST verwen-
det. Eine spikebasierte Methode zum Testen der Gesamtkonduktanz einer künstlichen
Membran wird vorgestellt, die sowohl auf der Hardware als auch im Simulator NEST ver-
wendet wird. Verbleibende technische Hürden, die die Verwendung dieser Architektur in
Hardware vereiteln, werden untersucht. Die meisten sind auf Chipeigenschaften zurück
zu führen und werden in späteren Revisionen der Hardware berücksichtigt werden.
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Introduction

The human brain provides us with many impressive abilities we take for granted, but we
still do not understand many of its underlying concepts. In nearly every situation, the
brain has to cope with large amounts of data and can extract the important features of
its environment within a fraction of a second, e.g. when recognizing faces. Furthermore,
most tasks are solved with a high adaptability regarding changes in the environment on
different time scales, which makes the brain an extremely flexible computing ‘device’.
In contrast to psychological or philosophical approaches, efforts in neuroscience - and
even more in computational neuroscience - mainly focus on this information processing
aspect in order to understand how the brain works.

One of the most important features to be considered in this attempt is the brain in-
herent plasticity, which leads to permanent changes in the momentary activity and in
the network structure by short-term [Tsodyks and Markram, 1997] and long-term plas-
ticity [Levy and Steward, 1983; Bi and Poo, 1997; Dan and Poo, 2004] effects. Structural
plasticity is the most promising candidate to explain learning and memory formation
physiologically [Neves et al., 2008]. To learn and remember over different time scales
and to apply the recovered information in various contexts is what many people would
call an essential component of intelligent behavior.

Comprehensive biophysical [Holmes and Levy, 1990] as well as phenomenological mod-
els [Song et al., 2000; Worgotter and Porr , 2005; Pfister et al., 2006] are still not able
to describe and predict the complex and interweaved phenomena of life-spanning brain
development, formation of various kinds of memory, adaptation to changing environ-
ments and many other forms of neuronal self-organization. First theoretical analyses
of learning on the neuron level were done by Donald Hebb in 1949 [Hebb, 1949], which
led to the development of so-called rate-based learning rules [Bienenstock et al., 1988;
Dayan and Abott, 2001]. For a long time, rate-based codes were assumed to be the key
coding mechanism in neural information processing. Since fundamental experimental
evidence was found which indicated the influence of the precise temporal structure of
inputs on the resulting structural modification in the brain [Levy and Steward, 1983; Bi
and Poo, 1997], temporal codes play an increasingly important role in models of learning
and information processing [Izhikevich, 2005; Morrison et al., 2008].

Using temporal codes requires a high detail level in the applied neuron models, and
thus is computationally more demanding than e.g. purely rate-based models which can
neglect precise spike times. This creates challenges for conventional simulation platforms
such as software simulators which numerically solve differential model equations [Mor-
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rison et al., 2005].

One new approach which avoids the bottleneck of sequential processing of signals is
to emulate neural behavior in electronic circuits, so-called neuromorphic hardware. The
intrinsic parallelism of neuron circuit operation allows to scale emulated network sizes
without slowing down the actual on-chip execution time. First VLSI1 implementations
of neural units go back to the 1980s [Mead and Mahowald, 1988; Mead, 1989] and today
are developed and utilized by a broad community [Serrano-Gotarredona et al., 2006;
Merolla and Boahen, 2006; Vogelstein et al., 2007; Häfliger , 2007; Renaud et al., 2007;
Schemmel et al., 2007; Ehrlich et al., 2007; Schemmel et al., 2008]. Operating neuromor-
phic hardware systems in biological real time allows to build hybrid systems with in-vitro
neural networks [Bontorin et al., 2007], to implement motor controls for robotics, visual
sensors [Serrano-Gotarredona et al., 2006] and possibly many more embedded and low-
power applications. Another approach is to scale down the utilized analog circuits and
hence gain a massively accelerated operation mode compared to the emulated biological
time [Schemmel et al., 2007, 2008].

Within the FACETS research project [FACETS , 2008], different approaches are inte-
grated to face the challenge of finding and understanding computational paradigms and
self-organization principles inspired by the brain. Bio-physiological measurements, ana-
lytical and numerical modeling as well as hardware emulations are applied on the single
cell and on the network level. As one member of FACETS and in contrast to most other
emulations of neural networks in silicon, the Electronic Vision(s) group in Heidelberg
develops highly accelerated neuromorphic devices. The achieved speedup factor allows
for statistics-intensive studies of long-term development of synaptic weights, which in
software simulations can be realized only with extensive computational efforts.

Still, such investigations with neuromorphic hardware require reliable adjustability of
parameters and intensive preparatory studies. For the Heidelberg system, which was
utilized throughout this thesis, the implemented long-term synaptic plasticity had not
yet been put into operation when the presented work was taken up. The major goal
of all efforts presented in this thesis is to establish the possibility of applications which
exploit the hardware’s synaptic self-organization mechanisms. An experiment is chosen
which provides a wide range of selectable complexities of the task to be solved. Hence,
the underlying problems occurring during the implementation process can be clearly
identified and overcome. Consequently, each solution presented in this work represents
an inevitable step towards the next one, while targeting the realization of an appropriate
winner-take-all experiment.

The thesis is structured into four main parts. This introduction is followed by chap-
ter 1, which gives a more detailed overview over the applied hardware model, the im-
plemented plasticity mechanisms and over utilized methods and concepts. In chapter 2,

1Very Large Scale Integration
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methods developed and experiments performed by the author are presented. In order to
achieve the major goal of overcoming technical barriers in utilizing the self-organization
mechanisms of the chosen neuromorphic hardware system and providing a proof of func-
tionality, various preparatory studies are presented. This includes the investigation of
membrane conductance states of hardware neuron membranes and temporal dynamics
of hardware synapses, cross-inhibition setup analyses and the preparation of porting a
winner-take-all experiment to the hardware. Finally, the presented results and methods
are discussed and an outlook regarding the perspectives of self-organization experiments
on the utilized type of hardware is given.
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1 Theoretical Foundations, Materials
and Methods

During this work, two different simulation back-ends were utilized, which are described in
this chapter: Physically implemented, neural networks are emulated with the FACETS
Stage 1 Hardware. Besides the system itself, also the software layers, required for its
operation and partly developed by the Electronic Vision(s) group, are presented. For
comparative and preparative software simulations, NEST [Gewaltig and Diesmann, 2008;
The Neural Simulation Technology (NEST) Initiative, 2008] was used.

In order to investigate unsupervised learning, different types of synaptic plasticity as
well as a biologically realistic and important neuron state in active neural networks are
described. Finally, a concept for measuring properties of individual units within active
networks is explained.

1.1 Modeling Spiking Neural Networks

When modeling spiking neural networks different approaches are pursued: One bottom-
up approach is to model the cellular dynamics of neurons and synapses at the molecular
level in form of ion channels and detailed multi-compartment models. Aiming at maxi-
mum detailed information, this approach entails difficulties when it is applied to a higher
number of elements. One simplification done on the expense of details is to combine the
most important characteristics and regard neurons as point neurons without spatial
extent. Further steps of abstraction combine neurons to networks and populations.

In general, modeling of neural networks is fundamentally based on biological data.
The neural behavior is described with the help of mathematical equations and can be
studied analytically, by software simulations or by emulations with electronic circuits.

Each of the proposed approaches has advantages and disadvantages: Analytical treat-
ment provides an exact formulation, but often is difficult, e.g. in case of large recurrent
networks of conductance based LIF1 neurons. Simulators normally possess full flexibility
and configurability in defining neuron, synapse and network parameters. All quantities
are accessible and can be determined to the desired accuracy at any time. These advan-
tages lack in the approach to emulate neural behavior on a hardware platform. Hardware
implementations are bound to one specific neuron model, which can be implemented in

1Leaky Integrate-and-Fire
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1.2 Hardware System

modified form only in a subsequent revision which demands several months. Other
restrictions inherent to hardware systems are limited communication bandwidths, ac-
cessibility of parameters and their possible ranges. In return, the hardware approach
entails advantages that cannot be realized by software platforms. For instance, the sys-
tem works intrinsically in parallel, which allows the scaling of the network size nearly
without loss of performance. Regarding the power consumption of simulator platforms
dealing with network sizes in the range of 106 − 107 neurons, other advantages of the
hardware system currently under development become obvious: The hardware solution
is a power and space efficient implementation for emulating large scale neural networks.
Thus, using neuromorphic hardware as an additional tool in modeling neuroscience is a
promising approach.

1.2 Hardware System

The neuromorphic network chip utilized in this work is part of the FACETS Stage 1
hardware system [Schemmel et al., 2006, 2007]. The chip was produced using a stan-
dard 180 nm CMOS2 process and is the prototype of a large wafer-scale integration
system [Fieres et al., 2008; Schemmel et al., 2008] currently under development.
The chip is mounted on a carrier board, which among others carries an FPGA3 and
RAM4 modules for storing input and output data. The FPGA implements experiment
and communication control. The carrier board is plugged onto a backplane, which com-
municates via a PCI5 card to a host PC. The hardware framework is explained in detail
in [Grübl, 2007; Fieres et al., 2004; Philipp et al., 2007]. Analog signals, like the mem-
brane potential or reversal potentials, can be read out via an oscilloscope and accessed
via a network connection. The chip contains 384 neuron circuits, and almost 5 · 104

synapses.

1.2.1 Hardware Neuron Model

The hardware neuron circuits implement a leaky integrate-and-fire model with conductance-
based synapses, based on existing phenomenological models [Destexhe, 1997], with a
variable speed-up factor between 104 and 105. In the presented work, the speed-up fac-
tor was set to 105, i.e. 10 ns in the hardware system correspond to 1 ms in biological
time.

2Complementary Metal Oxide Semiconductor
3Field Programmable Gate Array
4Random Access Memory
5Peripheral Component Interconnect
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1 Theoretical Foundations, Materials and Methods

The neurons’ membrane potentials obey the differential equation:

− Cm
dV

dt
= gl(V − El) +

∑

j

pj(t)gj(t)(V − EE) +
∑

k

pk(t)gk(t)(V − EI) (1.1)

The constant Cm stands for the total membrane capacitance. The three summands
on the right hand side represent three different ion channels: The first one models the
leakage, that drives the membrane to its resting potential El with a constant leakage
conductance of gl if no input reaches the neuron. The two remaining terms model
the excitatory and inhibitory ion channels with their reversal potentials EE and EI ,
respectively. The index j of the first sum runs over all excitatory synapses, index k
in the second sum over all inhibitory synapses. The conductance courses gE(t) (gI(t))
are shaped as very sharp increases to a maximum value gEmax (gImax), followed by an
exponential decrease with a time constant τsyn. Each synapse has an open probability
pj,k(t), which can be modified by short-term plasticity mechanisms [Dayan and Abott,
2001]. The short-term plasticity implementation is described in detail in [Schemmel
et al., 2007] and [Bill, 2008]. Furthermore, for every synapse gmax can be modified by
spike-time dependent plasticity (STDP). The hardware implementation of the long-term
plasticity mechanism is reported in [Schemmel et al., 2007].
Once, the membrane voltage exceeds its threshold voltage Vthresh, the neuron will fire an
action potential, then will be pulled to a reset voltage Vreset, remaining there for some
refractory period τref, and afterwards will follow the forces of its leakage, excitatory and
inhibitory mechanisms again.

1.2.2 Limitations of the Hardware System

Some limitations of the hardware system have to be kept in mind throughout this work,
because parameters for software simulations had to be chosen in a way, that allows to
port the setup onto the hardware. Some major restrictions, being of importance for this
work, are:

• Synaptic weights are not continuous, but quantized with a 4 bit-resolution.
• The maximum input frequency is limited to ca. 2 kHz (biological scale) for the

entire network.
• Each neuron can be connected to a maximum of 256 pre-synaptic inputs.
• In the current chip revision the number of neurons from which spikes can be

recorded at the same time is limited to approximately 48 neurons [Müller , 2008,
section 4.3.2].
• Several parameters are not arbitrarily adjustable, e.g. the synaptic time constant
τsyn.
• Parameters can reveal parasitic interference. For instance, the control current

drvifall can induce a serious and permanent synaptic conductance. This has a
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1.3 Software Framework

strong impact on the resting potential of the neuron and, thus, on the spiking
behavior and the available dynamic range. Furthermore, the reset mechanism and
threshold potentials are adjusted via a shared parameter, called icb. Some neurons
lack either a precise threshold voltage or a reliable reset after spike emission.

1.3 Software Framework

1.3.1 Interface Layer Stack

The interface to the FACETS hardware and to the software simulator NEST [Diesmann
and Gewaltig, 2002; Gewaltig and Diesmann, 2008; The Neural Simulation Technology
(NEST) Initiative, 2008] is organized in several layers. On top of the interface layer stack
stands the meta language PyNN [Davison et al., 2008], in which the whole experiment is
defined. At the beginning of each experiment script the back-end specific Python [Drake,
2000] module is included, e.g. PyNN.hardware or PyNN.nest. The respective back-end
is accessed through an additional layer PyHAL6 [Brüderle et al., 2007] for the hardware
and the scripting language SLI for NEST. This layer offers access functions to the specific
back-end and builds the connection between the simulator or emulator platform to the
PyNN interface. In the hardware system, the access from PyHAL to the low-level
code is done with the help of the Boost.Python wrapper library [Abrahams and Grosse-
Kunstleve, 2003]. The low-level code is written in C++ and implements the configuration
of the chip, communication plus sending and receiving of spike trains.

1.3.2 The Meta-Language PyNN

“PyNN is a Python package for simulator-independent specification of neuronal network
models” [Davison, 2008]. It is an interpreter-based API7 for describing experiments using
the network models supported by the back-end [Davison et al., 2008]. PyNN offers the
possibility to define experiments once and execute them on different back-ends without
modification. This allows to port experiments between different platforms and makes it
easier to compare the results gained, e.g. to verify the hardware model.

1.3.3 The Simulator NEST

The software simulator NEST [Gewaltig and Diesmann, 2008; The Neural Simulation
Technology (NEST) Initiative, 2008] is a framework for simulating large networks of
biologically realistic neurons. It provides various synapse types, recording devices and
neuron models and can be extended by user-written models. The neuron model, uti-
lized in the simulations presented in this thesis, exactly implements equation 1.1 and

6Python Hardware Abstraction Layer
7Application Programming Interface
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1 Theoretical Foundations, Materials and Methods

is described in detail in [Muller , 2006]. Just like the utilized hardware, NEST can be
interfaced through the Python-based [Drake, 2000], simulator-independent scripting lan-
guage PyNN [Davison et al., 2008], allowing for a unified description and analysis of the
performed experiments [Brüderle et al., 2007].
Drawbacks of NEST are for example:

• Parallelization of computation needs extra effort and is limited by the number of
available processors [Morrison et al., 2005]. Thus, scaling network models up to
large sizes slows down computation time significantly.
• The synaptic time scale parameter τsyn is part of the neuron parameter set, i.e. all

synapses that stimulate one neuron can only have one single τsyn.

1.4 High Conductance States

The high-conductance state describes a state of single neurons within an active network.
For single neurons, this particular state can be defined by the condition that the total
synaptic conductance received by the neuron is larger than the leakage conductance.
There is experimental evidence for the high-conductance state in in-vivo cells, e.g. in
awake and attentive animals [Destexhe et al., 2003; Boustani et al., 2007], or in-vitro in
localized sub-populations [Cossart et al., 2003].

Under increased synaptic stimulation, cortical neurons exhibit a high total membrane
conductance. This results in a shorter membrane time constant which has wide conse-
quences on the behavior of individual neurons and networks of neurons. Characteris-
tically for neurons in the high-conductance state is a low input resistance, depolarized
membranes with large membrane potential fluctuations, dominant inhibitory conduc-
tances and a stochastical response to a given stimulus due to fluctuating background
activity [Destexhe et al., 2003]. Other consequences for a cell in the high-conductance
state due to increased background activity is the attenuation of distal somatic inputs on
the somatic tree, an increased sensitivity to temporal synchrony or, in other words, an
increased temporal resolution capability (see [Koch, 1999; Destexhe et al., 2003; Rudolph
and Destexhe, 2006], section 2.1). Thus, the conductance state of a cell has a strong
effect on its spatio-temporal processing properties. It is supposed that the transition
from a low to a high-conductance state “is accompanied by a switch from encoding
time-averaged input with firing rate to encoding transient inputs with precisely timed
spikes.” [Prescott et al., 2006].

The high-conductance state is a feature inherent to the utilized conductance based
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1.5 Synaptic Plasticity

neuron model. Equation 1.1 can be rewritten as follows:

− Cm
dV

dt
=



gl +
∑

j

pj(t)gj(t) +
∑

k

pk(t)gk(t)



 · V

−glEl −
∑

j

pj(t)gj(t)EE −
∑

k

pk(t)gk(t)EI (1.2)

Or, in a shorter form by neglecting short term plasticity effects pj,k(t):

−
dV

dt
= τm(t)−1V −

glEl −
∑

j gj(t)EE −
∑

k gk(t)EI

Cm
(1.3)

with the effective membrane time constant τm(t) = Cm
gL+gE(t)+gI (t)

.

The total membrane conductance gT (t) ≡ gL+ gE(t) + gI(t) strongly influences mem-
brane dynamics by affecting the shape and amplitude of post-synaptic potentials (PSPs).
Thus, one important property of high-conductance states is the reduction of the mem-
brane time constant τm, which makes neurons follow their input fluctuations immedi-
ately.

Hence, as derived in [Shelley et al., 2002], equation 1.1 can also be written as

dv

dt
= −g̃T (t)[v(t) − Vs(t)] (1.4)

with the so-called effective reversal potential Vs(t) = (g̃E(t)ṼE − g̃I(t)|ṼI |)/g̃T (t), where
g̃T (t), g̃E(t) and g̃I(t) are the total, the excitatory and inhibitory conductances at time
t divided by the membrane capacitance Cm, and ṼE , ṼI are normalized, dimensionless
transformations of the excitatory and inhibitory reversal potentials.
In a high-conductance state, the mean value of gT (t) is large compared to gL because of
large synaptic conductances. From the equation above follows that in a high-conductance
state, a large difference between v(t) and Vs(t) causes a large change of v(t). Thus, in
such a state, the subthreshold membrane potential is well approximated by the effective
reversal potential:

v(t) ≃ Vs(t)

In that way, the modulation of Vs(t) and consequently v(t) is approximated by the ratio
of excitatory to inhibitory conductances, (see [Shelley et al., 2002], eq. (16)).

1.5 Synaptic Plasticity

Synaptic plasticity is supposed to be one mechanism for learning and memory formation.
Two kinds of plasticity operating on different time scales can be distinguished: short-
term plasticity (STP) and long-term plasticity (LTP). Both plasticity mechanisms can
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1 Theoretical Foundations, Materials and Methods

have potentiating and depressing effects on synapses. Short-term plasticity affects the
synaptic efficacy on time-scales of a few milliseconds to seconds [Markram et al., 1998]
and does not induce permanent changes in the neural network structure. STP is supposed
to be an important mechanism to stabilize the activity of recurrent networks consisting
of inhibitory and excitatory neurons [Sussillo et al., 2007].

Long-term plasticity induces changes in the neural network structure by the change
of synaptic weights for varying amounts of time, generally persisting tens of minutes or
longer. The first theoretical prediction goes back to Donald Hebb, who stated in 1949:
“When an axon of cell A is near enough to excite a cell B and repeatedly or persistently
takes part in firing it, some growth process or metabolic change takes place in one or
both cells such that A’s efficiency, as one of the cells firing B, is increased.” or in other
words: “What fires together, wires together.”

First approaches to model long-term plasticity in spiking neural networks were based
on firing rates [Hebb, 1949]. The derived learning rule is not stable, i.e. synaptic weights
can grow unconstrained and no competition between synapses exists. One prominent
extension to Hebb’s learning rule is the Bienenstock-Cooper-Munro rule [Bienenstock
et al., 1982] which stabilizes the weight development, induces competition and is experi-
mentally motivated. Another extension is Oja’s learning rule which additionally features
the normalization of synaptic weights and can implement a principle component analysis
of the input [Oja, 1982]. This rule is rather based on theoretical considerations than on
experimental data.

Experimental work showed that the precise timing of input and output spikes plays a
crucial role in the weight modification in hippocampus [Levy and Steward, 1983; Bi and
Poo, 1997], leading to the concept of spike-time dependent plasticity (STDP) [Song et al.,
2000; Dan and Poo, 2004; Legenstein et al., 2005; Morrison et al., 2007, 2008]. Further-
more, there have been extensive studies on the cellular mechanisms of STDP in the past
decades, which revealed that synaptic plasticity is not only dependent on the precise
spike-timing, but also on the post-synaptic concentration of calcium ions, the dendritic
location, the connection type, neuromodulators, inhibitory activity and the integration
of complex spike trains [Caporale and Dan, 2008]. In contrast to phenomenological mod-
els, biophysical models try to explain the biochemical and physiological processes leading
to synaptic modifications. As synaptic plasticity can have different forms, depending on
the cortical region, the involved cell types, the location of involved cells in the layered
structure and even the type of the presynaptic neuron, biophysical models try to account
for experiments within a single system and might not be valid for a different system.

Based on phenomenological models described in [Bi and Poo, 1997; Dayan and Abott,
2001], the following weight update function is implemented in each hardware synapse
[Schemmel et al., 2007]:

F (∆t) =







A+exp(−∆t
τ+

) if ∆t > 0

−A−exp(∆t
τ−

) if ∆t > 0
(1.5)
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Figure 1.1: Weight update function for synapses inducing post-synaptic firing in dependence
of the temporal difference between the post- and the pre-synaptic spike: ∆t = tpost − tpre

The dependence of weight modification on the temporal difference ∆t = tpost − tpre is
clarified by figure 1.1.

In the hardware system, values of the modification function F (∆t)c,a are accumulated
separately for causal and acausal firing on two capacitors storing values ΣFc, ΣFa. These
two values are periodically read out and checked with respect to two aspects:

a) |ΣFc − ΣFa| > Fthreshold

b) ΣFc − ΣFa > 0 (1.6)

If a) is true, the 4-bit weight is updated according to a specified lookup table. There
are two lookup tables, one for the case that the causal weight modification function is
larger, i.e. equation 1.6 b) is true, and one for the other case. Both lookup tables can be
arbitrarily programmed with 16 4-bit values which determine the new weight for every
possible old weight. After the weight update took place, both values ΣFc,a are set to
zero for the respective synapse.

For each row (representing one axon of a neuron) within a synapse array, the STDP
mechanism can be enabled individually. The period of reading out ΣFc,a depends on
the number of rows using STDP. If STDP is activated for all rows, the maximum period
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between two updates is ca. 456 µs on chip, which corresponds to 45.6 seconds in biological
time. This constrains the range for biological realistic setups and is a big difference
compared to simulator tools, which process weight modifications immediately, or with a
delay of one spike.

The threshold for the accumulated weight modification functions Fthresh is a crucial
parameter, that has to be adjusted according to the readout period update. If Fthreshold

in equation 1.6 is small, but the readout period is large compared to the mean interval
between correlations, many correlations stay without effect on the weight. On the other
hand, when Fthreshold is large, the weight change due to accumulated effects of necessarily
many correlated spike pairs of one type (either causal or acausal) is applied late. For
some kinds of learning experiments this might be too late.

1.6 Spike-Triggered Averaging

In both biological and hardware emulated neurons, noise influences the membrane poten-
tial of individual cells. Thus, it is in general not possible to extract detailed information
from the recorded raw data. One method to extract the effect of a single action poten-
tial on the membrane potential is spike-triggered averaging (STA) [de Boer and Kuyper ,
1968; Matsumura et al., 1996].

In the STA procedure, the membrane potential of a single neuron is recorded, and
points in time where a pre-synaptic action potential occurs are stored as trigger signals.
The neuron’s voltage trace samples surrounding the trigger signals are summed up and
divided by the number of stored trigger signals to get a so-called spike-triggered average.
Provided that averaging is done with sufficient statistics, the resulting time course of the
membrane potential is almost free from noise and reveals the shape of a PSP8. Figure 1.2
shows an example of an EPSP9 which was acquired by recording ca. 2500 samples on a
VLSI neuron.

For the synapse model and the applied synaptic parameters used throughout this the-
sis, the synaptic time constant τsyn can be measured indirectly by fitting an exponential
decay to an STA trace acquired from a neuron in the high-conductance state, because
the low-pass filtering effect of the membrane can be assumed to be significantly smaller
than τsyn.

8Post-Synaptic Potential
9Excitatory Post-Synaptic Potential
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1.6 Spike-Triggered Averaging

Figure 1.2: Post-synaptic potential gained through spike-triggered averaging over ca. 2500
samples recorded from a hardware neuron. Voltage and time-scale are converted to biological
scale.
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2 Experiments and Results

The FACETS Stage 1 hardware system is a prototype for a wafer-scale system [Schemmel
et al., 2008]. Since the current state of the hardware system does not allow to use essential
features like STDP or the recording of arbitrary many neurons, the following sections
present preparatory studies for the application of long-term learning experiments on the
hardware system. In order to investigate the practicability of a self-organized winner-
take-all based on mutual inhibition and STDP, these setups are studied with the help
of software simulations in section 2.3 and 2.4. One of the acquired results shows the
importance of synaptic time constants τsyn. As the conductance time course and with this
the synaptic time constants are not directly accessible in hardware, a high-conductance
state has to be induced, which allows to estimate the desired quantity τsyn from the
membrane potential. Thus, a high-conductance state test which allows the separation of
conductance states is essential. In a first step, a spike-based test concept is presented,
verified through software simulations and applied on the hardware.

2.1 A Spike-based High Conductance State Test

Remark: This section contains segments of a paper draft written by the author and Daniel
Brüderle.

2.1.1 Motivation

Neural behavior can be characterized by a variety of dimensions, e.g. spike rate, mem-
brane potential traces, currents and conductances, amongst others. Depending on the
observed system, it can be necessary to deduce unaccessible or with difficulty measur-
able magnitudes from easily accessible ones. E.g. for in-vivo and in-vitro recordings, the
strength of a synaptic connection typically has to be deduced from the correlation of
spiking and membrane activity of its pre- and post-synaptic neurons [Bi and Poo, 1997;
Dan and Poo, 2004]. In general, models of neuronal and synaptic dynamics often involve
variables which are hard to observe in-vivo or in-vitro.

Software simulators have full flexibility in accessing variables involved in the respective
model. In contrast, the utilized neuromorphic hardware does not offer the possibility
to access some variables, as for example currents and conductances. Thus, they have
to be deduced from accessible observables. The accessible observables in the hardware
system are its spike output, membrane potential traces and possibly evolving synaptic
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2.1 A Spike-based High Conductance State Test

weights. The neuromorphic system design has been optimized for the access to all action
potentials generated during an experiment via a fast digital connection. Since the sub-
threshold membrane potentials have to first be acquired via an oscilloscope connected to
the hardware and then need to be integrated into the operating and evaluating software
via TCP/IP sockets [IEEE , 2004; Braden, 1989], this acquisition channel is rather slow
and inefficient. Thus, a deduction of hidden variables like conductances from nothing
but the spike output is highly desirable.

The presented spike-based high-conductance state makes it possible to distinguish
different neuronal conductance states. But why is it important to distinguish between
different conductance states?

As will be needed for investigations described later within this thesis, it is essential to
excite a high-conductance state in order to deduce the synaptic time constants from the
membrane potential time course with the help of spike-triggered averaging. The role of
synaptic time constants is, amongst others, discussed in section 2.3.5.

Furthermore, for future biologically realistic experiments on neuromorphic systems,
but also for basic specification of hardware subunits, finding a working point in the
high-conductance state is essential.

Plus, as described in section 1.4, the conductance state of a neuron has strong impact
on its integrative properties. Depending on its conductance state, a neuron either acts
as an integrator (in low-conductance states when the membrane time constant is small)
or as a coincidence detector (in a high-conductance state when the membrane time
constant is short). Thus, a change of the conductance state means a change in the
coding mechanism in neural information processing.

In the following, the effects of synaptic contributions to the total membrane conduc-
tance - in conjunction with the correlation of the applied input spike trains - on the
output spike rate are studied. A purely spike-based and hence hardware-compatible
method to estimate the amount of necessary synaptic stimulation in order to operate
within a high-conductance state is presented. Differences and hardware specific advan-
tages of this method compared to a similar one introduced in [Rudolph and Destexhe,
2006] will be discussed in section 2.1.5.

2.1.2 Concept and Setup

Test Concept

As the membrane time constant is dependent on the total membrane conductance, one
can use membrane dynamics to estimate the conductance state of a neuron. When the
total conductance is large, τm is small and thus enables the neuron to react immediately
to changes in the input conductance. A small time constant can cause the neuron to
work as a coincidence detector, i.e. it allows the neuron to resolve dense input signals
because it responds to different input signals independently. Thus, the basic idea of the
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proposed high-conductance state test is to estimate the total membrane conductance
of a neuron by its ability to separate excitatory post-synaptic potentials (PSPs) which
are temporally close. The integration of successive PSPs on a membrane is less likely
to cause an action potential if the temporal course of these PSPs is shorter. Assuming
fixed time constants for the input-triggered increase and decrease of gE(t), the shape of
the resulting PSP is shortened or stretched by the total membrane conductance.

Consequently, compared to a low-conductance state, in a high-conductance state suc-
cessive input spikes have to be temporally closer to cause an increase in the output firing
rate, which can be regarded as a better time resolution property of the neuron.

In other words, the low-pass filter property of the membrane determines its quality as a
coincidence detector. This makes it possible to deduce the total membrane conductance
merely from input and output spike data. Figure 2.1 illustrates the effect of different
total membrane conductances on the superposition of PSPs. The same sequence of spikes
- a single spike followed by a quadruple - arrives at a relatively slow (green line) and at a
fast (blue line) membrane. Due to the resulting different temporal courses of the PSPs,
those on the slow membrane add up to a larger effective amplitude compared to those
on the fast membrane.

Test Setup

For testing the input driven responsiveness of a membrane, a single neuron with a con-
stant leakage conductance gl is utilized. In order to vary the externally driven component
of the membrane conductance, it receives a set of Poisson spike trains through NE ex-
citatory and NI inhibitory synapses. Each spike train has the same firing rate νin. The
decay time constants τsyn and the maxima gEmax and gImax) for the excitatory and in-
hibitory conductances are kept constant during all experiments. The major aim of the
test is to find an average synaptic conductance gsyn ≡ 〈gE(t) + gI(t)〉 which results in
a high-conductance state. With given values for τsyn, gEmax and gImax, the temporal
integration over NE excitatory and NI inhibitory spike trains with firing rate νin leads
to the following total average synaptically induced conductance:

gsyn = τsyn νin (NE gEmax +NI gImax) . (2.1)

The conductance state of a neuron stimulated by pure Poissonian spike trains can be
changed by

• the synaptic weights gexc, ginh,
• the synaptic time constant τsyn,
• the number of inputs stimulating the neuron NE +NI ,
• the leakage conductance gleak,
• the input rate νin.
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Figure 2.1: NEST Simulation: Overlapping PSPs on a membrane with high (blue) and low
(green) total conductance. For this schematical example, the membrane conductance is adjusted
by changing its leakage. The PSPs result from conductance time courses with identical decay
times. The conductance amplitudes for both the high and the low conductance membrane have
been adjusted such that the amplitudes of the single PSPs become the same in both cases.
This allows for an illustrative different maximum amplitude of four overlapping PSPs triggered
by identical input spikes. For the fast, i.e. higher conductance membrane, the accumulated
potential is not high enough to reach the spike threshold, while for the slow one it is.
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The synaptic weights are not used to control the input conductance, because the
impact of individual spikes strongly increases with gexc, ginh. This would lead to larger
membrane fluctuations which is on one hand side characteristic for a high conductance
state, but on the other hand imposes two problems: First, the probability to spike is
increased which would lead to a higher output rate which is not desired as described
above. An increase of the firing threshold as circumvention of this would not solve this
problem, because the membrane voltage of the hardware neuron would tend to leave the
dynamic range of the neuron circuit and thus lead to false behavior.

The leakage conductance of a neuron can also not be used to change the conductance
state, because in the hardware system this parameter has to be used in a calibration
routine to adjust the membrane time constant. This results in a very limited remaining
available range for gleak.

As the number of inputs in the hardware system is limited to 256, it is not possible
to use this parameter to investigate the membrane dynamics over a large range of input
conductance.

Consequently, to control gsyn, the input frequency νin is varied. If all other param-
eters remain constant, this would result in a corresponding variation of the average
membrane potential and of the output firing rate. As the information gained by the
proposed method is based on the rather small changes of the output rate as a function
of input correlations, a variance in the output rate due to changed Poisson background
stimulation deteriorates the underlying signal which is intended to be detected. Thus, a
variance of the output rate due to enhanced stimulation with Poisson spike trains results
in a decreased strength in the desired output signal.

An increase in the output rate is also not preferable for the following reason: A
high output rate affects the responsiveness of the membrane by clamping the membrane
potential to Vreset for the refractory period τref and making it not responsive to any input.
Consequently, an increase of the output rate due to Poisson background stimulation is
not desired.

In order to circumvent these undesired correlations between the average membrane
potential, the output rate and the responsiveness of the membrane, the output rate is
kept within a limited range (νout = νtarget ± 0.25νtarget) by changing the ratio NE/NI ,
whereas the sum NE ·gEmax +NI ·gImax remains constant. This is useful, because in that
way the total membrane conductance can be changed continuously and well controlled
by simply varying the input rate νin.

The number of excitatory and inhibitory inputs are adjusted such that the output rate
due to Poisson background stimulation does not exceed the limit of (4.0 ± 1.0) Hz.

In addition to the Poisson type background of νin, a test stimulus is injected into
the neuron via ntest excitatory synapses, which consists of periodic packages of npack

equidistant spikes. The period TPP from package to package is kept constant, while the
inter-spike interval TISI within one package is varied from 0 ms to TISI,max ≡

TPP
npack

. With
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TISI = TISI,max, one package exactly fills TPP. This approach ensures that the total spike
rate fed into the neuron through the test synapses is constant, independently of TISI.
Figure 2.2 exemplary illustrates the test setup: a neuron receives input from Poisson
spike trains of a certain frequency νin (only a subset is shown) and additionally from a
test stimulus consisting of the packages of equidistant spikes. When the periodic spike
packages arrive, the output rate temporarily increases.

The mean output rate is dependent on TISI, because shorter time intervals lead to
stronger accumulation of post-synaptic potentials (PSPs) on the membrane. But as
discussed above, for a constant TISI the output rate also depends on the total membrane
conductance respectively on the width of a PSP. Hence, sweeping TISI for various values
of gsyn (regulated through νin) and measuring the resulting output firing rate will result
in different response curves showing the temporal resolution capability of the neuron.

In the following, all output rates indicated with an f actually represent the difference
between the output rate acquired with a specific test stimulus configuration minus the
output rate with no test stimulus at all, f(TISI) ≡ ν

stim
out (TISI)− ν

nostim
out . This is done, be-

cause only the response to the test stimulus is of interest, not the response to the output
rate caused by the Poisson background. The background determines the conductance
state and thus the responsiveness of the neuron, whereas the test stimulus is needed to
get quantitative information about this neuron state.

To be able to distinguish the output response curves for different conductance states,
a characterizing critical quantity τres is defined as follows:

τres is the critical time interval TPP, crit between test spikes at which the output rate
falls below a certain threshold frequency,

fthresh ≡ fmin + e−1 (fmax − fmin) . (2.2)

Here, fmin is the minimum output rate, i.e. the saturation rate which is reached from a
certain value of TISI, max and not under-run no matter if TISI gets larger. fmin is defined as
the mean output rate for inter-spike intervals of the test stimulus TISI in [150 ms, 250 ms].
The maximum output firing rate resulting from closely coincident input spikes is fmax.

Figure 2.3 shows the defined quantities in a response curve gained with a background
stimulation of νin = 2 Hz. Also shown in the plot is the TPP,crit where the curve crosses
fthresh, which, according to the method proposed here, defines the temporal resolution
capability of the neuron τres. An error estimate for τres is described and illustrated in
figure 2.4.

By the usage of the above defined threshold output rate fthresh, different conductance
states can be studied quantitatively by comparing the corresponding τres for different
background frequencies νin. The intention is to find an estimate for the minimum amount
of input conductance which leads to a significant increase of the temporal resolution ca-
pacity of the neuron. This then can be understood as a transition from a low-conductance
to a high-conductance state.
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2.1.3 Software Simulation Results

In order to avoid that hardware-specific behavior might wrongly indicate the functional-
ity of the proposed method, it is first verified qualitatively utilizing the software simulator
NEST. The NEST neuron model and the parameter values are chosen to optimally re-
semble the hardware. Still, quantitatively equal results from hardware and software are
not to be expected, since subtle non-linear parasitic hardware effects (see e.g. [Bill, 2008]
are not included in the NEST model. Some of them will be discussed in the hardware
result section.

If not explicitly stated differently, the basic set of parameters applied for the software
runs is the following:

Neuron

Cm 0.2 nF
Vreset −80.0 mV
EI −75.0 mV
El −70.0 mV
Vthresh −57.0 mV
EE 0.0 mV
gl 2 nS

Synapses

τsyn 30 ms
gEmax 0.4 nS
gImax 1.6 nS
gstim 2 · gEmax

The leakage conductance gl has been chosen particularly low in order to have a slow
membrane for the unstimulated case. If applicable on the hardware system, the remain-
ing parameters were chosen according to [Muller , 2006], i.e. according to biologically
realistic models. However, in a few cases the values were chosen in order to better fit the
hardware system. For instance, the choice of rather large synaptic time constants was
imposed by hardware limitations, because the chosen speedup factor for the hardware
system does not support shorter ones. Furthermore, in order to provide the necessary
amount of total synaptic stimulation, the maximum synaptic conductances are rather
large, since the number of synapses to a hardware neuron is limited. It also has to be
noted that neither gl nor Cm are directly measurable for the hardware. Still, the time
constant of the hardware membrane under no stimulation, τm,rest ≡

Cm
gl

, can be easily
measured. By varying a steering current that controls the not directly measurable value
of gl, τm,rest can be calibrated to the desired value.

To find the membrane time resolution measure τres, the test stimulus was applied with
a package period of TPP = 1000 ms. Each package had npack = 4 spikes, with TISI being
varied from 0 ms to 250 ms.

Figure 2.5 shows the response curve for a background Poisson rate of νin = 2 Hz,
fed into NE = 36 excitatory and NI = 33 inhibitory synapses, and another response
curve for a background rate of νin = 14 Hz, fed into NE = 32 excitatory and NI = 34
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2.1 A Spike-based High Conductance State Test

inhibitory synapses.

The plot shows the expected decrease in the output firing rate with growing TISI due
to decreasing overlap of PSPs in the test stimulus. Every data point represents the mean
value from 250 runs with 10 seconds of simulated time each, the error-bars denote the
standard error of means (SEM). Also shown in the plot is the respective time resolution
measure τres, which reaches different values for different background frequencies. The
dependency of τres on the frequency of the Poisson background νin is subject to the
following analysis.

Background Activity Increases Membrane Time Resolution

The membrane time resolution τres has been evaluated for various Poisson background
rates νin. Figure 2.6 shows τres as a function of νin, exhibiting a dependency as expected.
With increasing synaptic contribution to the total membrane conductance, the temporal
resolution capability increases rapidly (i.e. τres decreases) until an input frequency of
about νin = 10 Hz is reached. For higher frequencies, τres stays within the same range of
approximately (20± 8) ms.

The rather large fluctuation of the presented data points with their mostly small
errors can be explained as follows. For changing input frequencies, the τres estimation is
acquired for varying output rates, since the output rate balancing via adjustment of NE
and NI can not work perfectly. This is a drawback of the hardware neuron, which has
only few synaptic inputs. This coarse granularity limits the possible performance of the
algorithm that adjusts the number of excitatory and inhibitory inputs in order to keep
the sum NEgexc +NIginh constant.

Nevertheless, the presented method still allows to distinguish between different con-
ductance states and gives an estimate for the amount of synaptic stimulation which is
required to significantly decrease the low-pass characteristics of the membrane.

Figure 2.7 shows the same experimental data plus the results of another measurement
series with τsyn = 20 ms (green curve) instead of 30 ms (blue curve). Here, the x-axis
does not show the input firing rate, but the average total conductance normalized to
the pure leakage conductance. In [Brette and Gerstner , 2005], a value of 5 for this
ratio is suggested as the threshold to high-conductance states. This separating value is
indicated in the plot by a dashed line and fits well the measured data, i.e. the suggested
high-conductance regime clearly differs from the low-conductance states in terms of
membranic time resolution capabilities.

2.1.4 Hardware Implementation

As indicated above, variations from the pure software results are to be expected, since
the hardware is subject to electronic phenomena like noise, crosstalk and leakages. Espe-
cially the leakages in hardware introduce some dynamics (see e.g. [Bill, 2008]) which are

21



2 Experiments and Results

hard to be mapped to the available standard neuron models in NEST. E.g., the circuits
which generate the synaptic conductance courses are assumed to exhibit weight depen-
dent leakage conductances towards their corresponding reversal potentials. Furthermore,
these leakages are often temperature dependent plus subject to process variations during
production of the chip, thus being hard to quantify. Compensation methods are under
development and minimization is an aim of planned chip revisions, but these approaches
could not yet be considered for this study. Thus, compared to the software simulation,
a positive total membrane conductance offset has to be expected.

A comparison between the figure showing the time resolution capability of a hardware
neuron (see figure 2.8) and the software simulations show, that also for the hardware
neuron τres decreases rapidly with increasing background stimulation. This is an evi-
dence that the generation of a high conductance state can be reached with a moderate
background stimulation fitting well the limitations of the hardware system.

2.1.5 High Conductance State Test: Discussion and Conclusion

A purely spike-based method for the measurement and description of conductance states
of a neuron’s membrane has been presented. The concepts have been shown to work
properly both in a software simulation study and in a hardware implementation. For the
hardware substrate, this method is an essential key to access information about the total
membrane conductance and thus to the synaptic temporal dynamics, which are both not
directly accessible. Low-pass filtering effects of the membrane can be minimized to an
acceptable level in case a high-conductance state can be asserted.

A similar method described in [Rudolph and Destexhe, 2006] operates also spike-based,
but has a few draw-backs compared to the presented one - mainly due to portability
issues for the hardware platform, which does not offer the flexibility for artificial setups
as software simulators do. First, the method in [Rudolph and Destexhe, 2006] requires in
the order of 30 synaptic inputs which synchronously generate very strong conductance
courses. Since the hardware platform is very limited in terms of both number of synaptic
inputs and - at least in practice - the available range and reliability of synaptic efficacies,
this setup is not well suited for being adopted. Furthermore, the sending of more than
4 perfectly synchronous spikes into one neuron at a time is not possible on the utilized
chip. Sweeping arbitrary input firing rates is not possible either, the proposed ranges of
up to 150 Hz clearly exceed the hardware bandwidths.

A more general advantage of the method proposed here is the fact that the suggested
measure is given in millisecond dimension and thus gives a more intuitive quantity for a
neuron’s temporal resolution property. Furthermore, the method proposed in [Rudolph
and Destexhe, 2006] probably is more difficult to be automatized due to the fact that
it requires the detection of peaks in inter-spike interval histograms which often are am-
biguous. The algorithm needs to find the height of a peak that is not necessarily the
global, but just a local maximum within the histogram, and can be determined only by
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its expected location.
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Figure 2.2: NEST Simulation: Example of the spike-based method for membrane time resolu-
tion evaluation. Shown are input and output of a neuron under test. Top: Raster plot of parts
of the Poisson background with νin = 10 Hz. Middle: Test stimulus fed into the neuron. Bottom:
Resulting output spike count accumulated over 1000 runs.
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Figure 2.3: NEST simulation: Output firing rate fout = νstim
out − ν

nostim
out vs. inter-spike interval

TISI of test spikes. The dashed line shows fthresh defined as fthresh = fmin +(fmax−fmin)/e. fmin is
defined by the mean output rate for TISI in [150 ms, 250 ms]. The shown output rates are mean
values averaged over 250 simulation runs with 10 s duration each, error bars are standard error
of the mean. The vertical line marks the critical package density TPP, crit, where the output rate
falls below fthresh. This critical package density is in the following named τres, because it is a
measure for the temporal resolution capability of the neuron.
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TISI

fout

fthresh + ∆fthresh

fthresh −∆fthresh
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Figure 2.4: Schematic for error estimation of τres. x-axis: inter-spike interval of test stimulus
package. y-axis: fout. As fthresh (black dashed line) is determined from two quantities with
an error in measurement, fthresh is also prone to an error ∆fthresh (black dash-dotted lines):
∆fthresh =

√

(∂fthresh/∂fmin ·∆fmin)2 + (∂fthresh/∂fmax ·∆fmax)2. ∆fmax is the standard error
of the maximum mean value of the response curve. fmin is mean value of fout between TISI =150
ms and 250 ms. ∆fmin is the standard deviation of that mean value. The response curve fout

vs. TISI crosses the error bars fthresh ±∆fthresh at two points. The x-coordinate of these points
are marked by τres, 1/2 (red dash-dotted lines). The differences τres − τres,2 and τres − τres, 1 are
in the following the errors of the temporal resolution capability of a neuron at a certain input
frequency.
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Figure 2.5: NEST simulation: Comparison of two output firing rates fout = νstim
out − ν

nostim
out

vs. inter-spike interval TISI of test spikes. The blue curve shows the response of a neuron that
was stimulated with Poisson background of νin = 2 Hz, the green curve with νin = 14 Hz. The
shown rates are mean values averaged over 250 simulation runs with 10 s duration each. Error
bars are standard error of mean. As the membrane of the neuron stimulated with 14 Hz reacts
faster on input variations, the test stimulus has a weaker impact on the output rate. Thus
fout = νstim

out − ν
nostim
out is smaller over the whole TISI range compared to the neuron stimulated

with only νin = 2 Hz. Furthermore, the test stimulus packages have to be more dense in order
to significantly increase the spike probability. This is reflected by a decrease of τres for larger
input rates, i.e. larger input conductances. The simulation was done with the basic parameter
set given above.
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Figure 2.6: Simulation of τres vs. νin for a neuron with τsyn = 30 ms and gl = 2 nS. The
y-axis represents the temporal resolution capability of the neuron membrane, the x-axis shows
the frequency of the Poisson background stimulation, representing the input conductance. With
increasing background activity the temporal resolution capability increases. Error bars for τres

are estimated according to the descriptions given in figure 2.4.
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Figure 2.7: NEST Simulation: Separation of conductance regimes with the help of the temporal
resolution capability τres versus the total membrane conductance divided by the pure leakage
conductance. Blue curve shows the simulation results from a neuron with τsyn = 30 ms, green
curve with τsyn = 20 ms, leakage conductance for both is gl = 2 nS. The dashed line predicts the
separation between low- (LCS) and high-conductance states (HCS) as suggested in [Brette and
Gerstner , 2005].
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Figure 2.8: Hardware: The time resolution capability of a hardware neuron shows a similar
behavior as the neuron used in simulations.
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2.2 Synaptic Time Constants

If plasticity mechanisms are ignored, the utilized neuron model contains seven parame-
ters: Three reversal potentials EE, EI , El, the leakage conductance gl, the membrane
capacitance Cm and two parameters defining a synapse: gsyn and τsyn. While the former
can be converted rather reliably between biological values and hardware parameters, a
proper mapping of gsyn and τsyn has not yet been investigated systematically.

The synaptic time constant, especially that of inhibitory synapses, is an important
parameter that can have a strong impact on the single neuron and network dynam-
ics [Amemori and Ishii, 2000]. For example, in neurons and networks of neurons showing
oscillatory activity, the dynamics, in particular the global oscillation frequency, strongly
depends on the decay time of the inhibitory post-synaptic currents [Chow, 1998; Hansel
et al., 1995; Terman and Wang, 1995; Vreeswĳk, 1996]. Furthermore, slow inhibitory
synapses can lead to a synchronization of the network activity, which can not be achieved
by increasing the amount of inhibition in a different way [Kumar et al., 2008].

The measured ranges of synaptic time constants are an essential information for the
cross-inhibition setups investiaged in the following section.

2.2.1 Setup

In the utilized hardware device, synapses are arranged in a 2-dimensional array. Each
row of that array represents one axon1 and is operated by one synapse driver. One
column consists the synapses that are connected to one post-synaptic neuron. One
synapse driver is either assigned to an external input or a neuron which feeds its input
back into the network. When a spike occurs, the synapse driver generates a voltage signal
consisting of a steep rising ramp (set via drvirise) going up to a maximum (determined
by parameter drviout) and followed by a falling ramp (adjusted via drvifall). In the
synapse circuit, this voltage signal is transformed into a current. As the rise time is very
small, the current increases nearly instantaneously and then decreases exponentially.
The decay time constant τsyn of this exponential current decrease is controlled by the
parameter drvifall. The influence of drvifall on the synaptic time constant is investigated
in this section.

In order to measure the synaptic time constant, several aspects have to be considered.
As it is not possible to access the current time course on a synapse directly, the desired
quantity has to be deduced from the membrane potential. The membrane potential can
be easily accessed via an oscilloscope.

As can be seen from the differential equation 1.3 describing the membrane dynamics
and derived in detail in [Shelley et al., 2002], the membrane potential follows the time
course of input conductances instantaneously, when the total membrane conductance

1If a neuron projects onto neurons of both blocks, the axon is represented by two rows – one on each
side.
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gT is large enough, i.e. the effective membrane time constant τm(t) = Cm/gT is small
enough. This is the case when the neuron is in a so-called high-conductance state due
to strong synaptic input, see sections 2.1.1, 1.4 and [Shelley et al., 2002; Destexhe et al.,
2003]. Thus, one has to assure that the total synaptic conductance is large enough to
be able to deduce the synaptic conductance course from the membrane potential. In
the previous section, a high-conductance state test has been introduced for exactly this
purpose.

In the following, spike-triggered averaging (see section 1.6) is used to deduce τsyn from
the membrane potential V (t). The influence of drvifall on the synaptic time constant
is studied with only one synapse driver at the same time, i.e. trigger signals are sent
by only one synapse driver. The recorded neuron is connected to 120 excitatory and 40
inhibitory inputs which stimulate the neuron with Poisson spike trains of νin = 5 Hz for
a duration of 100 s. This synaptic background for the STA measurements was chosen
here is high enough in terms of the high-conductance state conditions determined in the
previous section, which was conducted with approximately the same number of inputs.

A least squares fit of an exponentially decaying function to the mean voltage trace
acquired via spike-triggered averaging yields the desired quantity τsyn [Barlow, 1989].
Figure 2.9 shows one example of a hardware system PSP extracted in that way.

This procedure is systematically applied for a range of drvifall between 0 µA and 2.0
µA. As the integrated current decreases with increasing drvifall, the impact of a spike on
the recorded neuron decreases as well. In order to keep the mean membrane potential
and the total synaptic conductance on their specified working points, the amplitude
of the current course, which is controlled by drviout, has to be adjusted according to
drvifall. For drvifall values smaller than 0.15µA a drviout of 0.05 µA was chosen to
limit the impact of each spike. For higher drvifall values, drviout was set to 0.1 µA.

2.2.2 Results

Figure 2.10 shows the measured correlation between drvifall and τsyn for five different
synapse drivers on one chip. The data shows large synaptic time constants for very small
values of drvifall and decreasing τsyn for increasing drvifall, as expected. However, it is
worth noting that an effect of drvifall on τsyn can only be observed for values of drvifall
smaller than 0.02 µA. Larger drvifall values do not decrease the mean of τsyn to below
25 ms anymore.

The developing of τsyn for very small drvifall is remarkable: τsyn does not decrease
continuously, but rather decreases in stages. This is an effect of the limited resolution of
the DAC2 creating the programmed drvifall value. The utilized DAC has a resolution
of 10 bit and can create values in the range from 0 µA to 2.5 µA. That is, the DAC
creates the desired drvifall values with a precision of 2.5 µA / 1024 bit = 0.0024 µA /

2Digital Analog Converter
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2.2 Synaptic Time Constants

Figure 2.9: Excitatory PSP gained by spike-triggered averaging at drvifall = 0.004 µA.
Hardware voltage and time scale are transformed to biological scale. The shown PSP is the
mean PSP averaged over ca. 2500 samples. The error of each data point i is estimated by:

σi =

√

(y2
i − yi

2)/(n− 1), whereas n is the number of recorded samples and yi
2 (y2

i ) represents

the squared average value (the average square value, respectively).

bit. Consequently, pairs of drvifall with differences smaller than that do not necessarily
show a difference in the resulting τsyn.

A comparison of different synapse drivers yields, that for small drvifall values τsyn

shows variations between ca. 55 ms and 140 ms in biological time-scale. For drvifall =
0.025 µA, the variance of τsyn is minimal and increases for larger drvifall. Thus, this
parameter should be chosen to guarantee the highest homogeneity for an uncalibrated
chip.

The range of time constants τsyn, which can be achieved by a synapse driver, reveals
only a minor dependence on the neuron the EPSPs were excited on. Figure 2.11 shows
the measurement of two synapse drivers, carried out on two neurons. Obviously, the
curve progression is a characteristic of the synapse driver – not of the neuron which was
used for the measurement.
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Figure 2.10: τsyn in dependence of drvifall. Plotted are synaptic time constants of five different
synapse drivers estimated through STA. Each data point was measured three times, errors are
standard error mean. Noticeable errors occur for drvifall greater than 0.1 µA. The incremental
developing of τsyn values at small values of drvifall (step size = 0.001 µA) is caused by the limited
resolution of the DAC generating the desired drvifall values.

Difficulties in measuring τsyn

One problem observed during preparatory investigations of the test setup is that param-
eter values (e.g. drvifall) of different synapse drivers influence each other, which is not
yet understood and requires further investigation. A first phenomenological study will
be presented in the following.

Figures 2.12a, 2.12b, 2.13a and 2.13b show screenshots from the oscilloscope recording
the membrane potential of one neuron. The effect of mutual parameter influence was
observed in a setup where only one synapse driver stimulated the recorded neuron, while
all other connected synapse drivers (about 100 in total) did not receive any signals. The
first figure 2.12a shows, that the drvifall value assigned to other synapse drivers strongly
affects the shape of the PSP caused by the one observed synapse driver.

A comparison of the two figures in 2.13 shows, that the exact position of the synapse
drivers having the same drvifall value does not have an effect on the shape of an EPSP.
Concluding, there seems to be no direct electrical interference between synapse drivers
due to a close spatial arrangement, but the configuration of an entire synapse driver ar-
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Figure 2.11: Comparison measurement of the synaptic time constant τsyn carried out on
different neurons. While different synapse drivers (left and right plot) reveal significantly different
curves, the influence of the utilized neuron (red and blue line) is of almost no relevance.

ray reveals a strong interference. It is not clear from the shown figures, which parameter
of the observed driver is influenced by others, i.e. whether drviout controlling the PSP
amplitude or drvifall controlling the decay. The typical hardware synapse dynamics sig-
nificantly changed during the course of working for this thesis, after an error concerning
the synaptic resting voltage VREST was discovered in November 2008. Therefore, no
deeper investigation of the above issue was possible during this thesis. A systematic
investigation is strongly recommended.

In order to minimize the undesired mutual influence of parameter values assigned to
different synapse drivers, the influence of the number of synapse drivers having the same
value as the observed driver is analyzed. Figure 2.14 shows the shape of an EPSP for
setups with varying numbers of synapse drivers having the same drvifall value. When
no other synapse driver has the same value as the observed synapse driver, the EPSP is
strongly distorted. With increasing number of synapse drivers having the same value,
the shape of the EPSP seems to converge to a ‘real’ shape. As a consequence of figure
2.14, all previously presented measurements of τsyn in dependence of drvifall were carried
out with 16 other synapse drivers having the same drvifall value as the observed one.

2.2.3 Synaptic Time Constants: Discussion and Conclusion

The presented measurements show, that the synaptic time constant in hardware can be
adjusted only in a coarse way. The maximum value for τsyn is dependent on the individual
synapse driver and ranges from about 55 ms up to 140 ms. Due to the limited resolution
of the DAC generating the desired current, drvifall can be set in units of 0.0024µA.

For drvifall values less than 0.02µA, a monotonous correlation is observed as ex-
pected. For larger values, an undesired effect concerning the synapse driver reference
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(a) Screenshot from the oscilloscope showing EPSPs averaged over 50 runs triggered
by one synapse driver with drvifall = 0.01 µA. 20 non-adjacent synapse
drivers have drvifall = 0.0 µA. Only the synapse driver with drvifall = 0.01 µA
sends currents to the recorded neuron, the 20 non-adjacent synapse drivers do not
receive any spikes. About 100 synapse drivers are connected without input spikes and
have drvifall = 0.15 µA.

(b) Same setup as above, only difference is that the 20 non-adjacent synapse
drivers have the same value as the active one, i.e. all have drvifall = 0.01 µA,
which leads to a decrease of the PSP-integral. Apparently, the drvifall value of other
synapse drivers strongly affects the efficacy of the observed driver.

Figure 2.12: These two figures show the strong effect the drvifall value of other synapse drivers
has on the EPSP shape of a single one.

voltages occurs, which was just recently detected and, for the work in this section, made
completely new considerations necessary. Too large drvifall values increase the synap-
tic resting voltage VREST, which immediately affects the voltage ramp generating the
decaying current, which was investigated in this section, but due to the recency of the
hardware issue detection, suggests deeper studies. This effect causes a permanent in-
put synaptic conductance and, hence, affects the resting potential Vrest of any connected
neuron.

The minimum τsyn was determined to be between 30 ms and 20 ms for individual
synapse drivers. Since the homogeneity between different synapse drivers is maximum
at a drvifall value of 0.025 µA and the respective τsyn is close to the minimum, this value
seems to be optimal for the operation of the hardware system.

Unfortunately, the synaptic time constants turned out to be not arbitrarily adjustable.
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2.2 Synaptic Time Constants

(a) Again, EPSPs averaged over 50 runs triggered by one synapse driver with
drvifall = 0.0 µA. 20 non-adjacent synapse drivers have the same drvifall

= 0.0 µA. About 100 synapse drivers are connected without input spikes and have
drvifall = 0.15 µA. Only one sends currents to the recorded neuron. The 20 non-
adjacent synapse drivers do not receive any spikes.

(b) Same setup as above, only difference is the position of the 20 synapse drivers
having the same drvifall value as the observed one. In this setup they are directly
adjacent.

Figure 2.13: Changing the subset of synapse drivers, which are configured with drvifall = 0.0
µA, does not influence the observed synapse driver.

Particularly, synaptic time constants smaller than τsyn = 20 ms do not seem to be
possible. Compared to parameter choices as used in typical comparable models [Kumar
et al., 2008; Sussillo et al., 2007; Shelley et al., 2002], this is a large value. This is
especially true compared to the membrane time constants of about 5 ms to 10 ms
inherent to VLSI neurons of the current chip.

Still, for the purpose of cross-inhibition and winner-take-all architectures, which -
as will be shown in the following chapter - need large synaptic time constants, the
results presented in this section are not necessarily negative. But it remains unclear how
problematic the fact that individual synaptic time constants are adjustable only in a
rather coarse and unreliable way will turn out for the experiments aimed at.
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Figure 2.14: Effect of the number of synapse drivers, that have the same value as the observed
synapse driver, on an EPSP. For 16 or more synapse drivers, that have the same drvifall value,
no impact on the observed synapse driver can be seen. Thus, spike-triggered averaging was done
with assigning the same drvifall value to 16 other synapse drivers. Voltage and time as seen on
the oscilloscope.

2.3 Cross Inhibition

Inhibition plays an essential role in the dynamics of neural networks. Inhibitory sig-
nals counteract excitatory forces, can interrupt the information flow or restrict activity
patterns in space and time and can impose spatial and temporal selectivity [Buzsaki,
1984, 1995; Buzsaki et al., 1996; Watts J , 2005]. Hence, inhibitory elements are crucial
in information transmission, learning processes and memory formation.

One function of strong mutual inhibition can be used to create a selection mechanism,
which implements a winner-take-all architecture, see section 2.4, [Häfliger , 2007]. In the
following, cross inhibition means that all neurons of a network are connected with each
other via strong inhibitory synapses. Figure 2.15 shows a schematic of a cross inhibition
setup with 4 neurons.
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Figure 2.15: Schematic of a cross inhibition setup with 4 neurons and 4 inputs. Each neuron
receives each external input plus feedback from each neuron except of itself. All neurons receive
the same temporal information, but as external input weights are randomly distributed, incoming
spikes have different impact on each neuron.

In this section, the influence of various parameters on networks implementing cross
inhibition is investigated. The experimental setup and important parameters are intro-
duced in subsection 2.3.1. In order to describe the behavior quantitatively, a measure
for the performance is defined in subsection 2.3.2. Utilizing this performance measure,
the influence of different network parameters is analyzed with the help of software sim-
ulations in subsection 2.3.3. In section 2.3.5, conclusions from these simulations are
drawn with respect to winner-take-all architectures that are investigated in the course of
this thesis. Furthermore, the feasibility of porting these experiments onto the hardware
system is discussed.
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2.3.1 Setup

In a cross inhibition setup, the neural network consists of N inhibitory neurons. The
output of each neuron is connected to any other neuron within the network with prob-
ability pfeedback. The weights gfeedback of connections between neurons are constant over
time, just like the weights for external stimulation, so no learning rule is applied in this
setup. Connections with itself are not possible. Each neuron is connected to the same
nin external inputs, which stimulate the network with Poisson type spike trains. The
weights of synapses are normally distributed (see figure 2.16), so that the external inputs
have different impact on each neuron. If all synaptic weights gexc had exactly the same
value, all neurons would spike at exactly the same time and a single winner neuron could
not be determined. As the cross inhibition setup investigated here is intended to imple-
ment a winner-take-all functionality, it is indispensable that external synaptic weights
have non-uniform values. The optimum width of the Gaussian distribution from which
the external weights are drawn is investigated for one setup in section 2.3.3.

In the hardware system, all components are subject to process variations, which also
leads to variations in the synaptic efficacies. Supposed that these variations are signifi-
cantly smaller than the optimum of variations identified by the simulations, an additional
weight modification would be necessary. Since hardware weights can only be set with a
resolution of 4 bit, the influence of quantized weights is investigated.

For a first study, all feedback weights are uniform, i.e. all inhibitory connections be-
tween neurons have the same value. In a second series of experiments, the influence of
normally distributed feedback weights is investigated, since in the hardware system all
components are subject to fluctuations.

The parameters defining the cross inhibition setup are:

• N : number of neurons in the network
• gexc: weights for excitatory synapses (external stimulation)
• ginh: weights for inhibitory synapses (external stimulation)
• σg/g: relative weight variation parameter for external synapses, i.e. width of the

Gaussian distribution relative to the mean value of the distribution (g 6= 0)
• nexc, ninh: number of external inputs without feedback connections nin = nexc +ninh

• νin: frequency of external stimulation
• gfeedback: weights for inhibitory feedback synapses
• pfeedback: probability with which each neuron is connected to another neuron
• τsyn: synaptic time constant, i.e. decay constant for the conductance time course

For the whole set of neuron parameters see appendix A.1.

As it is unclear which set of parameters leads to the best performance, runs with
different parameter sets have to be performed for a single network size.
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0 1 2 3 4 5 6 7 8

Figure 2.16: In simulations, synaptic weights for external connections are normally distributed
(red curve). This is necessary in order to have a different impact of an external stimulus on
individual neurons. Shown is a Gaussian distribution with µ = 4, σ = 1 (arbitrary units). In the
case, that the hardware intrinsic diversity of weights is not enough to guarantee sufficient cross
inhibition performance, an additional modification has to be applied to synapses. As synapse
weights are quantized in the hardware system, weights would be drawn from the quantized
distribution (blue histogram). Presumably, the intrinsic diversity of hardware synapse weights
is large enough to enable different impact of a stimulus on individual neurons. The extent of
diversity is expressed by the fraction σ/µ = σg/g. The influence of σg/g on the cross inhibition
performance is studied in simulations in subsection 2.3.3.

2.3.2 Performance Measure for Cross Inhibition

In order to quantify the performance of a cross inhibition setup that is intended to
implement a WTA architecture, a quality measure is defined as follows:

Qci =
2s∗ − S

S
(2.3)

The quantities used to define this quality measure Qci are:

• S =
N
∑

i=1

si: total number of output spikes fired by the network, si: output spike

count of neuron i

• s∗ = max
i=1..N

{si}: number of spikes fired by the most active neuron

Qci is positive if one neuron spikes more often than all other neurons together: Qci > 0,
if s∗ > S−s∗. The desired behavior of a network implementing cross inhibition is shown
in figure 2.17b and 2.18b. In fig. 2.17b Qci, is equal to 1, as S = s∗, i.e. only one neuron
spikes and inhibits all other neurons from spiking. If the spike output is distributed
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(b) Ideally distributed spikes

Figure 2.17: Exemplary histograms showing two possible spike count distributions with the
same total number of output spikes S = 100. An even distribution leads to Qci = −0.75, an ideal
to distribution Qci = 1

uniformly over all neurons, i.e. s∗ = S/N , which represents the worst functionality of a
cross inhibition setup that is aimed to implement a winner-take-architecture, Qci = 2

N
−1

Thus, in this case Qci is close to −1 for large networks. If the network does not spike at
all, Qci is set to −1 by definition. Hence, Qci maps the spike output distribution into the
interval [−1, 1]. Since it clearly assesses the dominance of one neuron, Qci is an adequate
quantity to represent the effect of cross inhibition on the network behavior.

However, the presented measure Qci does only reflect the relation between the maxi-
mum spike count s∗ and the total spike output S. Qci does not reflect any information
about the total number of spikes fired by the network. Thus, additional information
about the total spike count has to be taken into account in order to judge whether the
network shows the desired behavior, i.e. if the target output rate is reached. For example:
When only one spike is fired, Qci = 1. Provided the desired output rate is higher, the
network does not show the desired behavior, although Qci equals one. This is especially
important for WTA architectures, where the desired learning effect is dependent on the
output spike rate.

The importance of total output rates during in the quality assessment is strongly
dependent on the specific problem.

A more general definition for a cross inhibition performance measure is:

Qci =
α · s∗ − S

S
·

1

α− 1
(2.4)

whereas α > 1.
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α stands for the fraction the maximum spike count s∗ has to exceed of the total spike
count S so that Qci is positive:

Qci > 0 ⇐⇒ s∗ >
S

α
(2.5)

The factor of 1/(α − 1) in equation 2.4 guarantees that Qci ≤ 1. The smaller α is, the
more strict the assessment of the spike output is with respect to a perfect winner-take-
all output. The larger α is, the smaller s∗ has to be for a Qci > 0: e.g. α = 5 requires
that the most active neuron fires more that 20 % of the total spike output in order that
Qci > 0.

In the following the utilized Qci is defined as in equation 2.3, i.e. α = 2.

2.3.3 Simulation Parameters and Results

In order to find parameters that enable a good performance of a WTA architecture, net-
works with different parameters were simulated using the software simulator NEST [Mor-
rison et al., 2007, 2005]. More information about the utilized software framework can
be found in section 1.3

In the design of the presented simulations, the feasibility of porting the setup to
the hardware system was considered. That is, hardware constraints as e.g. the limited
number of recordable neurons, the limited number of inputs for each neuron, input
bandwidth limitations and quantization of synaptic weights were taken into account
when defining the simulation parameters.

If not given explicitly, parameter values for simulations are the following:

n nexc gexc ginh σg/g pfeedback

16 48 4 · 10−4 µS 64 · 10−4 µS 0.1 1.0

Table 2.1: Cross inhibition simulation parameters

Influence of νin and τsyn

In order to achieve a good cross inhibition performance, a certain minimum stimulation
is required, since inhibition needs activity. Two parameters that control the stimulation
efficacy are the synaptic time constant τsyn and the frequency νin of the Poisson type
input spike trains. In the utilized model, the synaptic time constant is the decay constant
of the conductance time course resulting from incoming action potentials – for excitatory
as well as for inhibitory connections. For efficient inhibition leading to a single winner
neuron, it is necessary that PSPs3 overlap: Inhibitory PSPs from other neurons overlap

3PSP: post-synaptic potential
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with excitatory ones from the external stimulus and thus impede spiking. This overlap
of PSPs can be realized by a high input frequency or wide PSPs. As the input rate is
limited in the hardware system, it is necessary to find an adequate value for τsyn which
allows the superposition of PSPs.

Figure 2.19 shows simulations of networks with n = 16 neurons. On the x-axis, the
synaptic time constant τsyn is varied between 10 ms and 60 ms. This range was chosen
with respect to the range of τsyn in the hardware system, see section 2.2. As shown
there, the lower bound for the utilized chip was found to be around 25 ms, but for future
revisions of the chip, faster synapses are planned.

On the y-axis, the frequency of the Poisson spike trains is varied between 4 Hz and 20
Hz, also reflecting hardware possibilities. Each neuron receives Poisson type spike trains
from nexc = 48 excitatory synapses. All applied parameters are listed in table 2.1.

Figure 2.19a shows the total output rate νtot
out =

∑16
i=1 νout,i of the network under dif-

ferent values from νin and τsyn, which ranges from 0 Hz to (244.3± 0.5) Hz. Figure 2.19b
shows the performance measure Qci defined above for the same range of values. The
lowest value with νout > 0.1 Hz is Qci = −0.33 ± 0.03 for τsyn = 10 ms and νin = 18 Hz.
The highest one is Qci = 0.998± 0.001 for τsyn = 60 ms and νin = 6 Hz. The given values
are the mean values averaged over 50 runs each with 5 s duration; errors are standard
errors of mean, see figure 2.22b for numerical values.

The figure shows, that for a certain input frequency νin the synaptic time constant τsyn

has to be chosen high enough to enable a large value of Qci. For example for an input
rate of νin = 10 Hz, a synaptic time constant of at least τsyn = 30 ms is preferable (see
fig. 2.19b, τsyn ≥ 30 ms).

Figure 2.19a shows the total output rate νtot
out =

∑16
i=1 νout,i of the network under dif-

ferent values from νin and τsyn, which ranges from 0 Hz to (244.3± 0.5) Hz. Figure 2.19b
shows the performance measure Qci defined above for the same range of values. The
lowest value with νout > 0.1 Hz is Qci = −0.33 ± 0.03 for τsyn = 10 ms and νin = 18 Hz.
The highest one is Qci = 0.998± 0.001 for τsyn = 60 ms and νin = 6 Hz. The given values
are the mean values averaged over 50 runs each with 5 s duration; errors are standard
errors of mean, see figure 2.22b for numerical values.

The figure shows, that for a certain input frequency νin the synaptic time constant τsyn

has to be chosen high enough to enable a large value of Qci. For example for an input
rate of νin = 10 Hz, a synaptic time constant of at least τsyn = 30 ms is preferable (see
fig. 2.19b, τsyn ≥ 30 ms).

An explanation for this is the competition between external excitation and internal
inhibition: If the synaptic time constant is large, the effect of an incoming spike on a
neuron’s membrane potential is strong because more charge is injected into the neuron.
As action potentials decrease more slowly with larger τsyn, they interfere with each other
with higher probability. Hence, inhibitory spikes from one neuron have stronger impact
on others and cross inhibition works more efficiently. Consequently, the performance of
this experimental setup is strongly dependent on synaptic time constants.
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2.3 Cross Inhibition

As already mentioned, the input rate also determines the probability of an overlap of
PSPs. An increase of νin intensifies the competition between excitation and inhibition.
This is demonstrated in figure 2.20, which shows the dependency of Qci on the external
stimulation frequency νin For growing νin, Qci first increases (6 Hz ≤ νin ≤ 12 Hz)
and then decreases for νin > 12 Hz, even though the maximum output rate s∗ further
increases. This is due to the external excitation, which counteracts the mutual inhibition
and for high input rates finally exceeds it.

Influence of νin and τsyn with constant global output rate νtot
out

The previous investigations might suggest that cross inhibition is dependent on the
external stimulation and hence on the output rate, see figure 2.20. In order to investigate
the influence of τsyn independent from the output rate, a setup was created that adjusts
the global output rate by changing the number of excitatory and inhibitory inputs. The
number of excitatory and inhibitory inputs were changed between runs with different
values for νin and τsyn, whereas nexc · gexc + ninh · ginh is kept constant. The target global
output was νtot

out ≥ 75, Hz which was reached for most of the scanned parameter range,
except for very weak external stimulation (bottom left in figure 2.21a). The colormap
2.21b shows a decrease of Qci with increasing external stimulation frequency νin (y-
direction). Furthermore, figure 2.21 verifies the dependency of Qci on the synaptic time
constant τsyn. Consequently, an optimal choice of parameters would be rather long
synaptic time constants τsyn ≥ 30 ms and input rates less than 10 Hz.

Influence of weight quantization

The quantization of synaptic weights in the hardware system is a restriction, which does
not exist in that way under biological conditions. In order to represent the weight quan-
tization in simulations, synaptic weights were rounded to multiples of 10−4 µS, which is
a realistic value after first hardware calibration attempts. The influence of quantized
weights was tested by subtracting Qci(without weight quantization) from Qci(with weight
quantization) for the parameter range given above. Simulation parameters were those
listed in table 2.1. Figure 2.22 shows that the difference δQ,ci is in the order of magnitude
of the standard error of mean. Hence, for the chosen setup, the quantization of weight
is no restriction that strongly affects the performance of cross inhibition.

Influence of weight variation σg/g

As every VLSI device is subject to process variations, the influence of variations in
synaptic weights deserves study. In order to simulate hardware intrinsic variations in
synaptic weights, the weights for the simulations were drawn from a Gaussian distribu-
tion with standard deviation σg. Figure 2.16 exemplary shows a Gaussian distribution
with a mean value equal to gexc = 4 and σg = 1 (in arbitrary units)
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The effect of σweights on Qci for fixed values of the input rate νin = 12 Hz and τsyn = 30
ms is shown in figure 2.23 with nexc = 48, gexc = 4 · 10−4 µS and in figure 2.24 with
nexc = 96, gexc = 2 · 10−4 µS. Other simulation parameters are as given above (see table
2.1), except that σg/g is varied between 0 and 2.0. The blue curve shows Qci for a setup
where only the external weights are normally distributed. The green curve shows Qci

for a setup where additionally the inhibitory feedback weights are normally distributed,
which is a more realistic scenario in hardware, where all synaptic weights are affected
by fluctuations. The ratio between standard deviation and mean value σg/g also holds
for the feedback weights, which have a much higher weight.

The plots (2.23 and 2.24) show a non-monotonous relation between the cross inhibition
performance measure Qci and σg/g. If σweights equals zero, all neurons get exactly the
same stimulation. Thus all neurons fire with exactly the same rate: s∗ = S/N and
Qci = 2/16 − 1 = −0.875. When the weight variation parameter σg/g is increased, Qci

reaches a maximum and then decreases for increasing variation σg/g. A comparison
between the two setups – uniform feedback weights (fig. 2.23) and non-uniform feedback
weights (fig. 2.23) – shows that the setup with non-uniform feedback weights is more
sensitive to the weight variation parameter σg/g, which is explained in the following.

The fact that cross inhibition works worse when feedback weights are non uniform
compared to uniform feedback weights can be explained as follows: On the network
scale, variations in the positive direction for excitatory synaptic weights (i.e. stronger
synapses), which promotes a winner neuron, can be compensated by variations in the
negative direction for inhibitory synaptic weights (i.e. weaker synapses), see figure 2.25b).
In other words, it can easily occur that inhibitory connections going away from one
strongly stimulated neuron are weaker than the average and that connections going
away from other neurons and converging to the strongly stimulated neuron are strong.
In that case the strongly stimulated neuron would spike often, but could not inhibit
other neurons sufficiently.

Figure 2.25b illustrates such a setup that is unfavorable in terms of a winner-take-all
architecture. Neuron 2 is strongly excited by the external inputs but only weakly inhibits
neuron 1. The situation is inverse for neuron 1: it has weak connections to the external
inputs, but in the case neuron 1 fires a spike, the IPSP4 has strong impact on neuron
2. So, both are able to fire and hence reduce Qci. This effect is stronger when σg/g is
large, which is confirmed by figure 2.23.

Figure 2.24 shows Qci against σg/g for a setup with twice the number of excitatory
inputs and half the weights compared to figure 2.23, i.e. nexc · gexc = const for both
setups. A comparison between the two plots yields that a larger number of inputs with
smaller weights benefits cross inhibition quality in two ways: The maximum value of
Qci is higher in fig. 2.23a than in fig. 2.24a and the decrease due to unfavorable weight
distribution begins at larger σg/g. This can be explained by statistical balancing of the

4Inhibitory Post-Synaptic Potential
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synaptic weights: For small numbers of inputs nin, an unfavorable weight distribution
has stronger impact than in the case when nin is large. Thus, a setup with a larger
number of inputs and weaker connections is more robust against the negative effects of
weight variations.

Influence of the network size

It is a basic question how strong the number of neurons in the network influences the cross
inhibition performance. The more neurons the network comprises, the more inhibitory
connections exist for each neuron. Thus, it is more difficult for a neuron to prevail.
This is reflected by the fact that Qci decreases with increasing total number of spikes:
Qci = 2s

∗

S
− 1.

As the total number of spikes increases with the number of neurons, the performance
measure is expected to decrease with increasing network size. This is confirmed by fig-
ure 2.26. The data shown in figure 2.26 represents mean values over 50 runs with 5s
duration each. Simulations were done with τsyn = 30 ms, νin = 12 Hz and the parame-
ters given in table 2.1. The figure shows two curves, where Qci is plotted against the
number of neurons in the network. The curve in blue represents a setup with uniform
feedback weights. The green curve represents a setup with normally distributed feed-
back weights and again shows the strong effect originating from disadvantageous weight
distribution discussed above (see e.g. figure 2.25b). Every setup was simulated with
the same amount of external stimulation, thus the number of inhibition increases with
the number of neurons, whereas excitatory inputs remain constant. To facilitate cross
inhibition performance in larger networks, external stimulation probably needs to be in-
creased in order to counterbalance the increased number of inhibitory connections. The
following studies will concentrate on small network sizes, i.e. N = 16 neurons.

2.3.4 Hardware Implementation

The fundamental difference in the underlying platform when comparing software simula-
tions with emulations on the hardware is the homogeneity of the substrate. In software
experiments all components of the same type are perfectly identical in behavior and
arbitrarily configurable. Hardware components are subject to process variations, and
electronic phenomena like noise and temperature dependent effects and can only be con-
figured within a certain range. Thus, equal results cannot be expected. In order to
counterbalance inhomogeneities in the electronic circuits, different calibration routines
were applied to the utilized chip.

This section concludes the results of a first effort of porting the cross inhibition setup
onto the hardware. As membrane capacity, threshold voltage, leakage current, reset
pulse strength and efficacies of the connected synapses are individual for each neuron
circuit, the first step is to analyze the firing behavior of different neurons. This is done by
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stimulating each neuron on the chip with the same number of input spike trains injected
through the same synapse drivers. Figure 2.27 shows a histogram of mean spike rates
averaged over 10 runs with standard deviation as error bars. Each neuron was stimulated
with 48 excitatory and 12 inhibitory Poisson spike trains for 100 s (biological timescale)
connected with hardware weights of gexc = 4 bit and ginh = 12 bit. The number of inputs
was chosen in correspondence to the simulations discussed above.

The plotted mean spike rates show large variations between neurons. In figure 2.27a,
a small difference between the two neuron blocks can be recognized at neuron number
192. Figure 2.27b shows the same data set sorted by the output rate, neglecting neurons
that do not spike at all with the given stimulation. Figure 2.27b illustrates that the
number of neurons spiking at the same mean rate is very small.

One further problem, that makes it difficult to apply the presented cross inhibition
setup on the current revision of hardware system is the limited number of neurons, that
are recordable at the same time. In general there are ca. 24 neurons per neuron block
recordable at the same time, i.e. ca. 48 neurons per chip. This number is distributed over
the chip in 6 groups with ca. 8 adjacent neurons each. As can be seen in the histogram
in figure 2.27a, adjacent neurons do in general not show similar spiking behavior. As
homogeneous spiking behavior is highly desirable, it is not a promising approach to take
the 48 recordable neurons for the cross inhibition setup without checking their output
rate.

Thus, a different approach was chosen which makes use of figure 2.27b showing the
mean output rates. 16 neurons with similar output rates were selected from the different
groups of recordable neurons. The synaptic weights were adjusted so that the mean
output rate was as equal as possible. Again all neurons are stimulated with the same
Poisson spike trains and no mutual inhibitory connections are drawn. The resulting
distribution is shown in in figure 2.28a. Plotted are mean values averaged over 100 runs
with 10 s (biological timescale) each.

When cross inhibition is applied and the output of each neuron is fed back to all other
neurons via inhibitory synapses, the firing rate decreases (see figure 2.28b). As expected,
the neurons that were most active in the setup without cross inhibition, dominate the
output also in this setup with cross inhibition. The output spike distribution for each
run is shown in figure 2.28c. This figure shows the neuron number on y-axis and the run
number on the x-axis. The output spike count is represented by the gray scale ranging
from 0 to 35. The plot clearly shows, that the output distribution is very similar for
each run. Thus, it is very often the case, that the same neuron dominates the output
and inhibits others, which is not desired with respect to the self-organized WTA learning
experiment presented in the next section.

Left for further studies, there are several possibilities to improve the cross inhibition
performance on the hardware. One possibility is to increase the number of inputs which
enables more possibilities for the weight tuning algorithm in order to counterbalance
weight variation and make the output rates more uniform. Regarding this point, the
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limited number of inputs has to be kept in mind, which limits the number of possibilities.
Furthermore, the strength of the synapse drivers responsible for inhibitory feedback
need to be calibrated for stronger inhibitory effect. However, this does not counteract
the inhomogeneities in neuron spiking behavior, which is mainly due to an individual
threshold voltage. This problem will partly be solved in the next revision of the chip,
which will reduce undesired correlation between the threshold voltage and the reset pulse
strength. Further promising possibilities to counterbalance inhomogeneities might be the
usage of populations instead of single neurons as mutually inhibiting units, and possibly
within each unit a self-stabilizing architecture based on short-term synaptic plasticity as
described in [Sussillo et al., 2007; Bill, 2008].

2.3.5 Cross Inhibition: Discussion and Conclusion

In this section, the performance of various cross inhibition setups was studied. A qual-
ity measure Qci was introduced that allows to evaluate the performance quantitatively.
Simulation results yield an estimation for a minimal stimulation and ranges for τsyn and
νin that lead to large Qci.

The influence of quantized weights compared with continuous weights turned out
to be negligible, i.e. in the order of magnitude of statistical fluctuations. Thus, no
disadvantage for the performance due to weight quantization has to be expected for the
hardware system.

On the contrary, variations in synaptic weights do have a strong influence on the
quality of cross inhibition and indicate the need for a proper calibration of the hardware
system in order not to influence the performance too strong. On the one hand, external
synaptic weights must not have the same value, on the other hand Qci is very sensitive to
the weight variation parameter and large values of σg/g can seriously decrease Qci. This
is especially true when additionally to the weights for external connections the weights
for feedback connections are subject to variations (see figures 2.25, 2.23). It was shown,
that a larger number of stimuli with smaller weights can counterbalance the weight
variation for external connections (compare figures 2.23 and 2.24). As the number of
inhibitory connections is strictly determined by the number of neurons in the network,
it is not possible to counterbalance the variations in feedback weights by increasing the
number of connections.

It can be assumed, that the intrinsic variations in the hardware system exceeds the
minimum weight variation needed to enable cross inhibition and that an additional
modification is not necessary. In the hardware system the following aspects concerning
σg/g have to be considered: The strengths of synapse drivers vary by 10 % to 30 %
[Brüderle, 2008]. Thus, each synapse driver has a different impact on one neuron even
after calibration which attempts a uniform impact. Additionally, each neuron has an
individual time constant, membrane capacity and spike threshold and is influenced by
different reversal potentials due to process variations in the neuron circuit which affects
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subthreshold behavior and spike probability. Hence, it is not possible to adjust σg/g to
arbitrary values. An estimation of σg/g can be found in [Bill, 2008, section IV.3] which
yields that σg/g is in the order of magnitude of 10 % when an ideal calibration of the
PSP integrals is preconditioned.

Furthermore, networks of different sizes were compared. The more neurons the net-
work comprises, the more inhibitory inputs exist for each neuron. As expected, smaller
networks perform better than large ones, because in large networks it is more difficult
for one neuron to prevail. Thus, an optimal setup would consist of a small number of
competing neurons, that share a large number of external inputs with small weights
for stimulation. To counterbalance increased inhibition for larger networks, probably
stronger excitation in form of larger νin, nin or gexc is required to improve the cross inhi-
bition performance. The detailed parameters under which cross inhibition works in the
desired way for larger networks demand further studies. Another important parameter
for the quality of cross inhibition, which was not studied here, is the weight of inhibitory
connections gfeedback, which has to be chosen sufficiently high to enable effective mutual
inhibition.

As these quantities νin, nin and gexc are limited in the hardware system, it is desirable
to adjust synaptic time constants in order to achieve the necessary amount of stimulation
given to the network.

The most important conclusion to be drawn from this section is that synaptic time
constants play a crucial role in this setup with respect to winner-take-all architectures.
Too small time constants prevent the superposition of PSP on a neuron’s membrane. As
this superposition of inhibitory PSPs from feedback synapses and excitatory PSPs from
external stimuli is necessary for a good cross inhibition performance, the synaptic time
constant is a fundamental parameter that has to be adjusted properly.

As in the PyNN implementation of NEST2 the synaptic time constants are imple-
mented as part of the neuron parameters, the influence of variations in the synaptic
time constants (i.e. different τsyn for one neuron) can not be studied in a way that real-
istically resembles the hardware system and biological realistic setups.
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(a) τsyn = 20ms, Qci = −0.429
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(b) τsyn = 40ms, Qci = 0.982

Figure 2.18: Rasterplots showing the spike output from a network of 16 neurons implementing
cross inhibition with different synaptic time constants, but identical external input. The network
of 16 neurons is stimulated with νin = 12 Hz. In fig. 2.18a, the synaptic time constant is τsyn =
20 ms, which is too small to enable efficient cross inhibition. Fig. 2.18b shows the same setup
with larger τsyn. The temporal sequence of input spikes is identical in both setups. The effect
of incoming spikes is stronger in figure 2.18b due to larger τsyn. After ca. 150 ms, one neuron
continuously dominates the output and inhibits other neurons from firing, which leads to large
Qci.
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(a) Total output rate in a network of 16 neurons
implementing cross inhibition.
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Figure 2.19: Color map showing the total output rate and cross inhibition performance Qci,
respectively, against synaptic time constant τsyn and input rate νin. Plotted are the mean values
averaged over 50 runs. Simulations parameters are according to table 2.1.
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Figure 2.20: Solid line: Qci. Dotted line: νtot
out. Shown are the mean values averaged over 50

runs with 5 s duration each. Error bars represent standard errors of mean and can not be seen
for νtot

out. Compare columns in figure 2.19b and 2.19a with τsyn=30 ms. Strong excitation due to
large νin counteracts mutual inhibition and hence decreases Qci.
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(a) Total output rate in a network of 16 neurons
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Figure 2.21: Color map showing output rate and cross inhibition performanceQci, respectively,
against synaptic time constant τsyn and input rate νin. Each value is a mean value averaged over
50 runs with 5 s duration each. The number of excitatory and inhibitory inputs was adjusted
between runs with different values for νin and τsyn, so that nexc · gexc + ninh · ginh is constant and
the global output rate νtot

out ≥ 75 Hz. This is true except for small values of νin and τsyn, where
the external stimulation is not sufficient and the target global output rate of 75 Hz can not be
reached with the given number of external stimuli. Figure 2.21b shows that the quality of cross
inhibition performance is strongly dependent on the synaptic time constants.
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Figure 2.22: Colormaps showing the standard error of mean of Qci in comparison to the effect
of quantized weights on Qci. The color bar range was chosen to be the same in both plots.
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Figure 2.23: Cross inhibition performance Qci in dependence on weight variation σg/g with
nexc = 48, gexc = 4·10−4 µS. Each point represents a mean value of Qci averaged over 50 runs with
5 s duration each, with standard errors of mean as error bars. Blue curve (in fig. 2.23a) shows
performance of a setup with uniform inhibitory feedback weights, i.e. all inhibitory connections
have the same value as in table 2.1. Only the weights to external inputs are normally distributed.
Green curve (in fig. 2.23b) shows Qci when additionally the feedback connections are normally
distributed. The setup with normally distributed weights for feedback connections (fig. 2.23b) is
more sensitive to σg/g which can be explained by fig. 2.25b.
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Figure 2.24: Cross inhibition performance Qci in dependence on weight variation σg/g with
twice the number of excitatory inputs but half the excitatory weight compared to the setup
discussed above, see figure 2.23: nexc = 96, gexc = 2 · 10−4 µS.
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(a) Difference of cross inhibition performance Qci be-
tween networks without and with normally distributed
feedback weights. For the major part of the parameter
range (plotted in gray scale), especially for high out-
put rates (see figure 2.19b), Qci is larger when feed-
back weights are uniform. Positive values originate
from statistical fluctuations. The global output rate
is not adjusted, thus is as in figure 2.19a.
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Excitation
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(b) Cross inhibition setup with 2 neurons
and varying synaptic weights. Due to an
unfavorable weight distribution the cross in-
hibition can not perform well in terms of a
winner-take-all architecture. A neuron that
is likely to fire because of strong excitation
(neuron 2) can be strongly inhibited by an-
other neuron (neuron 1). Thus, both are
still able to fire and reduce Qci.

Figure 2.25: The variation of feedback weights can have a negative influence on Qci: Non-
uniform weights for feedback connections decrease Qci significantly for ranges where cross inhi-
bition does not work perfectly, i.e. Qci < 1 compare τsyn = (30, 40) ms, νin ≥ 12 Hz in in figures
2.25a and 2.19b. An explanation can be found in an unfavorable weight distribution that penal-
izes neurons, that would dominate the output in a setup without varying feedback weights (see
figure 2.25b). In ranges where either cross inhibition works well or the output rate is too small,
feedback weight variation does not have a significant influence.
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Figure 2.26: Cross inhibition performance is dependent on the network size. For each data
point, 50 runs with 5 s duration each were simulated. Blue curve shows Qci(N) in a setup
with uniform feedback weights, whereas in the setup of the green curve feedback weights are
normally distributed. Other parameters are according to table 2.1. Qci decreases with increasing
network size due to two reasons: First, each neuron gets more inhibitory input and thus has
more difficulties to prevail. Second, Qci decreases with growing total number of spikes fired by
more than one neuron (see eq. 2.3).
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Figure 2.27: Mean spike rates averaged over 10 independent runs with 100 s duration each.
Single neurons were stimulated with nexc = 48 excitatory and ninh = 12 inhibitory Poisson
inputs with input rate νin = 10 Hz. Both figures show the same data set. In order to allow a
better comparison between neurons, the data shown in the right figure were sorted by decreasing
output rate and neglecting silent neurons. Even after calibration of membrane time constants
and synapse driver efficacies hardware neurons show a very inhomogeneous spiking behavior.
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(b) Global cross inhibition
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Figure 2.28: Spike count histograms on hardware without cross inhibition in comparison
with two different cross inhibition setups. Shown is the mean spike count of 16 neurons on the
hardware averaged over 100 runs. Error bars are standard deviations.
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2.4 Self-organizing Winner Take All

Winner-take-all architectures are supposed to be one network architecture possibly im-
plemented in cortical networks. There are many biologically realistic models of WTA
architectures based on inhibitory neurons [Elias and Grossberg, 1975; Amari and Arbib,
1977; Yuille and Grzywacz, 1989; Coultrip et al., 1992; Kaski and Kohonen, 1994]. Local
WTA dynamics are supposed to be involved in visual velocity estimate [Grzywacz and
Yuille, 1990] and regulate the total activity within networks with recurrent structure
[Johansson et al., 2002]. In the latter named, WTA modules are associated with hyper-
columns, which is assumed to correspond to a cortical minicolumn and rather than an
individual neuron. A modular structure of neural networks exhibit an improved noise
tolerance, convergence speed and capacity [Johansson et al., 2002]. One aspect that can
contribute to draw a connection between the syntax of neural networks, e.g. firing pat-
terns, to the semantics or meaning of them, is the idea that i.e. units of a hypercolumn,
or in general one component taking part in WTA dynamics, represent one dedicated ob-
ject or feature of the outside world. [Johansson et al., 2002]. Furthermore, it is assumed
that individual components or single neurons can be seen as invariant representations of
objects from the real world [Quiroga et al., 2005].

The computational power of the WTA architectures has been investigated mathemat-
ically by Maass in [Maass et al., 2004]. Given there is also an overview of publications
proposing effective VLSI implementations of WTA.

WTA circuits have been proposed amongst others for modeling selective attention
[Indiveri, 2000] and making use of a learning rule for solving classification tasks [Häfliger ,
2007].

Inspired by the latter named, this chapter presents a WTA architecture used for
unsupervised, competitive learning experiments and investigates the portability of a
similar WTA architecture to the hardware system.

2.4.1 Motivation

The winner-take-all architecture presented here is inspired by the work of [Häfliger ,
2007]. It is attractive to be implemented on the FACETS Stage 1 hardware system
because it is a basic application of STDP. The learning dynamics of which can be easily
understood, so no misleading phenomena are expected to occur which might cause wrong
implications, and it has been performed in different VLSI systems already.

Further practical reasons for the choice are that the problem size can be chosen such
that it performs with only a small number of neurons, and that also the number of
connections used for external stimulation and cross inhibition is sufficiently small to
fulfill the limitations of the FACETS Stage 1 hardware system.

The application of the underlying learning rule (STDP) can show how sensitive or
robust the performance of STDP is, with respect to process variations affecting the
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synapse circuits. Thus, this experiment is intended to be a first simple benchmark for
the implementation of STDP in the Stage 1 hardware system. The neuronal output is
easily compared with the output that is expected from a successful learning process as
computed by a reference simulation in NEST. Conclusions to be drawn from runs on
the hardware system can reveal valuable insights which benefits the design of the STDP
implementation in the Stage 2 hardware system.

2.4.2 Setup

The WTA setup presented here is based on strong mutual inhibitory connections and
spike-dependent plasticity as a learning rule and is intended to perform pattern classifi-
cation tasks after successful learning.

The WTA architecture utilized in the following experiments consists of a number
of external inputs nin each of which is connected via excitatory synapses to every N
inhibitory neurons. These excitatory synapses obey the STDP rule which is explained in
section 1.5. Initial weights for external stimulation must not be uniform, as this would
stimulate all neurons in the same way and make all neurons spike at the same time.
Thus, weights for external stimulation are normally distributed, just as in section 2.3.

The output of each neuron is connected to each other neuron via strong inhibitory
synapses. In the following, this is called cross inhibition and is explained in detail
in section 2.3. The inhibitory interconnections between all neurons do not follow the
STDP rule, because an acausal firing of two neurons would depress the synapse between
both and thus deteriorate the mutual inhibition, which would consequently impede the
decision of a single winner. Consequently, inhibitory synapses are static in this setup.
Figure 2.29 shows the schematic of a WTA architecture with N = 4 neurons, and nin = 4
inputs.

In a perfectly working WTA architecture only one neuron is active at any given time.
This can not be guaranteed for the whole progress of the experiment, because the excita-
tory stimulation varies with time and can lead to strong stimulation of multiple neurons.

Input:

The experimental setup at hand is structured as follows. Each input is connected to each
neuron via the same number of synapses. The entire input population, consisting of nin

inputs, is subdivided into nP disjunct sets of equal size. Each such set thus generates
nspP = nin/nP independent Poisson spike trains. At any given moment in time, only one
such set of neurons is active, while all others display no activity. This specific type of
input, consisting of nspP spike trains (ν 6= 0) and nin − nspP ”silent” spike trains (ν = 0)
is, in the following, referred to as a pattern class, or more succinctly, a pattern (see
figure 2.30) Without loss of generality, the active neurons that generate a pattern are
considered adjacent. An example of such a pattern is shown in fig. 2.28. One element
of a pattern class is presented to the neurons for a period of TP with a subsequent pause
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Figure 2.29: Schematic of a winner take all setup with N = 4 neurons and nin = 4 inputs.

of 50 ms.

In a different pattern class nspP other inputs hold the spike trains with νin > 0. Thus,
classes of patterns differ from each other by the disjoint set of active inputs and can
be understood as nP-dimensional binary vectors with one component unequal to zero.
According to this, the number of pattern classes nP = nin/nspP has to break even, i.e.
the set of inputs must be divided equally into nP groups.

All spike trains with νin > 0 are independent from each other. That holds for spike
trains within one pattern class, as well as for different pattern classes and different cycles.

One cycle comprises nP different pattern classes. Figure 2.31 shows the input for one
cycle consisting of 4 pattern class samples. One cycle lasts Tcycle = np · Tp. The whole
experiment lasts ncycles cycles. The order of pattern classes within one cycle is random.

Figure 2.32 shows the input spike trains comprising five cycles.

Intended result after learning

The network is intended to classify nP different classes of patterns through the activity
of the N neurons. In other words: After successful learning, the activity of one certain
neuron represents the existence of one certain class of pattern in the input.

This can be realized by a learning process, which is described in the following: The
subset of inputs representing one class of patterns stimulates all neurons at the same time
as long as the input is present at the input. If this stimulation makes one neuron spike,
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2.4 Self-organizing Winner Take All

Figure 2.30: Spike trains representing one ele-
ment of a pattern class. nspP = 8 different Pois-
son spike trains stimulate the neuron popula-
tion for TP = 1000 ms with a certain mean rate
νin. The classes of input patterns can be un-
derstood as nP-dimensional binary vectors with
one component unequal to zero. Here, e.g.
~v = (0, 1, 0, 0). On that level of abstraction,
one can use the term pattern, as the binary vec-
tor symbolizing the presented spike trains is re-
peated in time, even though the exact structure
of the spike trains is not repeated.
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the synaptic weights of connections between the neuron and the subset are strengthened
according to the STDP rule given in section 1.5. Additionally, the neuron sends an
action potential to all other neurons via its inhibitory connections and in that way tries
to impede the other neurons from spiking. The neuron that gains the strongest weight
modification during that pattern class will have highest probability to fire the next time
when the same pattern class is fed into the network. In the best case scenario, this
happens for a different neuron in each different pattern.

After a successful learning procedure, the output signal of one neuron represents the
one class of input signals that is currently fed into the network. One example of a
successful learning procedure is shown in figure 2.33.

If one neuron is activated by more than one subset of input, it can easily happen
that this neuron learns to represent more than one class of pattern. Furthermore, it
can happen that the connections between one subset and more than one neuron are
strengthened. This would lead to a response of more than one neuron, if that class of
pattern is presented. This is not the desired behavior of the network.

2.4.3 Performance Measures for WTA

In the WTA architecture described above, synapses transmitting external stimuli obey
the STDP learning rule described in section 1.5. Thus, the amount of external stim-
ulation one neuron receives is not constant in time, especially at the beginning of the
experiment. Consequently, one can not presume that cross inhibition works perfectly all
the time, i.e. that only one neuron is active at the same time. This can be seen in figure
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Figure 2.31: Spike trains representing the input for one cycle. nspP = 8 different Poisson spike
trains represent one pattern class and stimulate the neurons at the same time. In this case, one
cycle comprises elements from 4 different pattern classes. One cycle has a duration of 4 pattern
durations plus an interval between each pattern.

2.34a, where all neurons spike during the first learning cycle.

In order to evaluate the efficacy of mapping the disjoint binary input vectors to the
output spike trains, one has to assess the dissimilarity between output spike trains from
different neurons over all pattern presentations within one cycle and the clearness of
a single pattern. One preferable representation to monitor the learning process is a
mapping from the output spike trains to a vector. That vector can then be used to
measure the quality of learning.

One approach taken by Häfliger in [Häfliger , 2007] is to assume N possible output
states (one for each neuron) and apply the classical definition of entropy on the output
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Figure 2.32: Spike trains showing the input for five cycles. In each cycle one element of the 4
different pattern classes is fed into the network.

states to measure the quality of encoding:

HWTA = −
N−1
∑

i=0

pi · log2pi (2.6)

where pi is the probability of the ith neuron being the winner. The probabilities pi were
computed as the sum of the probabilities of the input patterns to which they responded.
(cf. [Häfliger , 2007]) In the case that two neurons would respond when presented with
only one input pattern, the contribution to their activity probability is split between
both according to their respective number of output spikes during that period.

Given the case that not only two, but all neurons respond during one input pattern
presentation, which occurs in the simulations performed here, the entropy calculated
above is not an adequate measure for quantifying the ability of the setup to distinguish
different spike patterns. This can be clarified by the following example result with four
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Figure 2.33: Rasterplots showing input and output during a successful learning procedure.
At the beginning, the output rate is low and increases in course of the experiment. Notice that
the first spike in cycle 0 is fired neuron 3 (highest row in fig. 2.33d). After 100 cycles neuron
3 represents input vector ~v = (0, 1, 0, 0), neuron 0 represents ~v = (0, 0, 0, 1), and so on. This
outcome is already visible in cycle 13 (middle column).

output spike trains. Supposing that for each pattern all neurons produce the same
number of output spikes (see figure 2.35c), the probability pi of a neuron to be the
winner is calculated as follows:

pi =
1

nP

·
nP
∑

j=0

sj(i)

Sj

where nP is the number of different pattern, sj(i) is the number of output spikes of
neuron i during pattern j and Sj is the total number of output spikes during pattern j.

During the period of any pattern the respective number of output spikes is one fourth
of the total spike output, thus sj(i)/Sj = 1/4. This leads to a maximum entropy H = 2
even for a worst case scenario where all neurons fire the same number of spikes during
each pattern. This is why it makes no sense to regard the output spike trains as discrete
states and measure the quality of encoding as done above, when there is a possibility
that several neurons can be active during the same pattern.
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2.4 Self-organizing Winner Take All

Consequently, entropy is not an adequate measure because it only contains the num-
ber of possible outcomes and does not discern the shape of these different states. To use
entropy with the above defined probabilities pi is not practical for the above mentioned
reasons.
Here is a detailed computation for the example outputs shown in figure 2.35 according
to eq. 2.6: 2.35a: p0 = p1 = p2 = p3 = 1/4
H = −(1

4 log2(1/4) + 1
4 log2(1/4) + 1

4 log2(1/4) + 1
4 log2(1/4)) = 2

2.35b: p3 = p2 = 1/4, p1 = 1/4 + 1/2 · 1/4 = 3/8, p0 = 1/8
H = −(1

4 log2(1/4) + 1
4 log2(1/4) + 1

4 log2
1
4 + 1

4 log2(1/4) = 1.906

2.35a: p0 = p1 = p2 = p3 =
∑nP=4
i=0 1/4 · 1/4 = 1/4

H = −(1
4 log2(1/4) + 1

4 log2(1/4) + 1
4 log2(1/4) + 1

4 log2(1/4)) = 2

The problem with the approach using the classical entropy definition is that output
spike trains do not represent discrete states like neuron is active or not, because one
additionally has to take the output spike trains from other neurons into account. Thus,
the number of possible output states can not be estimated in a simple way.

A different approach that accounts for the case that several neurons are active during
the same pattern presentation period is based on the quality measure for cross inhibition
introduced in section 2. The approach presented here tries to answer the question how
many different patterns occur in the output which are represented by one single neuron.
In order to answer this question one first has to quantify the response given to the set
of patterns with respect to the winner-take-all aspect.

In the following a measure that quantifies the number of distinct output patterns
created by the activity of single neurons is presented. This measure concentrates on the
winner-take-all condition, i.e. one neuron is assigned to not more than one pattern and
its contribution to the measure is higher the more it dominates the others.

The presented measure counts the number of responses to a pattern class with respect
to the clearness of the networks’ response. The response to a given pattern is regarded
as clear, when only one neuron responds while all other neurons are silent during that
pattern presentation.

A network that performs the classification problem successfully has to give preferably
unambiguous responses to the presented input patterns. How distinct the response to
one class of pattern is, can be estimated by a slightly modified version of equation 2.3:

Q+
ci =

2s∗ − S

S
if

2s∗ − S

S
> 0

Q+
ci = 0 else (2.7)

Q+
ci is positive when the output spike count of the most active neuron s∗ is larger than
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half of the total output spike count, i.e. s∗ > S/2. Provided the case two neurons
produce an output too similar, such that 2s∗−S

S
would become less than zero, Q+

ci is set
zero, which is corresponds to an ambiguous response of the classifier.

To get an answer to the question how many patterns have been distinguished by the
network, the clearness of a single pattern response and the dissimilarity between different
pattern responses have to be taken into account. This is done by the following procedure:

For each pattern presentation period j , Q+
ci is calculated. The value is set to element

(i, j) in a response matrix as shown in figure 2.4.3, whereas i is the index of the most ac-
tive neuron during pattern presentation period j. The quality of the classifier’s response
in that cycle is estimated by summing over maxima of Q+

ci for each neuron:

Qwta =
N
∑

i

max
j=[0..nP]

{Q+
ci } (2.8)

The defined measure satisfies all requirements of the following analysis. It is maximized
by a successful classification with a clear-cut winner, and is decreased by both an increase
of the ambiguity of various neurons’ responses and by cases where one neuron responds
most to multiple patterns. Hence, although the measure can not be interpreted as the
number of possible distinct outputs per input pattern set, it is well suited to monitor
the development of classification ability of a winner-take-all network via STDP. The
factor 2 in equation 2.7 is appropriate for the small network architectures analyzed in
the following, but should be replaced by a carefully chosen, larger value when switching
to larger networks.

Another important aspect that has to be considered is the development of weights
during the learning process. In total there are N · nin plastic weights. As the large
number of individual weights does not obviously reveal information about the global
learning process, mean weights are regarded. Weights can be averaged over all N · nin

connections which yields 〈wij〉 or weights can be averaged in two steps: First for each
neuron i the length of the weight vector | ~wi | is calculated, then this length is averaged
over all neurons. For simplicity reasons the first option will be used,

Concluding, the following analysis will use two quantities to monitor the learning
process of the network: Qwta and the mean weight change 〈wij〉.

2.4.4 Simulation Parameters and Results

The setup described above is determined by the following parameters:

• N : number of neurons in the network
• nspP: number of synapses per pattern
• nP: number of pattern classes presented to the network
• ncycles: number of learn cycles
• nin: number of excitatory inputs, nin = nspP · nP
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• νin: frequency for pattern generation
• gexc: weights for excitatory synapses (external stimulation)
• gfeedback: weights for inhibitory feedback synapses
• σg/g: relative weight variation parameter for external synapses, i.e. width of the

Gaussian distribution relative to the mean value of the distribution (g 6= 0)

Additionally there is a number of parameters determining the learning process:

• A+: amplitude of the positive branch of the STDP curve
• A−: amplitude of the negative branch of the STDP curve
• τ+: time constant for the positive branch of the STDP curve
• τ−: time constant for the negative branch of the STDP curve
• gmax: maximum value for weight update function

Similar to the cross inhibition setup, it is a priori not clear which set of parameter
values results in the best performance. In this section, only a subset of parameters is
studied. To study the impact of a certain parameter, the experiments were simulated
50 times with different random seeds. The learning process was monitored by averaging
Qwta and the mean weight change 〈wij〉 over 50 runs. One of the first questions that
has to be answered concerns the stabilization of the network, i.e. when weights cease
to change significantly. This is an important question, because the answer determines
the required length of a learning experiment and the number of learn cycles ncycles. The
temporal change of synaptic weights is monitored over 100 cycles using the following
generic parameter set:

Basic parameters

N 4
nspP 8
nP 4
ncycles 100
nin 32
νin 11 Hz
gexc 12 · 10−4 µS
gfeedback 120 · 10−4 µS
σg/g 0.1
A+ 0.0
A− 0.012
τ+ = τ− 10 ms
gmax 4 · gexc

Figure 2.37a shows the development of the mean weight change of one synapse, i.e.
one weight vector component, between two successive cycles. The mean synapse weight
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was averaged over all 128 synapses, and then averaged over 50 experiments. The plot
shows that the mean synapse weight change first increases till cycle number 30 and then
decreases over a period of about 50 cycles to zero. Due to limited number of trials,
several outliers have an impact on the mean development.
There are several important issues to be regarded:

1) The maximum weight change of one synapse is in the order of magnitude of 1%.
2) After about 80 cycles the mean weight change equals zero.
3) Mean weight changes are in general positive.

To 1): The small change of a synapse weight between cycles makes a possible application
of this setup on the hardware system more realistic, because the minimum weight change
in hardware is one bit, i.e. 6.25 %, which would would be accumulated over ca. 6 cycles
in simulation. 6 cycles take 6 s + 6 · 4 · 50 ms for the pauses between each pattern
presentation. The weight update in the hardware system is done periodically with a
period depending on the number of plastic synapse rows (see section 1.5). If only a
subset of synapse rows is used (ca. 1/6), the weight update period matches the expected
period for the accumulation of causal correlations. Thus, only few correlations occur
that have no effect, because the weight update flag is already set.
2): An experiment duration of 100 cycles is sufficient.
3): Causal correlations outweigh acausal ones. Consequently, the output rate increases,
which can already be seen in the exemplary plots shown above (see figure 2.33). Issue
number 3) will be discussed in subsection 2.4.5 with respect to normalization.

Instead of the change of individual synaptic weights between two cycles, figure 2.37a
also shows the actual mean synaptic weight.

Figure 2.38 shows the learning progress. Shown is the performance measure Qwta

defined above versus number of cycles. Again, the plotted data is the mean value out of
50 experiments with the same basic parameter set given above.

The final value for Qwta which represents the number of patterns that can be success-
fully classified by the neuron population is ca. 2.72 ± 0.2. This result can be explained
as follows: It often occurs, that one neuron learns to respond to two classes of input
patterns and hence decreases Qwta. This happens, e.g. because of a certain weight dis-
tribution promotes one neuron to be the winner when two patterns are present at the
input. This increase of weights of one neuron happens at the expense of another neuron,
which has smaller initial weights and hence is not able to fire correlated spikes. Another
reason might be an ineffective cross inhibition. The strength for mutual inhibition was
chosen to be nearly two times stronger compared with the basic parameters in section
2.3 to minimize the probability of coincident responses. Further studies are necessary to
study the strength of mutual inhibition.

One possibility to compensate the imbalance of initial weight is to increase the number
of synapses per pattern nspP. A repartition of the external stimulus showed a small
positive effect on the performance of cross inhibition as shown in section 2.3.3. Figure
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2.39b shows that this effect does not lead for a better performance of the learning
experiment. The plot shows Qwta against the number of learn cycles. The increased
number of inputs does not result to a significant increase inQwta, but a slower convergence
to the final value.

Other parameters that influence the convergence speed of the learning process are
νin, A−, A+ and wmax Figure 2.39a shows the impact of larger amplitudes of the STDP
learning rule. The plot shows that Qwta increases very rapidly at the beginning, but does
not converge to a final value within the simulated time. Presumably, this is caused by
strong fluctuations induced by the larger amplitudes A−, A+, which are ten times higher
in this simulation compared to the basic parameter set given above. Consequently, the
total number of learn cycles has to be chosen according to A−, A+.

2.4.5 Self-organized WTA: Discussion and Conclusion

The presented simulation results yield that the number of cycles after which the synaptic
weights reach their final value is about 80 for the chosen parameter values, depending
on the input parameters. As the first studies do no provide satisfying results, several
parameters which would increase the complexity of the setup have not been investigated,
e.g. the number of neurons in the network and the number of patterns presented to the
network.

The number of synapses per pattern was increased by a factor of 4 in order to counter-
act imbalances in the initial distribution of weights, which would lead to a privileging of
single neurons. An increased number of synapses does not lead to a better performance,
but a longer duration needed for stabilization.

The amplitudes of the weight modification in the STDP learning rule A−, A+ also
well have an impact on the speed with which Qwta converges to the final value. It was
found, that too high values of A−, A+ can lead to instability and a worse performance.
Further parameters that affect the required number of learn cycles are νin and gmax.
Their effect was not analyzed in detail, because a variation of both could not increase
Qwta significantly.

With regard to the implementation of the presented setup onto the hardware, the
most important aspect is the non-continuous weight update. The accumulated weight
modification function is read out periodically, with a maximum update period of 45.6 s
in biological time if all synapse rows are used as plastic. The update period is a crucial
parameter, as it decides whether correlated spikes are discarded or not. This can happen,
when the update period is too large and the accumulated weight modification function
has passed the necessary threshold. This can lead to different results than expected:
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Figure 2.40: A non-continuous weight update leads to different results compared with a
continuous weight update. Assumed the weight update flag is set, if ≥ 10 spikes detected. Left:
Two weight updates. Right: One

The exact value of the update period determines other parameters as e.g. the am-
plitudes of the modification function A−, A+, the desired spike rate and hence the pa-
rameters defining the external stimulation (νin, gexc, nspP). Thus, this parameter requires
proper adjustment.

After these considerations, porting the proposed setup to the hardware will presumably
cause problems and lead to different results than the software simulations show.

Normalization One important disadvantage of the applied learning rule is that weight
vectors of each neuron are not normalized. This means, that the length of weight vectors
converging to the same neuron change during the learning procedure. The absence of
normalization prevents competition between synaptic weights wĳ that belong to the
same post-synaptic neuron i. Competition in this context means a decrease of weights
belonging to all other synapses, if one synapse is increased. If weight normalization is
implemented, the synaptic weights wik between one neuron i and inputs representing
one pattern class would decrease in the case, that this neuron does not represent the
corresponding pattern class. This would ease the situation for other neurons to learn this
pattern class and hence would make it more difficult for one neuron to learn more than
one pattern class. A discussion of weight normalization can be found e.g. in [Gerstner
and Kistler , 2002].

The results presented above do not make use of weight normalization, which is pre-
sumably one reason for the frequent case that one neuron represents more than one
pattern class after the learning procedure. A normalization of weight vectors could be
implemented in the hardware system, by reading out the weight memory and modifying
the weights according the desired normalization rule. The quantization of weight in this
context allows only very coarse modifications, which would have a much stronger impact
than normalization done with continuous weights.

One possible application of the presented architecture could be a principal component
analysis (PCA) of the input space. For this purpose, input spike trains with different
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frequencies are shown to the network with the goal that after learning, responses only
occur for the classes of spike trains with the highest frequency.

2.5 Hardware Implementation

A hardware implementation of the presented self-organizing winner-take-all architecture
is still not possible. Multiple obstacles avoid a porting of the setup to the FACETS Stage
1 hardware system version 3: On a representable set of synapses using a single parameter
set, STDP curves have been measured [Müller , 2008], but a consistent behavior was not
yet establishable. In the current development status, a mapping of model parameters
(amplitudes A+, A−, time constants τ−, τ+) to hardware parameters is still missing,
since extensive measurements for a wide parameter range are work in progress. After
these studies will be finished, the STDP software layer stack has to be completed, thus
enabling the standard PyNN STDP interface. This includes flexible access to synaptic
weights and translation of model parameters to hardware parameters.

Furthermore, as was shown in section 2.3, the essential mechanism of cross-inhibition
performs poorly on the current version of the hardware, mainly due to parasitic threshold-
reset inter-dependencies. Hence, in order to port a winner-take-all architecture as imple-
mented in section 2.4.4 to the FACETS Stage 1 hardware system, at least these parasitic
phenomena have to be eliminated or massively minimized. Additionally, the configura-
bility of the STDP feature has to be established, which requires further investigations
in cooperation with the designers of the system.
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(a) Rasterplot showing spike output during a successful classification
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(b) The quality measure of the learning process Qwta is
defined in equation 2.8 and corresponds to the output
shown above.

Figure 2.34: One example of a successful pattern classification. The upper figure shows the
response to 4 different patterns injected through 4 · 8 synapses. Shown are the first 15 cycles.
Each pattern is 1000 ms long with a subsequent pause of 50 ms, thus one cycle lasts 4200 ms.
The lower figure shows the quality measure defined in equation 2.8.
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Figure 2.35: Schematic of 3 possible output spike counts. The x-axis represents the dimension
of time, the y-axis the neuron number. The matrix elements represent the number of spikes fired
by the neuron during the corresponding pattern presentation. In figure 2.35a only one neuron
is active at any given time, thus the probability of each neuron is 1/4 and the output entropy
reaches its maximum value H = 2. In figure 2.35b, the total number of output spikes during
pattern 3 is evenly split between neuron 1 and neuron 0, which leads to a decreased output
entropy of H = 1.906. Figure 2.35c shows a worst case scenario where cross inhibition does not
work at all and all neurons fire the same number of spikes during each pattern. Even though the
all neurons carry the same amount of information during each pattern, the entropy as calculated
in eq. 2.6 is the same as in the best case H = 2.
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Figure 2.36: Example for a response matrix with N rows and nP columns. Q+
ci is calculated

for each pattern and set to (i, j). i is the row of neuron that is most active during pattern j.
During presentation of pattern 0, neuron 2 was most active. At the end of the cycle, Qwta is
calculated as the sum of the maximum Q+

ci, i from all neurons i = [0..N ].
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(a) WTA: Mean difference of weight vector component 〈wi〉 between two
cycles in the learning process.
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Figure 2.37: Development of synaptic weights in the learning process. Synaptic weights are
averaged over all synapses and over 50 simulations with different seed. Error bars represent the
standard error of mean originating from averaging over 50 experiments. The mean difference
of a synaptic weight between two cycles is in the order of magnitude of 1% of the actual value.
After about 80 cycles weights have converged to their final value. Thus, the total length of the
learning experiments is set to 100 cycles.
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2.5 Hardware Implementation
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Figure 2.38: Qwta ∼ Mean weight vector component development during the learning process.
Mean number of learned patterns averaged over 50 runs in dependence of the learning cycle.
Error bars represent the standard error of the mean originating from averaging over 50 runs.
Interestingly, the performance reaches the final value already after 30 cycles, which is the time
of the maximum weight change according to figure 2.37a, even though the mean synaptic weight
does not reach its final value until 80 cycles (see figure 2.37b).
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Figure 2.39: Mean number of learned patterns averaged over 50 runs in dependence of the
learning cycle. Error bars represent the standard error of the mean out of 50 experiments. The
left figure shows an experiment with A

−
= 0.10, A+ = 0.12, which is ten times larger than

the basic parameter set (compare figure 2.38). At first, Qwta increases rapidly and reaches a
maximum a few cycles. Then, Qwta decreases and does not saturate within the simulated time
range. This is due to large fluctuations imposed by the large amplitudes of the learning rule. The
right figure shows the average performance over 50 runs with an increased number of synapses
per pattern nspP = 32, instead of 8 compared to the basic parameter set. To keep the amount
of excitatory stimulation constant and investigate only the influence of the increased number
of synapses, the synaptic weights were divided by a factor of 4 to gexc = 3. The final value of
Qwta is not higher compared to fig. 2.38, i.e. the network does not learn better when the input is
distributed over more, but weaker inputs. However, the time required for stabilization of weights
is higher.
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Discussion and Outlook

The use of neuromorphic hardware offers new perspectives for modeling and investigating
long-term self-organization principles of the brain. Especially in the FACETS project,
the implementation of STDP in conjunction with the highly accelerated operation can
face the challenge proposed by increasing complexity of neural network models.

In order to apply these features, the following approach was taken: A simple self-
organizing experiment was presented which offers the possibility to adjust the complexity
level of the task to be learned. Then, occurring problems were analyzed step by step
and solutions for the realization of the experiment were presented. One step towards
the realization is the effective mutual inhibition. The influence of various parameters
on a cross inhibition setup was investigated, and, among other insights, it was found
that synaptic time constants have to be chosen with care. For quantitative analysis of
the cross inhibition performance, a measure was introduced and successfully applied.
In order to measure hardware synaptic time constants, indirect methods have to be
used, since the only possible observables in the hardware system are spike output and
membrane potential. Together with spike-triggered averaging, it is straight-forward to
estimate synaptic time constants if a neuron is in a high-conductance state. In order
to determine a neuron’s conductance state, a method was introduced and proved to be
well working in software simulations and in the hardware. The proposed method allows
to estimate the temporal resolution capability of a neuron in a purely spike-based way.
Thus, the transition to a high-conductance state can be identified and therefore a regime
can be determined in which the measurement of synaptic time constants works.

Applying this test, synaptic time constants were measured in the hardware system
and turned out to be coarsely adjustable within the range of 20 ms to 60 ms. Trans-
ferring the cross inhibition setup turned out to be very difficult: Non-uniform spiking
thresholds among neurons were tried to be compensated by the adjustment of individ-
ual weights. But this technique turned out to be insufficient. A specific calibration of
inhibitory synapse drivers is necessary because an insufficient effective mutual inhibition
presumably is one important reason for the bad performance on the hardware. Another
important improvement can be achieved by increasing the number of input synapses.
This is beneficial because more weights can be used for adjustment in order to counter-
act imbalances. A population based approach, including short-term plasticity, with the
aim to compensate variations in the substrate, requires further studies until it could be
implemented.

A winner-take-all architecture utilizing weight manipulation mechanisms, similar to
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those in the hardware, was investigated in software simulations. Even though self-
organized learning increased the performance in terms of the proposed quality measure,
no parameter set was found which reliably led to successful classifications. Only in a
small fraction of setups, the desired maximum output quality was achieved. An im-
portant aspect to be considered for software as well as for hardware applications, is a
normalization of weights, which introduces the required competition between synapses.
An effective implementation of weight normalization in hardware synapses is difficult to
realize due to the quantized weights. Furthermore, possible realizations would require
additional inner-chip communication, because synapses would need to exchange mutual
information about their current weight. A space-efficient solution in each hardware
synapse is hard to realize and not expected in the near future.

The execution of the winner-take-all experiment in hardware was not possible, because
a reliable STDP mechanism was not available during this thesis. Since cross inhibition
is essential for the realization of the proposed winner-take-all architecture, it is highly
recommended to successfully implement cross inhibition on the hardware, first.

Generally, the obstacles arising when trying to use the hardware for a seemingly simple
self-organization experiment are non-trivial. Setups, that easily work in software due to
perfectly controllable dynamics and parameters, can fail badly on a system with intrinsic
noise, transistor-level variations and other inhomogeneities or parasitic parameter inter-
dependencies.

Similar phenomena are found in biological systems, i.e. the brain, which obviously
manage to cope with such effects and perform well, anyhow. Efforts to implement
experiments (like the WTA setup) provide a fruitful way in searching for strategies that
can avoid, counterbalance or average out such inhomogeneities (e.g. population based
solutions or self-stabilizing architectures [Bill, 2008]). Each solution found on this path
can provide new tools, methods and insights that help to understand and improve the
system in general. The presented high-conductance state test is one example for such a
solution.

Since several chip inherent bugs and inaccuracies have been identified, many of which
will be fixed in a future revision of Stage 1, it is likely that subsequent steps can suc-
cessfully be realized on this hardware substrate. New principles, such as population
coding, could balance the variations in single components. The upcoming Stage 2 of
the FACETS hardware system will provide the necessary foundation to investigate such
promising and resource-intensive approaches.
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A Appendix

A.1 Simulation Parameters

For all experiments in this thesis which utilized the NEST software simulator, the NEST
neuron model called iaf cond exp sfa rr was applied. It implements a conductance-based
leaky integrate-and-fire model with exponentially decaying conductance courses in its
synapses, with the option of spike frequency adaptation and relative refractoriness. The
last two features were disabled throughout all simulations presented, so the software
models resembles the idealized hardware model as described in equation 1.1. If not
stated differently in the setup description of an experiment, the following parameters
were used:

Parameter Formulaic PyNN Value
Notation Notation

Membrane Capacitance Cm cm 200.0 nF
Reset Potential Vreset v reset −80.0 mV
Inhibitory Reversal Potential EI e rev I −75.0 mV
Resting Potential El v rest −70.0 mV
Threshold Voltage Vthresh v reset −57.0 mV
Excitatory Reversal Potential EE e rev E −0.0 mV
Membrane Leakage Conductance gl g leak 20.0 nS
Refractory Period τref t ref 1.0 ms
Excitatory Synapse Time Constant τsyn,E tau syn E 30.0 ms
Inhibitory Synapse Time Constant τsyn,I tau syn I 30.0 ms

Table A.1: Neuron and synapse model parameters as used throughout this thesis (if not
explicitly stated differently).
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Brüderle, D., A. Grübl, K. Meier, E. Mueller, and J. Schemmel, A software framework
for tuning the dynamics of neuromorphic silicon towards biology, in Proceedings of the
2007 International Work-Conference on Artificial Neural Networks (IWANN’07), vol.
LNCS 4507, pp. 479–486, Springer Verlag, 2007.

Buzsaki, Feed-forward inhibition in the hippocampal formation, Progress in Neurobiol-
ogy, 22, 131–153, 1984.

Buzsaki, C., Temporal structure in spatially organized neuronal ensembles: a role for
interneuronal networks, Current Opinion in Neurobiology, 5, 504–510, 1995.

Buzsaki, G., M. Penttonen, Z. Nadasdy, and A. Bragin, Pattern and inhibition-
dependent invasion of pyramidal cell dendrites by fast spikes in the hippocampus in
vivo, Proceedings of the National Academy of Sciences of the United States of America,
93, 9921–9925, 1996.

Caporale, N., and Y. Dan, Spike timing-dependent plasticity: A hebbian learning rule.,
Annual review of neuroscience, 2008.

Chow, C., Phase-locking in weakly heterogeneous neuronal networks, Physica D, 118,
343–370(28), 1998.

Cossart, R., D. Aronov, and R. Yuste, Attractor dynamics of network up states in the
neocortex, Nature, 423, 238–283, 2003.

Coultrip, R., R. Granger, and G. Lynch, A cortical model of winner-take-all competition
via lateral inhibition, Neural Netw., 5, 47–54, 1992.

Dan, Y., and M. Poo, Spike timing-dependent plasticity of neural circuits, Neuron, 44,
23–30, 2004.

Davison, A., PyNN – a python package for simulator-independent specification of neu-
ronal network models, http://www.neuralensemble.org/PyNN, 2008.
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for parallel operation of VLSI neural networks, in Proc. of the 2004 Brain Inspired
Cognitive Systems Conference (BICS2004), University of Stirling, Scotland, UK, 2004.

Fieres, J., J. Schemmel, and K. Meier, Realizing biological spiking network models in
a configurable wafer-scale hardware system, in Proceedings of the 2008 International
Joint Conference on Neural Networks (ĲCNN), 2008.

Gerstner, W., and W. Kistler, Spiking Neuron Models: Single Neurons, Populations,
Plasticity, Cambridge University Press, 2002.

Gewaltig, M.-O., and M. Diesmann, NEural Simulation Tool NEST (Scholarpedia arti-
cle), http://www.scholarpedia.org/article/Nest, 2008.

84

http://www.facets-project.org
http://www.scholarpedia.org/article/Nest


Bibliography
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89



90



Statement of Originality (Erklärung):

I certify that this thesis, and the research to which it refers, are the product of my own
work. Any ideas or quotations from the work of other people, published or otherwise,
are fully acknowledged in accordance with the standard referencing practices of the
discipline.

Ich versichere, daß ich diese Arbeit selbständig verfaßt und keine anderen als die ange-
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