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Analysis of the Liquid Computing Paradigm on a Neuromorphic Hardware
System

In the context of this thesis a highly accelerated mixed-signal neuromorphic hardware
system has been utilized to perform real-time classification with Liquid State Machines.
A self-stabilizing neural architecture implements the liquid, while the readout is realized
by a modified Tempotron. To this end, the analog spiking neurons are trained to behave
like a Tempotron. The original learning rule is modified to account for conductance-based
synapses, discrete weights and limited hardware parameter ranges. Moreover, a software
study analyzes potential classification improvements achievable for better synaptic input
distributions. To test the computational power of the combined liquid-Tempotron setup,
a particular task is devised which challenges the abilities of a Tempotron classifier. It is
shown that the liquid enables the system to perform beyond the characteristic scope of
the readout alone. In a further experiment, handwritten digits from the MNIST database
are discriminated, thus showing the generality of the hardware Liquid State Machine in a
real world application.

Analyse des Liquid Computing Paradigmas auf einem neuromorphen
Hardwaresystem

Die vorliegende Arbeit verwendet ein beschleunigtes, analog-digitales neuromorphes
Hardwaresystem um Klassifizierung in Echtzeit mit Hilfe von Liquid State Machines
durchzuführen. Ein selbststabilisierendes neuronales Netzwerk realisiert dabei das Liq-
uid, während als angepasstes Tempotron trainierte, analoge und aktionspotentialbasierte
Neuronen die Auslese übernehmen. Die ursprüngliche Lernregel wird verändert um kon-
duktanzbasierte Synapsen, diskrete Gewichte und beschränkte Hardwareparameter besser
zu berücksichtigen. Darüber hinaus wird in Software untersucht, ob eine Verbesserung der
Klassifizierung basierend auf einer besseren Gewichtsverteilung der Synapsen zu erreichen
ist. Um die Rechenleistung des Liquid-Tempotron Aufbaus zu testen wird eine spezielle
Aufgabe entwickelt, die das Klassifizierungsvermögen des Tempotrons herausfordert. Es
kann gezeigt werden, dass das Liquid das System befähigt über den charakteristischen
Geltungsbereich der alleinigen Ausleseeinheit hinaus zu agieren. In einem weiteren Ex-
periment werden handgeschriebene Ziffern aus der MNIST Datenbank unterschieden
und somit die Universalität der Liquid State Machine in einer Anwendung des täglichen
Lebens demonstriert.
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1 Introduction

The brain is the most complicated organ originating in nature. For centuries scientists
and philosophers rack their brain to clear up the mystery of this marvel. How do thoughts
and feelings emerge? How do we perceive the world and what are the associated neural
mechanisms? To come to grips with this questions the modeling of neural networks
has become an essential building block in neuro-scientific research. Modeling allows for
flexibly studying neural network in different spatial and temporal scales.
The computation of artificial neural networks is commonly carried out by digital com-
puters, which use numerical simulations in order to calculate the network dynamics.
However, the computational power consumption and the experimental duration scale
superlinearly with the network size. Thus a complete simulation of such a complex model
like the human brain on a computer becomes an inconceivable endeavor, regarding all
available computational means of today.
In order to provide a technological approach in which the experimental time does not
depend on the network size, the Electronic Vision(s) Group [1] at the University of
Heidelberg in cooperation with the TU Dresden has specialized on the development
of neuromorphic hardware systems. Within the scope of the FACETS Project [2] and
the followup BrainScaleS Project [3], a hardware device is being designed which can be
used for the emulation of programmable neural networks. Owing to the mixed-signal
Very-large-scale integration (VLSI)1 technology and the intrinsic time constants of
neuromorphic devices built in a 180 nm process, an acceleration factor of up to 105

compared to biological real time is achieved [4]. Due to this speedup factor, neuromorphic
hardware systems can be utilized for time-consuming experiments as detailed parameter
sweeps for optimizing novel model architectures, long-term processes in the brain and for
reasons of statistics.
Just like any other technology, this approach has some disadvantages. Above all, the
maximum network size and maximum connection density are limited by the size of the
silicon chips. Regarding this aspect, the present FACETS chip-based system with its
384 built-in neurons would not suffice for being utilized in sophisticated neuro-scientific
experiments. To counteract this constraints the FACETS wafer-scale system is being
developed, which allows for the emulation of neural networks containing up to 180,000
neurons, 40 million synapses and thus facilitates the modeling of e.g. cortical columns.
Since the FACETS wafer-scale system is in its early test phase, all experiments in this
thesis have been carried out on the FACETS chip-based system.

1Combination of 103–105 transistor-based electronic circuits on a single chip
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1 Introduction

Outline

Chapter 2 describes the technological and mathematical prerequisites. The concept of
liquid computing and the two utilized classification algorithms are described. Chapter 3
illustrates the two developed learning concepts which are employed throughout this thesis.
Thereafter, Chapter 4 provides the experimental results. In Section 4.1 a parameter study
regarding the properties of a self-stabilizing liquid architecture is performed. The realiza-
tion of a Liquid State Machine consisting of a liquid and a spike-based Tempotron classifier
on the FACETS chip-based hardware system is presented in Section 4.2. Furthermore, a
task is defined which demonstrates the classifier’s dependence on the existence of a liquid
to solve classification tasks (Section 4.3). Last of all, a handwriting digit recognition task
is run on the FACETS chip-based hardware system and potential constraints are outlined
(Section 4.4).
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2 Methods and Materials

This chapter describes the hardware emulation back-end, its operating software and the
theoretical background underlying the computational paradigms which have been utilized
throughout this thesis.
Section 2.1 refers to the utilized neuromorphic hardware system. It introduces the
FACETS chip-based hardware system and the recently designed FACETS wafer-scale
system, which is already in its early test phase.
Hereafter, in Section 2.2, the current software framework is presented with all its layers
from the abstract description of neural networks in PyNN [5] down to the hardware level.
Section 2.3 states the theoretical principles this thesis is built on: A compact charac-
terization of the Liquid State Machine (LSM) and classification concepts as well as an
introduction to the employed synapse models.
In Section 2.4, the preliminary results from [6] are summarized with a particular focus on
the constraints they were subjected to.

2.1 Hardware Framework

In the following, the two neuromorphic hardware systems developed during the FACETS
and the BrainScaleS project are characterized.

2.1.1 FACETS Chip-Based Hardware System

The mixed-signal Spikey chip (see Figure 2.1) is the heart of the FACETS chip-based
system. It was fabricated in a 180 nm Complementary Metal Oxide Semiconductor (CMOS)
process on a 5x5 mm2 die and is currently available in its 4th version. The chip allows
for modeling up to 384 analog leaky integrate-and-fire neurons with conductance-based
synapses (see Section 2.3), in which an acceleration factor of up to 105 can be reached,
while the spike times can be recorded with a temporal resolution higher than 30 µs
biological real time [4].
Each of the neurons can be connected to at most 192 synapses which amounts to 98,304
synapses on the whole Spikey chip. The communication via spikes is handled by the digital
part of the Spikey chip which transmits them as digital pulses. These spikes are converted
to analog signals by the so-called synapse drivers. Two synaptic plasticity mechanisms are
implemented: First, a depressing and facilitating Short-Term Plasticity (STP) mechanism,
which depends on the history of pre-synaptic spike times and models the limitation of
resources needed for synaptic transmission [7]. Second, a long term plasticity mechanism
by means of Spike-Timing Dependent Plasticity (STDP) [8]. On the chip, the maximal
synaptic conductances gmax(t) are varied by STP, while the synaptic weights are changed
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2 Methods and Materials

5
m
m

Figure 2.1: The Spikey chip, which is the centerpiece of the FACETS chip-based
hardware system. It is divided into an analog part and a digital part.
The analog part consists of two blocks, which contain the synapse arrays,
the synapse drivers and the neurons. The digital part transmits spikes
as digital pulses which are converted to analog signals by the synaptic
drivers. Picture taken from [4].

by long-term plasticity. Due to hardware limitations, the synaptic conductances are
constrained to a 4-bit resolution.
Further information about the FACETS chip-based hardware system can be found in e.g.
[4]. A detailed list of chip parameters is listed in [9].
Figure 2.2 shows the entire experimental setup of the FACETS chip-based hardware
system. The so-called Backplane is a printed circuit board, which provides power as well
as a global clock signal and establishes a connection to the host computer. One Backplane
contains 16 slots for the so-called Nathan Carrier Boards. Each of the Nathan Carrier
Boards supplies one Spikey chip with power and provides the memory and connectivity
infrastructure. In addition, multiple Nathan Carrier Boards can be interconnected [10].

2.1.2 FACETS Wafer-Scale Hardware System

Since the FACETS wafer-scale hardware system is still in production at the time of this
thesis, it is only briefly outlined in the following. For a detailed description the reader is
referred to [11].
The FACETS wafer-scale hardware system is based on the wafer scale integration of analog
neural networks. Here, the wafer, which contains the mixed-signal Application Specific
Integrated Circuits (ASICs), is left uncut after the fabrication. During the so-called post
processing i.a. the single chips within the wafer are connected to each other ending up at
a very high connection density [12]. In Figure 2.3, the composition of the main building
blocks is shown. The so-called High Input Count Analog Neural Network (HICANN)
chip hosts 114,688 synapses connecting up to 512 neurons. A full wafer consists of 44
so-called reticles, each of which comprises 8 HICANN chips. Thus, each wafer contains
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2.2 Software Framework

Nathan

Spikey

Oscilloscope

Backplane

Figure 2.2: The entire infrastructure of the FACETS chip-based hardware system.
Picture taken from [10].

about 180,000 neurons and more than 40 million synapses.
The membrane dynamics follow those of the adaptive exponential integrate-and-fire
(AdEx) neuron model with conductance-based synapses [13]. The FACETS wafer-scale
hardware system reaches an acceleration factor of up to 105 compared to biological real
time.

2.2 Software Framework

To control and calibrate the hardware systems as well as to run experiments on them,
the Application Programming Interface (API) PyNN [5] is used, which is based on the
programming language Python [14]. PyNN allows for setting up neural network models
and running them on numerous simulation and emulation back-ends. PyNN supports the
software simulators NEST [15], NEURON [16], PCSIM [17], Brian [18] and the FACETS
hardware systems.
PyNN is implemented as a Python package which contains a functionality common to all
simulator back-ends [5]. In case of the FACETS hardware systems the Python interpreter
PyHAL wraps the original interpreter language SpikeyHAL which is based on a low-level
C++ API [19]. Thus PyHAL ensures a correct interpretation of the PyNN code by the
lowest abstraction level of the FACETS hardware. SpikeyHAL uses an Automatic Repeat
reQuest (ARQ) protocol to communicate with the hardware systems [20].
In order to create, connect and record neural networks, PyNN contains a low-level
procedural API, which consists of the functions create(), connect() and record(), as well
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2 Methods and Materials

Figure 2.3: The FACETS wafer-scale hardware system. Here, the centerpiece is the
wafer, which consists of about 180,000 neurons and more than 40 million
synapses.

as a high-level object-oriented API, which provides classes like Population(), Projection()
and different connection classes.
As listed in [5], the main advantages of the PyNN language are its large flexibility, an
active community, the human readable code and its object-orientation.

2.3 Theoretical Framework

The subsequent section introduces the main theoretical approaches applied in the course of
this thesis. At first, an insight into the mathematical description of synaptic dynamics is
given. After that, the liquid computing paradigm and classification methods are presented.

2.3.1 Leaky Integrate-and-Fire Neuron Model

A leaky integrate-and-fire neuron can be modeled as a simple RC circuit (see figures 2.4a
and b) [21]. The membrane voltage V behaves as follows:

Cm
dV (t)

dt
+ Isyn(t) + gm(V (t) − Vl) = 0, if V ≥ Vthresh, then V = Vreset . (2.1)

Cm represents the membrane capacitance, Isyn is the synaptic input current, Vl is the
membrane resting potential and gm denotes the membrane leakage conductance. The
membrane time constant τm is determined by gm according to τm = Cm

gm
. If a certain
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Figure 2.4: Electrical representation of a chemical synapse (inspired by [22]). (a)
Current-based synaptic model. (b) Conductance-based synaptic model.

threshold voltage Vthresh is exceeded, the neuron emits a spike and is reset to a so-called
reset voltage Vreset.

2.3.2 Synapse Models

This paragraph discusses two mathematical descriptions of membrane dynamics. The
simple current-based synapse model is compared to the conductance-based synapse model.
The information is taken from [4], [21] and [22].

Current-Based Synaptic Model

In case of the current-based synaptic model, Isyn from Equation 2.1 amounts to the
sum of the synaptic input currents (see Figure 2.4a). Thus, Equation 2.1 shows a linear
differential equation and can be solved analytically as long as the membrane voltage
remains in the sub-threshold domain.
Upon arrival of a spike event at the time tij from the ith afferent neuron, the post-synaptic
membrane potential is determined by

V (t) =
∑
i

ωi

∑
tij

K(t− tij) + Vrest . (2.2)

Vrest is the membrane resting potential, which is often chosen equal to the leakage
potential, and ωi the synaptic weight of the ith afferent neuron. Each of the current-based
exponential synapses adds to the neuron potential a PSP of

K(t− ti) = V0 · (exp(− t− ti
τ

) − exp(− t− ti
τs

)) , (2.3)

where V0 is a normalization factor and τ as well as τs denote the membrane time constant
and the synaptic current time constant, respectively.
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2 Methods and Materials

Conductance-Based Synaptic Model

The utilized neuron model in the FACETS chip-based hardware system is a standard
leaky integrate-and-fire neuron with conductance-based synapses (see Figure 2.4b). Here,
the synaptic current according to Equation 2.1 amounts to:

Isyn(t) =
∑
j

gj(t)(V (t) − Ve) +
∑
k

gk(t)(V (t) − Vi) , (2.4)

where gj(t) and gk(t) are the synaptic conductances of the excitatory and inhibitory
ionic channels. Furthermore, Ve and Vi represent the excitatory and inhibitory synaptic
reversal potentials.
Upon arrival of a spike at time ti from the ith input with synaptic efficacy ωi, the change
of the membrane voltage is determined by

∆VPSP (t) ∼ ωi · (Vsyn − V (t)) ·K(t− ti) . (2.5)

Vsyn is the synaptic reversal potential andK denotes the kernel function (see Equation 2.3).
Equation 2.5 is only an approximation in case of small synaptic weights. Regarding the
voltage course in response to synaptic input, Excitatory Postsynaptic Potentials (EPSPs)
and Inhibitory Postsynaptic Potentials (IPSPs) have different membrane amplitudes due
to individual reversal potentials (see Equation 2.5).

2.3.3 The Liquid State Machine Concept

The liquid computing paradigm was introduced independently by [23] and [24]. In contrast
to the Finite State Machine, which requires stable states before the actual computation
may continue, the LSM allows for an on-line computation on continuous input without
any convergence preconditions.
As known from Support Vector Machines (SVMs) in pattern recognition [25], the clas-
sification correctness improves if the input is projected into a higher dimensional space
before presenting it to the classifier. The LSM exploits this so-called kernel trick on
computation on continuous input.
Figure 2.5 shows a schematic model of the LSM. A time-continuous input function u(t)
is translated into an output function y(t). At first, arbitrary liquid filters (or operators)
LM provide a mapping of u(t) onto the, in general higher dimensional, liquid state x(t).
After this projection, a memoryless readout fM (for more detail see Section 2.3.4) makes
a decision on the input and its history only by looking at the current liquid state. This is
possible due to the liquid’s intrinsic fading memory.
Altogether, an LSM has to satisfy two properties:

Separation property: The liquid does not have to be a neural network. However, it
needs to be sufficiently complex that at any time t the distance (see [23]) between the
liquid states xu(t) and xv(t) of two different input functions u(t) and v(t) increases.
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2.3 Theoretical Framework

Figure 2.5: Schematic model of the Liquid State Machine. For a description, see
Section 2.3.3. The figure is taken from [23].

Approximation property: The readout needs to provide a sufficient resolution to model
any target output-function, which means that the readout’s resolution needs to extract
the target from any liquid state.

In any case, the complexity of the liquid should not provoke a chaotic drift of the two
input functions u(t) and v(t).
For further information, [23] offers a rigorous mathematical description of the LSM and
proves its inherent universal power in computation with fading memory on functions in
time. Concerning the biological relevance of the presented concept, [26] suggests the
reasonable assumption that the wiring in local volumes of the mammalian cortex is
statistical, similar to the wiring in the liquid.
The liquid architecture utilized during this thesis is a modified version of a self-stabilizing
neural network, which is proposed in [27] and employed in [28] on the FACETS chip-based
system. The liquid structure is shown in Figure 2.6. It contains one excitatory and
one inhibitory neuron population with recurrent connections and connections between
both populations. Apart from the neuron populations themselves, the self-stabilizing
feature is provided by the STP functionality [4], by which recurrent connections lead to
an attenuation of too strong activity and facilitate too weak activity.
On the chip, its synapse driver limitations lead to the fact that either facilitating or
depressing STP can be realized on a single driver. It is assumed that depressing connections
within the excitatory population are of the greatest utility concerning the liquid’s memory
capacity [23]. Therefore, the constellation shown in Figure 2.6, in which only excitatory
synapses are dynamic, is utilized in the course of this thesis. Apart from that, depressing
connections within the excitatory population and a static connection to a hardware
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Figure 2.6: Applied self-stabilizing liquid structure. For a description, see Sec-
tion 2.3.3. Figure taken from [6]

Tempotron (see Section 2.3.4) are not realizable at the same time since synaptic plasticity
can only be switched on or off for all synapses of similar type. To ensure a non-chaotic
liquid behavior for every utilized task in the course of this thesis, the depressing STP
functionality is applied to every excitatory synapse, i.e. for the hardware Tempotron’s
afferent connections, which might effect the Tempotron’s learning to an unexamined extent.
Moreover, due to a hardware bug, only one core of the Spikey chip (see Section 2.1.1) is
accessible. Consequently, the maximum liquid size is limited to 192 neurons.

2.3.4 Output Classification

In the following, two binary classifiers are presented: the Perceptron and the Tempotron.
The development of both algorithms has been inspired from neural circuitry.

Perceptron Classifier

The Perceptron classifier [29] is a widely used linear discriminant model. An input vector
~x is linearly transformed via ~ωT · ~x+ cthresh at first. Here ~ω stands for the weights vector
and cthresh serves as a bias. The output classification is determined by

f(x) =

{
1, if ~ωT · ~x+ cthresh > 0
0, else

(2.6)

During the learning process, the weights between the ith neuron and the Perceptron are
modified by e.g. the so-called delta learning rule, which is introduced in [30]:

ωn+1
i = ωn

i + ∆ωn
i .

In the nth learning step, the total weight change amounts to

∆ωn
i = α(n) · (t− o) · xi ,

with target output t, current output o and a learning rate modulation α(n). Since
the originally proposed Perceptron (see Equation 2.6) does not account for spike time
information implementation it is only implemented in software. Therefore, spiking data
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2.3 Theoretical Framework

from the hardware or simulators of spiking neurons need to be translated by e.g. a
convolution with an exponentially decaying function according to

δ(t− ti) ∗ c · exp(− t

τ
) =

∫ t

0
δ(t′ − (t− ti)) · c · exp(− t

′

τ
) dt′ = c · exp(− t− ti

τ
) ,

leading to a time-continuous function. The summation of all spike contributions amounts
to

xi(t) =
∑
ti<t

c · exp(− t− ti
τ

) .

Here ti denotes the spike times, c is a scaling factor and τ is the time constant of the
exponential decay. A significant advantage of the Perceptron compared to the Tempotron
is the rapidity with regard to the computational complexity of the learning process, which
is exploited in Section 4.1.

Tempotron Classifier

The Tempotron was introduced in [31] as a classifier, whose decision is based on the
spatiotemporal characteristics of the input. A common leaky integrate-and-fire neuron as
implemented on FACETS chip-based hardware is utilized to carry out the classification.
The afferent synaptic weights of the originally proposed Tempotron in [31] have to be
trained for each new task in such a way that the Tempotron spikes exactly once while
being exposed to a certain pattern A and that it does not spike while being subjected
to another pattern B. However, since the originally proposed shunting of all incoming
spikes after a first post-synaptic spike is on the one hand not realizable on hardware, and
on the other hand not biologically plausible, the effect of this condition is neglected in
the following. It is stated in [31] that the learning rule is still quite stable without this
feature.
As known from pattern classification, the maximum classification correctness is achieved
by minimizing the overall cost, which is here denoted by a cost function

E± = ±(Vthresh − V (tmax)) · Θ(±(Vthresh − V (tmax))) , (2.7)

in which tmax specifies the time of maximal V (t) and Θ is the Heaviside step function.
The learning rule for the synaptic efficacies follows the so-called gradient-descent method:
Weight changes are chosen such that ∆ωi ∼ −dE±

dωi
, so that after the nth learning step, a

weight increment amounts to

∆ωn
i =

{
α(n)

∑
ti<tmax

K(tmax − ti), in case of an erroneous decision,
0, in case of a correct decision. (2.8)

Here, α(n) describes a learning rate, which can be chosen to decay, thus allowing the
convergence of synaptic weights after a finite amount of learning steps. K(tmax − ti) is a
exponential decaying function, in which ti denotes the spike time.

11



2 Methods and Materials

As already mentioned in [6], the implementation of the original Tempotron algorithm
onto the FACETS hardware is constrained: due to hardware limitations of the maximum
weight as well as the 4-bit weight resolution (see Section 2.1), the original learning rule
needs to run offline on the host computer using the software simulator NEURON [16] in
order to provide continuous weight changes. The resulting weights are clipped to the 16
discrete values and transferred to hardware.
A further constraint arises from the fact that the implemented model of the FACETS
chip is a leaky integrate-and-fire model with conductance-based synaptic dynamics. Thus,
the learning rule needs to be adapted since Equation 2.2 is no longer valid, leading
Equation 2.8 only as an approximation of the gradient-descent method. Furthermore,
EPSPs and IPSPs contribute differently to the post-synaptic membrane potential (see
Section 2.3.2), which leads to a discontinuity when regarding the flipping of weights from
excitatory to inhibitory and vice versa.

2.4 Preliminary Experiments

This thesis is mainly based on [6], in which a Tempotron classifier has already been
implemented in software and hardware via PyNN. A hardware implementation of the
self-stabilizing liquid (see Figure 2.6) can be found e.g. in [28].
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Figure 2.7: Illustration of the preliminary task to test the LSM and the liquids
memory. A more detailed description can be found in the text (see
Section 2.4). Figure taken from [6].

To test the quality of the LSM, a special task illustrated in Figure 2.7 has been generated.
With inspiration from [32], two N dimensional Poisson process spike sequence vectors
with a mean rate of 30 Hz and a temporal length of 1250 ms in biological real time are
cut into 50 ms slices. Subsequently, those slices are randomly shuffled together to create
new spike trains. The time of occurence of each slice is preserved during the shuffling.
Additionally, spike times are varied by a Gaussian jitter with a standard deviation of
σ = 2 ms.
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2.4 Preliminary Experiments

The shuffled and jittered spike trains are injected into N randomly chosen but fixed
target neurons in the liquid, and the liquid state (see 2.3) is recorded. Ultimately, the
last 50 ms of the liquids response are presented to Tempotrons, where each is supposed
to classify the pattern for a specific time slice. In doing so, they implicitly measure the
liquids memory capacity, because the classification of slices further in the past becomes
increasingly difficult.
On the basis of the described task, a parameter study concerning the Tempotron’s learning
characteristics has already been performed in [6]. The mapping of the software-trained
Tempotron to the hardware system has shown promising classification results regarding the
current time slice (referred to as Frame 0 ) and the first time slice in the past (referred to as
Frame 1 ). However, the synaptic weight range in the described experiments was artificially
restricted to excitatory synapses so far, even if the liquid contained both excitatory and
inhibitory neurons. Furthermore, a bundling of the liquid and the Tempotron on a single
chip was proposed, which could exploit the hardware acceleration factor and reduce the
required host PC communication bandwidth at the same time.

13



3 Learning Concepts

This chapter illustrates the two developed learning rules utilized in the course of this
thesis. In the outlook of [6], several proposals are made to increase the available spectrum
of input efficacies for the Tempotron with conductance-based synapses. These ideas are
outlined and verified in the following.
The previous classification procedure used in [6] is illustrated in Figure 3.1. Here, the
input patterns (see Section 2.4) are presented to the liquid and the resulting liquid state
is recorded. In the training process as well as during the evaluation of the Tempotron’s
performance, every liquid neuron is connected via an excitatory synapse to the Tempotron,
since the algorithmic flipping of synapse types from excitatory to inhibitory or vice versa
might induce irreparable discontinuities in the learning process.
In order to accomplish the transfer of a Tempotron model which is closer to the original
one (see Equation 2.8) onto the FACETS hardware, the training procedure has to become
a multi-level procedure due to the restrictions for conductance-based (COBA) synapses,
which arise from the fact that EPSPs and IPSPs have different amplitudes due to individual
reversal potentials (see Section 2.3). Initially, the task is performed by a liquid consisting
of 140 excitatory and 51 inhibitory neurons and the liquid state is buffered (see Figure 3.1).
Subsequently, the simulator NEURON [16] is used to train the Tempotron’s weights and
to perform a validation in software. Here, two different training methods are implemented
which are presented in the following.

3.1 Unconstrained Method

This training method consists of two consecutive training runs each containing 5000
training steps. First of all, the Tempotron’s synapses are implemented as current-
based (CUBA) synapses, whose weights are initialized following a Gaussian distribution
with mean µ = 0µS and standard deviation σ = 0.5 nS. In an exponentially decaying
training process with the initial rate α0 = 0.0003 and the learning constant τlearn = 4000,
which are chosen in order to provide the synapses with sufficient opportunity to change,
the weights are varied by following the CUBA learning rule, which can be found in
appendix A of this thesis. Here, a possible flipping of weights from excitatory to inhibitory
and vice versa is allowed. This is necessary because the tendency whether a synapse would
become excitatory or inhibitory is generally not known a priori [6]. Thus the synapse
type is unconstrained. Moreover, the maximum weight size is restricted to 0.003µS for
excitatory and inhibitory synapses to assure a later linear mapping onto hardware weights.
This first training run with CUBA synapses offers a tendency towards the weight evolution
in a subsequent training trial with conductance-based synapses. Consequently, the main
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Figure 3.1: Classification procedure using the FACETS chip-based hardware. The
input pattern is employed on the liquid, the spike times and corresponding
neuron ID’s are recorded and presented to the Tempotron readout. Due
to different contributions of excitatory and inhibitory synapses to the
PSP, the previous classification procedure in [6] only allowed excitatory
connections to the Tempotron. In the course of this thesis, the synaptic
input range was extended to excitatory and inhibitory synapses.

complicacy in a pure training with conductance-based synapses, which is finding the
optimum initialization of weights, is eluded.
In a second training run, the resulting synapse efficacies in the CUBA model are used as
initial weights for the training with COBA. Here, the PyNN neuron type specialized for
the FACETS chip-based hardware is used. The learning rule for COBA synapses can be
found in the appendix of this thesis. This learning rule uses the same learning parameters
as the CUBA one. Additionally, to avoid irreparable discontinuities in the learning process,
a weight flipping from excitatory to inhibitory and vice versa is prevented by setting
all weights which tend to flip to zero. This discontinuity is due to the different reversal
potentials Ve = 0 mV and Vi = −80 mV. Following Equation 2.5, the dependencies of an
EPSP and an IPSP respectively can be described by

∆VEPSP (t) ∼ ge(t) · (V (t) − Ve) (3.1)
∆VIPSP (t) ∼ gi(t) · (V (t) − Vi) (3.2)

To prevent further discrepancies for the weight updates caused by the different reversal
potentials, the weight update ∆ω (see Equation 2.8) of inhibitory synapses has to be
multiplied by the factor

Ve − Vmean

Vmean − Vi
. (3.3)

This step assumes (see Figure 3.2) that the Tempotron’s membrane voltage change
during a PSP is small compared to the distance between Vmean and Ve or Vi. The mean
membrane voltage Vmean is determined by the mean value of the recorded membrane
voltage course and amounts to Vmean = −58.2 mV in the case of the described task in
Section 2.4. Thus, the term 3.3 results to 2.67 and is inserted in the COBA learning rule
attached in appendix A. In general, this term has to be redetermined for each new task.
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Figure 3.2: Sample voltage course of an integrate-and-fire neuron with exponential
conductance-based synapses. The diagram contains the reversal poten-
tials (dashed lines), the threshold and reset potentials (dotted lines) as
well as the mean (post-synaptic) membrane voltage (red line).

3.2 Constrained Method

The second applied learning method consists of a single training run. Here, the Tem-
potron’s synapses are directly implemented as conductance-based synapses with an initial
weight of 0.1 nS for excitatory and inhibitory neurons. As opposed to the previous
method, the excitatory synapses are forced to stay excitatory and the inhibitory ones
inhibitory during the entire training process in which the initial decay rate is α0 = 0.0003
and the learning constant amounts to τlearn = 4000. Because the synapse type may
not change during learning, this method can be described as being constrained. In the
following, the synaptic efficacies are trained according to the above mentioned learning
rule for COBA synapses which can be found in appendix A.
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4 Experimental Results

This chapter summarizes the experimental results achieved during this thesis as well
as conclusions drawn therefrom. In Section 4.1, the self-stabilizing liquid architecture
(see Section 2.3.3) is tested in detail on the existing task described in Section 2.4. The
computational power in relation to the size of the network and the inner liquid weights
is examined, in particular. Thereafter, Section 4.2 depicts the necessary steps to form
an any-time computing Liquid State Machine and demonstrates the performance of the
classification in software and hardware. Section 4.3 illustrates a new, intricate task, which
shows the impact of the liquid on the Tempotron’s classification ability. The last section
offers a real-world application for the Liquid State Machine. Here, handwritten digits
are translated into spike patterns, which are then discriminated in a pairwise fashion by
individual Tempotrons.

4.1 On the Lookout for a Suitable Liquid

Before delving into the construction of an entire Liquid State Machine on a neuromorphic
hardware substrate, a parameter study has to be accomplished concerning the importance
of different liquid quantities, especially with regard to later tasks. In the course of this
thesis, a self-stabilizing network as described in Section 2.3 is used since it has been proven
to work robust on hardware [28]. Besides, a column-based liquid model as proposed in [23]
and realized on the FACETS chip-based hardware in [33] turned out to be very difficult
to control on imperfect hardware.
In the following the task described in Section 2.4 is applied to the self-stabilizing liquid
(Figure 3.1). The resulting liquid state is classified by a software Perceptron, whose
weights are modified during a run of 1800-3000 training steps, in which the initial weight
vector is chosen as ~ω0 = (1, ..., 1). As the classification of the latest 50 ms frame (Frame 0 )
is not decisive for demonstrating the fading memory property, the following classifications
are based on the first time window in the past. Note that, classification on past frames
is also carried out by only observing the latest 50 ms. This has been described in more
detail in the corresponding task description. A complete parameter study of the liquid
would go beyond the scope of this thesis, thus only selected parameters are examined.
The first analyzed quantity is the distribution of neurons in the liquid. So far, an
arrangement of Ne = 144 excitatory and Ni = 48 inhibitory neurons had been used [6]. In
Figure 4.1 one can see the impact of a small variation of the present network distribution.
Conspicuously, each of the studied distributions reaches a classification rate of about
100%, among which the version containing Ne = 140 and Ni = 52 seems to vary the least.
Diagram 4.2 shows the implications of a vaster change in the network distribution. Each
of the examined liquid arrangements leads to a classification rate of at least 90%, but both
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extremes (96:96 and 176:16 excitatory to inhibitory neurons) exhibit stronger fluctuations
with a magnitude of approximately 10%. Those fluctuations could arise in the case of
the 96:96 network from a too weak liquid response, while in the 176:16 network case the
strong excitation can support chaotic behavior and therefore result in a violation of the
Separation Property (Section 2.3.3).
Another liquid property which needs to be analyzed for future classification tasks (see
Section 4.4) is the network size. Considering a task with more than two input classes
one could solve the problem by decomposing it into a set of binary classifications and
consequently use multiple binary classifiers [34]. As the FACETS chip-based system
is limited to 192 neurons at the time of writing, the liquid’s size needs to be reduced
compared to the previous studies. Figure 4.3 reveals the effect of a liquid shrinkage. Even
for a network size of 8 neurons, the classification rate converges to about 80-90%, which is
only due to the simplicity of the task. Nevertheless, actual computation can be carried out
with significantly less neurons, thus rendering multi-class tasks feasible. Not unexpectedly,
a liquid consisting of only a single neuron results in chance-level classification, due to the
irreversible compression of the input state space onto the comparably small state space of
the liquid.
Additionally, the impact of changes in the strength of inter and intra-liquid connections
on the classification ability has been analyzed. As described in Section 2.3, the hardware
implementation of the self-stabilizing liquid contains only the depressing STP functionality
for excitatory synapses. In Figure 4.4 the effect of static synapses can be observed, which
manifests itself by an increase of classification fluctuations due to a more chaotic behavior.
Nevertheless, the correct classification converges to about 90%.
The effect of changing the synaptic efficacies for excitatory stimuli is displayed in Figure 4.5.
Here, for a lower weight of gstim,e = 1nS the limit of a too weak liquid excitation is
exceeded. The setup with gstim,e = 3 nS provides the most stable results.
Another study of synaptic efficacies has been performed on the intra-liquid connections.
After 2000 training steps each of the configurations shows about the same result, as can
be seen in Plot 4.6. Certainly, the fluctuations of the blue curve (ge,e = 2 nS) seem to be
the most attenuated after 1000 training steps.
To sum up, the self-stabilizing liquid remains stable under a broad range of parameter
variations. For the subsequent experiments, the parameters shown in Table 4.1 are used.
Here, the liquid size needs to be shrunk to at most 191 neurons, because at least one
neuron has to be left for the adjoining implementation of the hardware readout. The
remaining parameters remain unchanged to the ones used in [6], since they have shown
good-natured properties already. In the following sections, the Perceptron readout is
replaced by a Tempotron to finally move the LSM implementation, apart from the weight
update during the training phase, to hardware.
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Figure 4.1: The Impact of a small variation int the liquids ratio of excitatory to
inhibitory neurons on the classification ability of the Perceptron in the
case of Frame 1 classification (see Section 2.4). The depressing STP
functionality is enabled.
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Figure 4.2: Effect of a vaster shift in the ratio of excitatory to inhibitory neurons in
the case of Frame 1 classification (see Section 2.4). Both extremes, the
96:96 and the 176:16 configurations, show slightly stronger fluctuations.
The depressing STP functionality is enabled.

19



4 Experimental Results

100 101 102 103 104

Training Steps

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Cl
as

si
fic

at
io

n 
Co

rr
ec

tn
es

s

Ne :107,Ni :40
Ne : 11,Ni : 4
Ne :  6,Ni : 2
Ne :  1,Ni : 0

Figure 4.3: Relation between classification correctness of the Perceptron and the
number of liquid neurons in the case of Frame 1 classification (see
Section 2.4). The LSM shows already acceptable results for a liquid size
of only 8 neurons. The depressing STP functionality is enabled.
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Figure 4.4: The impact of the depressing STP-functionality in hardware on the
classification ability in the case of Frame 1 classification (see Section 2.4).
The utilized ratio between excitatory and inhibitory neurons was: Ne =
107 , Ni = 40 .
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Figure 4.5: Effect of changing the synaptic efficacies of the excitatory stimuli on
the Perceptron’s classification ability when classifying Frame 1 (see
Section 2.4). With the given parameters, conductances of 1 nS lead
to a too weak liquid activation. The utilized ratio between excitatory
and inhibitory neurons was: Ne = 107 , Ni = 40 . The depressing STP
functionality is enabled.
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Figure 4.6: Relation between the classification correctness and the synaptic efficacies
of the intra-liquid connections in the case of Frame 1 classification (see
Section 2.4). Small weight variations have hardly an impact on the
classification and are therefore validating the network self-stabilizing
properties. The utilized ratio between excitatory and inhibitory neurons
was: Ne = 107 , Ni = 40 . The depressing STP functionality is enabled. 21
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Nexcitatory 140
Ninhibitory 51
pee/pei/pie/pii 0.05/0.1/0.1/0.2
gee/gei/gie/gii [µS] 0.002/0.003/0.0015/0.002
STP (depressing) enabled

Table 4.1: Parameters for the self-stabilizing network architecture used in the experi-
ments in Sections 4.2 and 4.3. Here, N denotes the number of neurons,
while pxy and gxy refer to the connection probabilities and synapse weights
for the connections from population x to population y.
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4.2 Hardware Implementation of a Liquid State Machine

This section describes the implementation of a Liquid State Machine with both the
liquid and the readout on the FACETS chip-based hardware system (see Section 2.1.1).
From here on, the previously used software Perceptron (see Section 4.1) is replaced by a
Tempotron.
The weights of the software Tempotron are trained using the NEURON simulator [16]
according to the learning procedures described in Chapter 3. The utilized classification
task is pointed out in Section 2.4. In the following, the learning results in software
are presented and afterwards, the trained conductance-based Tempotron is moved to
hardware.
Figures 4.8, 4.12 and 4.14 show learning curves of the Tempotron for the classification of
the current time slice (referred to as Frame 0 ), the first time slice in the past (referred to
as Frame 1 ) and the second time slice in the past (referred to as Frame 2 ), as described
in Section 2.4. For each frame the classification is carried out only by evaluating the
current time slice.
In the case of Frame 0, both learning methods result in a classification correctness of about
100% (see Figure 4.8). The classification curve which belongs to the constrained learning
method shows a fast convergence to a top-level classification. This can be explained by
the fact that even the small difference between the arbitrarily as 0.001µS initialized
excitatory and inhibitory weights is almost sufficient to provide 100% confidence. As
illustrated in Figure 4.10, the weights do only change slightly during the learning
period. The red histogram in Figure 4.9 visualizes the final weight distribution, which is
Gaussian-shaped around zero. In contrast, the unconstrained learning method results
in a slower convergence of the classification correctness (see Figure 4.8). This can be
explained by the long-lasting weight adaptation from the CUBA to the COBA model
(see Figure 4.11). Although in both models the same weight ranges are used, the weights
adapted from the CUBA model show a too strong excitation and too weak inhibition
in the COBA model. Consequently, during the first 100 training steps the weights
change towards lower excitation and higher inhibition leading to a temporary chance-level
classification. The blue histogram in Figure 4.9 reveals the weight distribution for
the Frame 0 learning procedure employing the unconstrained learning method. The
majority of weights is Gaussian distributed around zero, but few strong excitatory and
inhibitory synapses have evolved, too. This is consistent with the study of [31], which
uses current-based synapses.
Figure 4.12 shows the learning curves for classifying Frame 1. Here, both methods need
about 500 training steps until the classification correctness converges. However, the
unconstrained learning method leads to better results with a classification correctness
of 95-100%, whereas the learning curve of the constrained learning method fluctuates
in the range of 85-90%. This difference can be explained by the fact that due to the
forbidden flipping of weights in the case of the constrained learning method, most of the
synaptic weights are unable to evolve to strong synapses. Weights which should better
be inhibitory are trapped as small excitatory weights and vice versa, resulting in small
weights being more frequent (see Figure 4.13).
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Figure 4.7: New classification procedure using the FACETS neuromorphic hardware.
The input is fed into the liquid, which is directly connected to the
Tempotron. The weights of the Tempotron have been trained in software
according to the constrained learning method (see Section 3.2).

The histograms in Figure 4.9 and Figure 4.13 share similar weight distributions. The
majority of weights is Gaussian distributed around zero and indicates inputs causing
similar responses for both patterns A and B. On the other hand, the strong excitatory and
inhibitory synapses emphasize the afferent neurons representing the main characteristics
of the two different patterns. These strong weights are mainly responsible for the ability
to distinguish between different patterns.
In Figure 4.14 the learning curves for classifying Frame 2 are displayed. For both learning
methods, the final classification correctness results in strong fluctuations around chance
level. This uncertainty can be explained by the low number of strong synapses as shown
by the weight distribution in Figure 4.15. This poor classification result is a consequence
of the limited memory capacity provided by the liquid.
Figure 4.16 illustrates the weight evolution in the case of the unconstrained learning
method. The plot displays the resulting weights after the training with COBA synapses
versus the initial weights and actually shows weight flippings. As expected owing to the
higher complicacy, the Frame 1 classification causes more weight flips compared to the
Frame 0 classification. Synapses do not change their weights, if the presynaptic neurons
do not fire at all (see a typical liquid response in Figure 4.17).
Comparing the outcomes of the presented learning methods, the constrained one stands
out in learning rapidity. Concerning the classification correctness, the unconstrained
method outperforms the constrained one in the case of Frame 1 classification. Further-
more, the FACETS chip-based hardware system (see Section 2.1.1) does not support
excitatory and inhibitory connections from the same presynaptic neuron, yet. But this
feature will be available as soon as synapse mirroring is supported by the software workflow.

The results obtained by the constrained learning method suggest a realization of the liquid
and the Tempotron together on the same hardware substrate. Such a setup is illustrated
in Figure 4.7. Here, the liquid is directly connected to the Tempotron on the same chip
so that the input spike trains can be classified immediately, without an intermediate
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storage of the liquid state on the host computer. The continuous weights adapted from
the software learning are mapped onto the discrete hardware weights. To avoid a mapping
of all software weights onto the same hardware weight, the software weights have to
be modified in a way that they occupy the entire conductance range of the synapse
drivers. Therefore, the software weights with the maximum value of 0.003µS have to be
stretched by the factors pynn.maxExcWeight/0.003µS and pynn.maxInhWeight/0.003µS
respectively, whereas pynn.maxExcWeight and pynn.maxInhWeight denote the maximum
available conductances for excitatory and inhibitory synapses on the FACETS chip-based
hardware system.
First classification trials both for Frame 0 and Frame 1 classifications yield promising
results. Such a mapping of the software-trained weights to hardware weights leads to a
classification correctness of

(98.4 ± 0.4) % for Frame 0 ,

(85.3 ± 1.1) % for Frame 1 ,

for a validation trial of 1000 test samples. In both cases the error is given by the standard
error of the average response of the Tempotron.
Nevertheless, to find a maximum of classification correctness for Frame 0 and Frame 1
classifications, additional weight scaling factors stated as p[exc] = 7.7 and p[inh] = 0.6
are introduced (see Appendix A.2). The main reason for this addition arises from the
fact that the mapping process from software weights to hardware weights does not work
properly. E.g. the highest excitatory software weights are not mapped onto the highest of
the 16 discrete hardware weights, but only onto the hardware weight 3, which is 5 times
lower than the highest weight 15. Moreover, these factors are necessary to compensate
possible distortions due to the unexamined depressing STP functionality (see Section 2.3)
on the Tempotron and besides, due to a lacking calibration of the synapse drivers of the
utilized FACETS chip-based hardware system. This wrong weight mapping has to be
investigated and resolved for future experiments. Besides, by using the second chip half
to allow static connections to a dedicated Tempotron population and a more completely
calibrated chip the classification results in hardware might even improve. Suggestions
regarding a future implementation of the liquid and the Tempotron on the same hardware
substrate are listed in the outlook of the thesis in Chapter 6.
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Figure 4.8: Training procedure over 5000 training steps for the classification of
Frame 0 (see Section 2.4) using a software Tempotron in the case of both
learning methods (see chapter 3). Here, only training runs with COBA
synapses are shown. The learning process of the unconstrained learning
method takes longer to achieve top-level classification compared to the
constrained learning method.
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Figure 4.9: Final weight distributions of the COBA synapses after 5000 training
steps of Frame 0 classification for both learning methods (see Chapter 3).
The initial weight distribution of the constrained method does not change
significantly (see also Figure 4.10). The distribution of the unconstrained
method ends up in a Gaussian shape around zero and several strong
synapses.26
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Figure 4.10: Evolution of synaptic weights during the first 1000 learning steps using
the constrained learning method. Due to early successful classification
results (see Figure 4.8) the weights remain close to their initial value.
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Figure 4.11: Evolution of synaptic weights during the first 1000 learning steps using
the unconstrained learning method. Since the weights evolved in the
CUBA model are not transferable par to par to the COBA model, quite
a number of weights change towards fewer excitation or more inhibition,
respectively. Thus the unconstrained learning method takes longer to
reach top-level classification (see Figure 4.8).
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Figure 4.12: Training procedure over 5000 training steps for the classification of
Frame 1 (see Section 2.4) using a software Tempotron in the case
of both learning methods (see Chapter 3). Here, only measurements
for training runs with COBA synapses are shown. The classification
correctness of the unconstrained learning method is better than of the
constrained one.
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Figure 4.13: Weight distributions of the COBA synapses after 5000 training steps
for Frame 1 for both learning methods (see Chapter 3). The initial
weight distribution of the constrained learning method does not change
significantly. Here, weights around zero tend to flip, thus ending up in
worse classifications compared to the unconstrained learning method.
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Figure 4.14: Training procedure in the case of Frame 2 (see Section 2.4) using a
software Tempotron. The measuring points show only the training
runs with COBA synapses, in the case of both learning methods (see
chapter 3). Here, the liquid’s memory capacity does not suffice, thus
the classification ends up by chance.
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Figure 4.15: Final weight distributions of the COBA synapses after 5000 training
steps for Frame 2. For both learning methods (see Chapter 3), the
weight distribution ends up with hardly any strong synapses, which is
a sign of uncertainty during the learning process. Many weights end up
at medium strength compared to the previous weight distributions.
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Figure 4.16: Weight changes during the unconstrained learning process (see Sec-
tion 3.1). The x-axis shows the Gaussian-distributed initialized weights
before the training with CUBA synapses. The y-axis reveals the weights
after the final training for COBA synapses.
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Figure 4.17: Typical liquid response for the task described in Section 2.4.
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4.3 Definition of a Demanding Task

The previous Section has once more demonstrated the fading memory ability of a liquid,
which manifests in the capability of the classifier to remember the past time window by
only looking at the present one. Even the implementation on neuromorphic hardware has
shown promising results for prospective experiments.
In the context of Liquid State Machines it is desirable to show how they can enable a
classifier to perform beyond its independent capabilities, even for tasks which only consist
of one time window. Hence, this Section deals with the design and application of such a
task for Tempotron classifiers.
The raster plots of the two sample patterns of this task are displayed in Figure 4.18. Here,
only one classification window of 100ms in biological time is examined. The challenge is
to decide between two patterns of 24 nearly coincident spikes, 12 of them are excitatory
and inhibitory, respectively. The spike times are differently distributed in the classification
window for the two patterns. Pattern A, which shall induce a spike as response of the
Tempotron is placed at tA = 10 ms, while the spiking time tB = 100 ms − ∆t of pattern
B is varied for each particular instance of the task. Generality is achieved by varying the
afferent neurons in each training run, thus the feature to extract is only the spike time
itself. Moreover, in order to further generalize the task and to avoid hardware bandwidth
limitations on coincident spikes, the spike times are subject to a Gaussian jitter with a
standard deviation of σ = 0.7 ms.
Due to the low input frequency of about 30Hz, the liquid has to be adjusted to provide a
sufficiently strong but non-chaotic response on the task. Therefore, the threshold voltage
of the liquid neurons is lowered to Vthresh = −56.0 mV. More parameters of the liquid
are listed in Table 4.1. The weights are trained according to both methods as described
in Chapter 3.
Starting with ∆t = 1 ms and successively increasing by 1 ms, an individual task is searched
for where the sole Tempotron looses its classification ability since its only capability to
distinguish patterns A and B is the delay of the post-synaptic spike in response to pattern
B. An exponentially decaying function with a learning decay constant of τlearn = 8000
has been used for learning.
Figures 4.19 and 4.23 illustrate the classification curves for the ∆t = 1 ms-task. In
this case, the Tempotron is still able to classify with 100% correctness without the
liquid. Regarding its weight distributions (blue steps in Figures 4.21 and 4.25), the sole
Tempotron seems to avoid strong excitatory synapses in order to delay the post-synaptic
spike of pattern B beyond the time window. Furthermore, inhibitory synapses are set
to zero (see Figure 4.21) or even flip to excitatory (see Figure 4.25) to still spike in the
event of pattern A. The classification with liquid contains erroneous trials even after
10000 training runs, but in general stays around 95%. The weights of the constrained
Tempotron with liquid stay gathered near to zero as initialized (see Figure 4.21), while
the weights of the unconstrained Tempotron with liquid remain Gaussian-distributed with
a few strong excitatory and inhibitory synapses since the task can be trivially solved.
The sole Tempotron’s ability to delay its spiking depends on the synaptic and membrane
time constants. Consequently, from a certain ∆t on the maximum delay time becomes

31



4 Experimental Results

smaller than ∆t. Figures 4.20 and 4.24 reveal the training procedures for both learning
methods if ∆t is set to 5 ms. In both cases, the classification ability of the sole Tempotron
collapses from ∆t = 5 ms on to chance level, while the classification ability with liquid
still remains close to 100%. The weight distribution of the sole constrained Tempotron
(blue steps in Figure 4.22) in the ∆t = 5 ms-task indicates that the Tempotron tries
to adjust the excitatory synapses in order to facilitate a spike in response to pattern A
and simultaneously to provide an inhibition of the post-synaptic spike in response to
pattern B since the delaying option is no more feasible. This leads to the fact that also
pattern A is inhibited because both patterns contain the same amount of spikes. Thus
the Tempotron alternates between spiking on both patterns or remaining silent on both
of them. Regarding the results of the unconstrained method (blue steps in Figure 4.26),
the weight distribution of the sole Tempotron ends up with almost all weights at zero. in
the case of the Tempotron with liquid (red steps in Figures 4.22 and 4.26), the weight
formations still remain similar to that of the 1-ms-task for both learning strategies, which
points to the fact that the 5-ms-task is solved in the similar way as the 1-ms-task by
exploiting the prolonged spike delay provided by the liquid itself.
In Figure 4.27, the classification correctness is plotted as a function of the chosen ∆t. The
plot outlines the results of using the Tempotron with or without liquid and following the
constrained or unconstrained learning method. Besides, validation trials are performed
on the hardware LSM, which is stated as constrained hardware Tempotron with liquid.
Each measuring point corresponds to a validation run of 1000 test samples. As one
can see, the Tempotron without liquid (black and cyan crosses) loses its classification
ability from ∆t = 4 ms upwards for both learning methods. On the other hand, the
constrained software Tempotron with liquid (red crosses) keeps its classification ability
even until ∆t = 10 ms. The created LSM (purple crosses), that is the hardware analogon,
classifies until ∆t = 6 ms close to perfect, in spite the restrictions that are discussed in
Chapter 3. Thus, it performs by far better than the sole Tempotron. The most surprising
result is supplied by the unconstrained Tempotron with liquid (blue crosses). Here, the
classification property still seems to remain over and above ∆t = 30 ms. For this task, a
classification correctness of more than 70% can be registered, which can not be explained
by a pure delaying of pattern B.
Figure 4.28 displays the weight distributions after the unconstrained learning process with
liquid for ∆t = 20 ms and ∆t = 30 ms. Here in both cases, many strong inhibitory synapses
have evolved during the learning which suggests the necessity of a strong inhibition of
pattern B to solve the difficult task. It is clear that no strong excitatory synapses evolve,
which would evoke a post-synaptic spike as response on each of the presented patterns.
Consequently, Figure 4.27, together with Figures 4.20 and 4.24, shows in the case of a
Tempotron how a Liquid State Machine can enable the classifier to perform beyond its
own characteristics.
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Figure 4.18: The figure reveals two sample patterns of the demanding task. Each
of the patterns consists of 24-lets, 12 (of 32) excitatory and 12 (of 32)
inhibitory spikes. In each training step, the afferent stimuli alternate
randomly. From a certain ∆t on the task to decide between pattern A
and pattern B becomes a insolvable task for the sole Tempotron.
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Figure 4.19: Training procedure with ∆t = 1 ms using the constrained learning
method (see Chapter 3). In both cases, with or without liquid, the
classification converges to about 100% correctness.

101 102 103 104

Training Steps

0.2

0.4

0.6

0.8

1.0

Cl
as

si
fic

at
io

n 
Co

rr
ec

tn
es

s

w Liquid
w/o Liquid

Figure 4.20: Training procedure with ∆t = 5 ms using the constrained learning
method (see chapter 3). Here, after a session of 10000 training steps the
classification correctness of the Tempotron without liquid stays around
chance level, while the classification with liquid converges to top level.
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Figure 4.21: Weight distribution for ∆t = 1 ms after 10000 training steps in the
case of the constrained learning method (see Chapter 3). The sole
Tempotron tries to avoid strong excitatory weights in order to delay the
incoming pattern B beyond the time window. Inhibitory synapses end
up at zero. The weights of the Tempotron with liquid stay gathered
around zero.
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Figure 4.22: Weight distribution for ∆t = 5 ms after 10000 training steps in the case
of the constrained learning method (see Chapter 3). The Tempotron
tries to adjust the weights in order to spike on pattern A and remain
silent in response to pattern B, which is not possible since A and B
are too similar. in the case of the Tempotron with liquid, the weights
remain around zero which is possible due to additional delay and the
memory capacity provided by the liquid.
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Figure 4.23: Training procedure with ∆t = 1 ms using the unconstrained learning
method (see Chapter 3). In both cases, with or without liquid, the
classification converges to about 100% correctness.
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Figure 4.24: Training procedure with ∆t = 5 ms using the unconstrained learning
method (see Chapter 3). Here, after a session of 10000 training steps
the classification correctness of the Tempotron without liquid stays
around chance level, while the classification with liquid converges to
top level.
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Figure 4.25: Weight distribution for ∆t = 1 ms after 10000 training steps in the
case of the unconstrained learning method (see Chapter 3) and COBA
synapses. The inhibitory weights of the sole Tempotron have flipped
to excitatory, but all weights stay close to zero. The Tempotron with
liquid ends up with almost all weights distributed around zero and
several strong synapses.
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Figure 4.26: Weight distribution for ∆t = 5 ms after 10000 training steps in the
case of the unconstrained learning method (see Chapter 3) and COBA
synapses. Almost all weights of the sole Tempotron evolve to zero due
to uncertainty. The Tempotron with liquid is still similar to Figure 4.25.
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Figure 4.27: Classification correctness as a function of ∆t (see Figure 4.18). The
sole Tempotron already loses its classification ability at ∆t = 4 ms.
The constrained Tempotron with liquid shows acceptable results until
∆t = 6 ms in the case of hardware and ∆t = 10 ms in the case of
software. The unconstrained Tempotron (blue crosses) shows even at
∆t = 30 ms classification results clearly beyond chance level. Each data
point corresponds to 1000 validation runs using the final weights.
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Figure 4.28: Weight distribution for ∆t = 20 ms and ∆t = 30 ms (see Figure 4.18)
in the case of the unconstrained learning method (see Chapter 3).
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4.4 Handwriting Recognition Using a Population of
Tempotrons

Having the promising results of the previous experiments in mind, this section offers a
possible application of the prepared Liquid State Machine in terms of a handwritten digit
recognition task. The Modified NIST (MNIST) database provides the handwritten digits
[35] used in this section. It contains 60000 training samples and 10000 test samples of
handwritten numbers from 0 to 9 written by 250 people. Each of the digits is normalized
in size and centered in a 28 × 28 pixel image by computing the center of mass of the
pixels [36].
To make the digits obtainable for the Tempotron, the pixels have to be translated into
spike patterns first. The FACETS chip-based hardware system can receive 256 inputs per
core but due to the chips topology and the fact that we need all 192 neurons for either
liquid and Tempotron only 64 inputs remain. Consequently, not every pixel of the 28× 28
images can be translated into an individual spike train. Hence, the image needs to be
compressed. Two different protocols are used in the course of this thesis to carry out the
translation of pixels into spike patterns.
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Figure 4.29: First spike encoding protocol for the handwriting recognition task. Here,
the image with 28 × 28 pixels is initially translated into one with a
resolution of 7 × 7 pixels, thus reducing the number of input stimuli
to 49. Then, the grey value of each input is translated by means of
a Poisson process into a firing pattern with a matching rate, whereby
excitatory and inhibitory stimuli take turns for consecutive pixels.

Illustration 4.29 reveals the first protocol. Here, the 28 × 28 image is rescaled to a
resolution of 7 × 7 pixels. The color of each pixel in the low resolution image is given
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by the mean pixel color of the high resolution source. Then a Poisson process is used
to linearly translate the grey values of the resulting 49 pixels into spike trains with a
maximum rate of 80 Hz and a duration of 100 ms. For every two adjacent pixels, one is
translates into an excitatory input pattern and the other to an inhibitory one. Ultimately,
the readouts are trained in a learning process with an exponentially decaying learn
rate (τlearn = 5000) according to the constrained and unconstrained learning methods
described in Chapter 3.
Since the Tempotron is a binary classifier, it only allows for the discrimination of two differ-
ent input patterns corresponding to two different digits. Therefore, to classify more than
two digits, the liquid can be connected to a population of Tempotrons, with each of them
trained to differentiate between two digits. Hence, the size of the self-stabilizing liquid
(see Section 2.3) has to be reduced to leave sufficient space for at least n(n−1)

2 Tempotrons
to distinguish between all numbers from 0 to n via pairwise classification. However, a
reduction of the size does not necessarily yield a reduction in classification performance, as
Section 4.1 reveals. The specifications of the used liquid is listed in the following Table 4.2.

Nexcitatory 107
Ninhibitory 40
pee/pei/pie/pii 0.05/0.1/0.1/0.2
gee/gei/gie/gii [µS] 0.002/0.003/0.0015/0.002
STP enabled

Table 4.2: Parameters of the self-stabilizing network architecture used for the hand-
written digit recognition task. Here, N denotes the number of neurons,
while pxy and gxy are the connection probability and synapse weights for
the connections between population x and y.

In the course of this thesis, classifiers for the numbers from 0 to 3 are created, whereas
each of the Tempotrons is trained according to Table 4.3.
Figure 4.32 shows that the separation between the digit one and any other number
appears to be a comparably simple task. This is not surprising, as the shape of a one is
distinctly discernable even at a resolution of 7 × 7 pixels (see Figure 4.30). Thus, the
classification correctness reaches high rates, fluctuating around 90% in the 1/2 and 1/3
cases and go even beyond that in the 0/1 case. The constrained learning protocol has
been used to train the readout.
Figure 4.33 illustrates the discrimination between patterns 0/2, 0/3 and 2/3. In all cases
the constrained learning method has been applied. For those particular patterns the
lateral expansion (see Figure 4.30) causes difficulties, thus the classification tasks are
subject to stronger fluctuations. The classification curves for the patterns 0/2 and 0/3
end up oscillating around 80-100%. The separation of two and three even fluctuates
around 50 and 90%.
The Figures 4.34 and 4.35 reveal the corresponding results for the unconstrained learning
method. Each of the three simple separations (see Figure 4.34) converges to a correctness
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Figure 4.30: Numbers 0 to 3 in encoded via the first spike encoding protocol. Con-
spicuously, the shape of the one is clearly distinct from that of the other
numbers.

Spike No Spike

0 1
0 2
0 3
2 1
3 1
3 2

Table 4.3: Training targets utilized in the context of the handwritten digit recognition
task. E.g. the first Tempotron is trained to spike in response to a 0 and
remain silent in response to a 1.

of 90-100%. Considering the more demanding tasks (see Figure 4.35), the classification of
0/3 leads to a remarkable correctness of 90-100%, while in the 0/2 and 2/3 cases a large
uncertainty remains. Here, significant fluctuations between 60 and 90% are observable.
Table 4.4 lists the classification results after a validation run of 1000 test samples of a
pairwise digit classification by means of the software Tempotron and the hardware LSM
using the first spike coding protocol. In the 0/1, 0/3, 1/2 and 2/3 cases the hardware
results are close to those of the software prototype. Only for the distinction in the 0/2
and 1/3 cases the hardware LSM’s classification correctness is off by more than 10%
compared to the software Tempotron.
The most difficult task turns out to be the distinction between the digits two and three.
This case is examined more carefully, in the following. An experiment series concerning
the impact of the liquid size on the classification correctness after 7000 training steps is
recorded. To stay within hardware limits only liquid sizes of up to 191 neurons have been
considered. The ratio of excitatory to inhibitory neurons has been kept constant at all
times (Ne/Ni = 2.75). The results of the pure software experiment after 1000 validation
steps are visualized in Figure 4.36. Up to the maximum of neurons hardly any connection
between the liquids size and its performance can be drawn for either training methods.
In all but one case, the unconstrained method results in up to 10% higher classification
rates than for the constrained one. However, due to the comparably low limit of 191
neurons a potential improvement in performance for even larger liquids can neither be
predicted nor ruled out. In a prospective analysis of the digit recognition task, larger
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Digits 0/1 0/2 0/3 1/2 1/3 2/3

SW Temp 96.2 ± 0.6% 81.5 ± 1.2% 87.2 ± 1.1% 90.1 ± 1.0% 88.7 ± 1.0% 75.6 ± 1.4%
HW Temp 94.0 ± 0.8% 68.0 ± 0.5% 85.8 ± 1.1% 83.3 ± 1.2% 74.7 ± 1.4% 69.4 ± 1.5%

Table 4.4: Comparison of the classification rates for pairwise digit recognition using
on the one hand a software Tempotron and on the other hand the hardware
LSM. The used spike coding scheme is pictured in Figure 4.29. The error
is given by the standard error of the average response of the Tempotron
over 1000 test runs.

software liquids might be used to examine the general impact of the liquids size on the
classification rate.
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Figure 4.31: Illustration of the second spike encoding protocol used for the hand-
writing recognition task. Here, each third pixel of the rescaled 14 × 14
image is translated into a Poisson process spike train with a respective
firing rate, whereby excitatory and inhibitory stimuli take turns for
consecutive pixels. Therefore, 64 input stimuli are fed into the liquid,
which equals the maximum remaining inputs on a fully occupied chip.

In Scheme 4.31 another tested protocol is shown. Here, to "increase" the resolution, the
28 × 28 images are rescaled to a 14 × 14 size, from which only every third pixel is used
for coding. Each of these 64 resulting pixels is translated into a single spike train, this
time of 50 ms length, since the length of 100 ms in the previous coding scheme might be a
further barrier to the classification ability of the Tempotron, which does not in general
rely on a firing rate. Again, the grey values of the resulting pixels are transformed to
spike rates in a way, that a maximum frequency of 80 Hz is not exceeded. Regarding two
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adjacent pixels, one is linearly translated to the spike train of an excitatory stimulus, the
other one to an inhibitory stimulus.
Until the time of thesis submission it was only possible to carry out the discrimination for
the 0/1 and 2/3 classifiers, in order to compare both presented spike encoding protocols.
The results of a training with 7000 steps and an exponentially decaying learn rate
(τlearn = 5000) are illustrated in Figure 4.37 for the constrained learning and Figure 4.38
for the unconstrained one. In the case of the constrained learning the results show fewer
oscillations compared to the previous spike coding scheme, but similar classification results
around 90% for the 0/1 classifier and around 60-90% for the 2/3 classifier. After 1000 test
runs using the software Tempotron, the classification yields (96.7 ± 0.6)% correctness for
0/1 and (74.5 ± 1.4)% for 2/3. A direct mapping of the software-trained weights onto
the hardware LSM led to the following outcomes: (93.4 ± 0.9)% in the case of 0/1 and
(73.0 ± 1.5)% in the case of 2/3.
Regarding the results of the unconstrained learning method in Figure 4.38 a distinct
increase of the classification rate concerning the 2/3 task can be observed. The classifi-
cation curve of the 0/1 task does not show any improvement compared to Figure 4.37,
which is no surprise as the classification of 0/1 is in both cases already flawless.
The Figures 4.37 and 4.38 indicate that the second spike coding scheme might improve
the classification rates slightly if weight flipping is allowed.

After training a complete set of Tempotrons necessary to distinguish the numbers from 0
to 3, an implementation of the handwritten digit recognition system on hardware might
look as Figure 4.39 indicates. In the cast, the digits are translated with the second spike
coding and applied directly to the liquid, which projects onto six Tempotrons, of whom
the first Tempotron may spike if a 0 is presented and not spike if a 1 is presented, while
responding arbitrarily if a 2 or 3 is to be classified. For each possible input (0-3) one gets
an array of six numbers as a result, whereby the most frequent number is chosen as the
classification outcome. If two or more numbers occur equally frequent the winner of the
direct comparison is chosen. In the rare case that still no clear winner can be determined
a random guess between the most frequent candidates is performed.
In a first classification trial of 4000 digits taken from the test set of the MNIST database [36]
the described hardware recognition system produced a classification rate of (50.3 ± 0.8)%.
This is significantly above the chance-level of 25%. However, to further improve the
results one should try increase the classification rate of the 0/2, 0/3 and 2/3 classifiers in
particular, as they contribute the largest errors (see Table 4.4).
The bundling of the liquid and the Tempotron(s) on the same hardware substrate showed
promising results despite the distortions mentioned in Section 4.2. The implemented
learning can account for a software bug yielding an incorrect weight mapping, the STP
enabled Tempotron connections and the incompletely calibrated chip. Another challenge
apart from optimizing the learning, is to find more effective spike coding schemes providing
the information in a way easier to access for the Tempotron. Suggestions concerning the
optimization of the digit recognition can be found in the outlook of this thesis.
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Figure 4.32: Classification curves of three easy tasks: the distinction of a one and
another number, in the case of the constrained learning method (see
Chapter 3). The software Tempotron performs with about 80-100%
confidence after 7000 training steps. Here, the first coding protocol is
used (see Figure 4.29).
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Figure 4.33: Classification curves of three difficult tasks, which are the distinctions
of 0/2, 0/3 and 2/3 using the first coding protocol (see Figure 4.29).
The 2/3 task is the most intricate one. In each case, one can observe
large fluctuations due to uncertainty. The curves correspond to the
constrained learning method (see Chapter 3).
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Figure 4.34: Classification curves containing 7000 training runs of three easy tasks,
regarding the distinction of a one and another number, in the case of
the unconstrained learning method (see Chapter 3). One can observe
an improvement concerning fluctuations compared to Figure 4.32. Here,
the first coding protocol is used (see Figure 4.29).
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Figure 4.35: Classification curves containing 7000 training runs of three difficult tasks,
which are the distinctions of 0/2, 0/3 and 2/3. The curves correspond
to the training with COBA synapses using the unconstrained learning
method (see Chapter 3). Nevertheless, the results still do not seem to
improve significantly compared to Figure 4.33, but show less fluctuations.
Here, the first coding protocol is used (see Figure 4.29).
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Figure 4.36: Results of classifying the 2/3 task as a function of the liquid size using
the first coding protocol (see Figure 4.29). The measuring points are
derived from a validation measurement of 1000 test samples. A larger
hardware liquid size (within the limits of the FACETS chip-based
system) does not provide any significant classification improvements.
As one can observe, the unconstrained method does better than the
constrained one.
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Figure 4.37: Classification curves containing 7000 training runs of classifying 0/1
and 2/3, while using the second coding protocol (see Figure 4.31). The
curves correspond to the constrained learning method (see Chapter 3).
The classification rate does not significantly improve compared to the
results of the first coding scheme (see Figure 4.29).
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Figure 4.38: Classification curves containing 7000 training runs of classifying 0/1
and 2/3, while using the second coding protocol (see Figure 4.31).
The curves correspond to the training with COBA synapses using the
unconstrained learning method (see Chapter 3). Here, one can observe
a slight increase of classification correctness in the 2/3 task compared
to the previous figures.
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Figure 4.39: Resulting procedure to perform the digit recognition task. Arbitrary
numbers are translated into a firing rate and presented to the Liquid
State Machine. The LSM consists of the liquid and a population of six
(n·(n−1)

2 for n different digits) Tempotrons, which were trained on each
specific digit recognition task. The most frequent number is returned.
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5 Discussion

The results presented in this thesis have demonstrated the potential of the FACETS
chip-based hardware system to be operated as a spike-based, universal classifier. The
necessary steps carried out to reach this conclusion are briefly summarized in the following.
In the context of this thesis, a parameter study concerning the properties of a self-
stabilizing liquid architecture has been accomplished, which demonstrated the stability
of liquid under large parameter variations. An examination regarding the liquids size
has pointed out that for simple tasks liquid sizes which are distinctly smaller than the
dimension of the input population might still be able to provide memory and allow for
close to perfect classification.
A bundling of a self-stabilizing liquid architecture together with the spike-based Tempotron
classifier on the FACETS chip-based hardware system has been realized. To train the
Tempotron’s weights in software two hardware-adapted training methods have been
implemented in order to account for the conductance-based synapse model. Therefore,
it was possible to extend the dynamic input range to both, excitatory and inhibitory
synapses. A direct mapping and stretching of the software weights to the available weight
range on hardware showed classification results which are comparable to those of the
corresponding software prototype. The refinement and enhancements in the available
framework will simplify the application of the hardware system to future classification
tasks.
In the further context of this thesis, a demanding task has been introduced which could
be significantly better solved by a combined liquid-Tempotron setup. Thus, the ability
of an LSM to enable the readout to perform beyond its own capacity could be proven.
Even better results have been achieved by means of a software LSM which was allowed to
change its synapse types from excitatory to inhibitory and vice versa. This system can
tune itself to a more optimal weight distribution based on original Tempotron’s learning
rule. It is therefore expected that the synapse-driver-mirroring hardware feature or a
future revision of the chip with both cores accessible can significantly improve any current
classification rate. However, even without this feature the hardware LSM was able to
discriminate the demanding task with more than 90% confidence up to a level, which is
by far beyond the sole Tempotron’s characteristic scope.
Moreover, a real world handwritten digit recognition task has been employed on the
hardware LSM. Common spike encoding protocols have been used to convert the digits
into spike patters. The subsequent classification of four different digits on hardware yielded
a correctness of (50.3 ± 0.8)%, which exceeds chance level (25%) by far. Finally, the
modifications proposed in the oncoming outlook are assumed to improve the classification
in prospective experiments even further.
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6 Outlook

This thesis has successfully demonstrated the application of the FACETS chip-based
system in the field of pattern classification. In the following, possible feature extensions
to the software framework and future parameter studies are proposed.
The most critical issue necessary for solve for future work on the hardware LSM is to
find the software inconsistency responsible for an inconsistent mapping of the software
weights onto hardware. This bug has led to too weak weights, which then needed to be
stretched by a seemingly arbitrary but well chosen stretching factors in order to reach
good classification performance on hardware. This bug has not yet been located, at least
it doesn’t seem to affect any other experiments performed on the hardware system. After
solving the issue, future implementations of the LSM on hardware can neglect those
factors.
Moreover, the training with current-based synapses according to the originally proposed
Tempotron can be tuned to deliver more ideal weight distributions for the subsequent
training with conductance-based synapses. This could significantly improve the time
necessary to learn a given pattern. One attempt could be to choose lower weight maxima
during the training with current-based synapses as Figure 4.10 suggests. Together with a
more complete calibration of the chip, one can further improve the classification rates
of the hardware LSM towards the results of the software prototype. Furthermore, a
study concerning the impact of STP on the hardware Tempotron’s classification ability
has to be performed. This implies systematic experiments comparing the outcome of
a software training with the cautious STP in place against runs without it. Access to
the second half of the chip as well as synapse-driver-mirroring would both enable the
hardware Tempotron population to operate without STP, while the liquid could still use
it. The synapse-driver-mirroring also offers potential to increase the resolution of the
discrete hardware weights, which could lead to more effective or more precise learning.
Any issues related to the size of neuron populations will be gone, as soon as the FACETS
wafer-scale hardware system is available. Larger liquids and higher Tempotron counts for
the pairwise classification will provide an unseen liquid stability applicable in the area of
neuroscience as well as industry.
In future applications of the digit recognition, a more efficient spike encoding protocol
could be utilized, e.g. inter-spike time coding. Here, the grey values of the pixels determine
the temporal distance between two consecutive spikes. This sort of patterns might be
better suitable for the Tempotron, since its spatiotemporal structure is deterministic
compared to patterns emerging from a Poisson process. However, this coding scheme does
not provide extra information about the images, but merely presenting them differently.
Thus, an improved classification is likely but not guaranteed. It remains to be seen if
the hardware liquid’s classification rate can be increased by larger liquids. A possible
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6 Outlook

approach to solve this question might be the study of the self-stabilizing liquid in pure
software, here its size is only limited by the available computational power.
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A Appendix

A.1 Learning Rules

Learning rule for a Tempotron with CUBA synapses:

1 def _t r a i n ( s e l f , i n pu t , output , t a r g e t , membrane , run ) :
2 i f synapse_mode l == ’CUBA’ :
3 i f ou tpu t != t a r g e t :
4 f o r neuron_id , s p i k e_t ime i n i n p u t :
5 i f s p i k e_t ime > membrane.t_max : break
6 s e l f . we i g h t s [ neu ron_id ] += ( t a r g e t - ou tpu t )* s e l f .

decayF ( run , s e l f . r a t e , s e l f . t au )*membrane. k e r n e l (
neuron_id , membrane.t_max, s p i k e_t ime )

7 f o r neu ron_id i n x r a ng e ( l e n ( s e l f . we i g h t s )) :
8 i f s e l f . we i g h t s [ neu ron_id ] > 0.003 :
9 s e l f . we i g h t s [ neu ron_id ] = 0.003
10 i f s e l f . we i g h t s [ neu ron_id ] < -0.003 :
11 s e l f . we i g h t s [ neu ron_id ] = -0.003

Leaning rule for a Tempotron with COBA synapses:

1 def _t r a i n ( s e l f , i n pu t , output , t a r g e t , membrane , run ) :
2 i f synapse_mode l == ’COBA’ :
3 i f ou tpu t != t a r g e t :
4 f o r neuron_id , s p i k e_t ime i n i n p u t :
5 i f s p i k e_t ime > membrane.t_max : break
6 i f s e l f . we i g h t s [ neu ron_id ] > 0. :
7 s e l f . we i g h t s [ neu ron_id ] += ( t a r g e t - ou tpu t )* s e l f .

decayF ( run , s e l f . r a t e , s e l f . t au )*membrane. k e r n e l
( neuron_id , membrane.t_max, s p i k e_t ime )

8 i f s e l f . we i g h t s [ neu ron_id ] < 0. :
9 s e l f . we i g h t s [ neu ron_id ] = 0.
10 e l i f s e l f . we i g h t s [ neu ron_id ] < 0. :
11 s e l f . we i g h t s [ neu ron_id ] += ( t a r g e t - ou tpu t )* s e l f .

decayF ( run , s e l f . r a t e , s e l f . t au )*membrane. k e r n e l
( neuron_id , membrane.t_max, s p i k e_t ime )*2.67 #
additional factor
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12 i f s e l f . we i g h t s [ neu ron_id ] > 0. :
13 s e l f . we i g h t s [ neu ron_id ] = 0.
14 f o r neu ron_id i n x r a ng e ( l e n ( s e l f . we i g h t s )) :
15 i f s e l f . we i g h t s [ neu ron_id ] > 0.003 :
16 s e l f . we i g h t s [ neu ron_id ] = 0.003
17 i f s e l f . we i g h t s [ neu ron_id ] < -0.003 :
18 s e l f . we i g h t s [ neu ron_id ] = -0.003

A.2 Weight Initialization in Hardware

1 f o r i i n x r a ng e ( l e n ( we i g h t s )) :
2 i f we i g h t s [ i ] <0 :
3 we i g h t s [ i ] *= pynn.maxInhWeight /0.003*p [ " inh " ]
4 e l s e :
5 we i g h t s [ i ] *= pynn.maxExcWeight /0.003*p [ " exc " ]

A.3 Acronyms

API Application Programming Interface

ARQ Automatic Repeat reQuest

ASIC Application Specific Integrated Circuit

CMOS Complementary Metal Oxide Semiconductor

COBA conductance-based

CUBA current-based

EPSP Excitatory Postsynaptic Potential

FACETS Fast Analog Computing with Emergent Transient States

HICANN High Input Count Analog Neural Network

IPSP Inhibitory Postsynaptic Potential

LSM Liquid State Machine

MNIST Modified NIST

STDP Spike-Timing Dependent Plasticity

STP Short-Term Plasticity
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A.3 Acronyms

SVM Support Vector Machine

VLSI Very-large-scale integration
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