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We report on an extensive study of the elastic scattering time τs of matter waves in optical disordered
potentials. Using direct experimental measurements, numerical simulations, and comparison with the first-
order Born approximation based on the knowledge of the disorder properties, we explore the behavior of τs
over more than 3 orders of magnitude, ranging from the weak to the strong scattering regime. We study in
detail the location of the crossover and, as a main result, we reveal the strong influence of the disorder
statistics, especially on the relevance of the widely used Ioffe-Regel-like criterion kls ∼ 1. While it is found
to be relevant for Gaussian-distributed disordered potentials, we observe significant deviations for laser
speckle disorders that are commonly used with ultracold atoms. Our results are crucial for connecting
experimental investigation of complex transport phenomena, such as Anderson localization, to microscopic
theories.
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Introduction.—The elastic scattering time τs, i.e., the
mean time between two successive scattering events, is a
fundamental timescale to describe wave propagation in
disorder, and is thus at the heart of theoretical descriptions
of a wide class of physical systems, from light in the
atmosphere or in biological tissues to electrons in solid-
state systems [1,2]. Furthermore, τs is routinely used to
characterize the scattering strength via the dimensionless
quantity kls (k: wave number; ls ¼ vτs: mean free path,
with v the group velocity), which quantifies the number of
oscillations of the wave between two scattering events. In
this respect, the criterion kls ∼ 1 is widely accepted to set
the limit between the weak scattering regime, where
perturbative treatments apply, and the strong scattering
regime. It coincides with the Ioffe-Regel criterion associ-
ated with Anderson localization for pointlike scatterers [3].
Since τs is related to dephasing and not directly to

transport properties, its direct determination is rather
demanding [4]. So far various measurement methods have
been developed, from Shubnikov–de Haas oscillations of
the magnetoconductivity in electronics systems [5–8], to
ballistic transmission [9,10], microscopy techniques
[11–13], and intensity or phase correlations [14–19] for
classical waves. However, the direct comparison between
experimental determinations and ab initio calculations have
been scarce (see, e.g., Ref. [9]) and, to our knowledge, a
quantitative investigation of the relevance of the criterion

kls ∼ 1 is still lacking. Atomic matter waves in optical
disordered potentials offer a controllable platform to
investigate the behavior of τs with respect to the micro-
scopic details of the disorder. Numerous theoretical pre-
dictions exist [20–30], leading in particular to the
derivation of an alternative condition to the kls ∼ 1 criterion
[31] in Ref. [21], rendering a precise investigation highly
desirable.
In this Letter, we report direct measurements of the elastic

scattering time τs for ultracold atoms propagating in quasi
two-dimensional laser speckle disordered potential. The
scattering time is directly measured by monitoring the time
evolution of the momentum distribution for a wave packet
having a well-defined initial momentum, and the results
are compared to numerical simulations, yielding an excellent
agreement. The simulations are also used to extend our
investigation to the case of a Gaussian disorder, a model
widely considered in condensed matter physics. Most
importantly, we study the evolution of τs over a large range
of parameters (τs varies bymore than 3 orders ofmagnitude),
allowing us to explore the crossover from the weak to the
strong scattering regime. Comparing our results to analytical
1st order Born calculations, we reveal the strong influence of
disorder statistics on the crossover and discuss the relevance
of the Ioffe-Regel-like criterion kls ∼ 1.
First-order Born approximation.—For weak disorder,

we can develop an intuitive, physical picture of the

PHYSICAL REVIEW LETTERS 122, 100403 (2019)

0031-9007=19=122(10)=100403(6) 100403-1 © 2019 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.122.100403&domain=pdf&date_stamp=2019-03-13
https://doi.org/10.1103/PhysRevLett.122.100403
https://doi.org/10.1103/PhysRevLett.122.100403
https://doi.org/10.1103/PhysRevLett.122.100403
https://doi.org/10.1103/PhysRevLett.122.100403


scattering time based on the 1st-order Born approximation
(referred to as Born approximation in the following) [1,2].
In this perturbative treatment, τs can be interpreted as the
finite lifetime of the incoming free state jkii, as it is
scattered towards a continuum of final momenta jk0i with
jk0j ¼ jkij. The initial momentum distribution therefore
decays exponentially in this regime, with the characteristic
time τs:

nðki; tÞ ¼ nðki; 0Þe−t=τs ; ð1Þ
where t is the propagation time in the disorder. The
scattering is only allowed if there exists a spatial frequency
component kdis in the disordered potential that matches
the elastic scattering condition kdis ¼ k0 − ki [Fig. 1(a)].
The weight of scattering in this direction relies uniquely on
the spatial frequency distribution of the disorder C̃ðkdisÞ, i.e.,
the Fourier transform of the two-point correlation function
CðΔrÞ ¼ VðrÞVðrþ ΔrÞ (where � � � refers to disorder
averaging). Using the Fermi golden rule, the Born elastic
scattering time τBorns is obtained by summing the contribu-
tions coming from the scattering in all directions, yielding

ℏ
τBorns

¼ 2π
X

k0
C̃ðk0 − kiÞδ½ϵk0 − ϵki �; ð2Þ

where ϵk ¼ ℏ2k2=2m is the free-state energy, with m the
atomic mass.
The correlation length σ of the disorder, i.e., the typical

width of CðΔrÞ, introduces a characteristic spatial fre-
quency σ−1 that defines two scattering regimes. For low
initial momentum ki ≪ σ−1, the disorder contains the spatial

frequencies that are necessary to scatter the atoms in all
directions and the scattering is isotropic [see Fig. 1(b)]. In the
opposite case of large momentum ki ≫ σ−1, the disorder’s
spatial frequencies are too small for satisfying the back-
ward scattering condition (kdis ¼ −2ki) and the scattering
is essentially concentrated in the forward direction. As
discussed in Refs. [21,26,27,29], the Born prediction (2)
yields different behaviors in the two regimes: τBorns is
essentially constant for isotropic scattering while it
increases linearly with momentum in the forward case
(see dashed lines in Fig. 2 and Ref. [32] for further details).
Note that the validity of the Born approximation can be

estimated in an intuitive manner. Because of its finite
lifetime τBorns , the matter wave acquires a finite energy
width Δϵ ¼ ℏ=τBorns [responsible for the ring’s width seen
in Fig. 1(b)]. By consistency, Δϵ should be much smaller
than the initial energy ϵki ∝ k2i , yielding the usual weak
scattering criterion kilBorns ≫ 1 introduced above (with
lBorns ∝ kiτBorns ). In the following we study experimentally
and numerically the validity of this criterion by analyzing
scattering times for various potential disorders VðrÞ
and over a large range of initial momentum ki, allowing
us to investigate the crossover between weak and strong
scattering.
Experiment.—Based onEq. (1), we directlymeasure τs by

monitoring the decay of the initialmomentumdistribution of
atoms launched with a well defined initial momentum ki
into a disordered potential VðrÞ [25]. The experimental
setup is similar to the one described in Refs. [33,34]. It relies
on the production of a quasi-non-interacting cloud of
105 87Rb atoms in a F ¼ 2, mF ¼ −2 Zeeman sublevel,
suspended against gravity by a magnetic field gradient. A
delta-kick cooling sequence leads to an ultra-narrow
momentum spreadΔk ¼ 0.15 μm−1 (T ∼ 150 pK). Amean
initial momentum ki, ranging from ki ¼ 1 to ki ¼ 20 μm−1

along the y axis, is then given to the atoms by pulsing an
external magnetic gradient for a tunable duration.
A quasi-2D disordered potential in the (y − z) plane is

created by a laser speckle field [35,36], realized by passing
a laser beam along the x axis through a rough plate and
focusing it on the atoms [32]. The wavelength of the laser is
red- or blue-detuned with respect to the atomic transition
(D2 line of 87Rb around 780 nm) in order to create either an
attractive or a repulsive disordered potential [see Fig. 1(a)].
The detuning being small enough (Δ ∼ 1 THz), both
disorders have the same spatial correlation function, with
a measured correlation length σ ¼ 0.50ð1Þ μm (radius at
1=e). However, they differ by their probability distribution
PðVÞ, both exhibiting the asymmetrical exponential dis-
tribution of laser speckle fields [36], but with opposite signs
(see inset of Fig. 3): PðVÞ ¼ jVRj−1e−V=VR ΘðV=VRÞ, with
Θ the step function. Here VR is the averaged amplitude
(negative for attractive and positive for repulsive laser
speckle), while the rms disorder amplitude, i.e., the
quantity that characterizes the disorder strength, is the

(a) (b)

FIG. 1. Elastic scattering and Born approximation. (a) Scatter-
ing of a matter wave by a laser speckle disordered potential of
typical correlation length σ. During a scattering event, which
happens on the characteristic time τs, a momentum kdis is
transferred to the initial momentum ki. In the Born approxima-
tion, the final momentum k0 ¼ ki þ kdis lies on the elastic
scattering ring (dotted circle). For positive atom-light detuning
Δ > 0, the laser speckle potential is repulsive. Inset: for Δ < 0, it
is attractive, having identical spatial properties but opposite
amplitude distribution. (b) Illustrations of the 2D-momentum
distributions nðk; tÞ after a typical time τs (1st row: side view,
2nd row: top view) for the isotropic (ki ≪ σ−1) and forward
(ki ≫ σ−1) scattering regimes.
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absolute value jVRj. When varying the laser power and
detuning, jVRj=h ranges from 39 Hz to 3.88 kHz.
The experimental sequence starts with the preparation of

an atomic cloud with momentum ki. At t ¼ 0 we rapidly
switch on the disorder potential VðrÞ, performing a
quantum quench of the system. After a time evolution t,
the disorder is switched off and we record the momentum
distribution nðk; tÞ by fluorescence imaging after a long
time of flight. Thanks to gravity compensation, up to
300 ms can be achieved, corresponding to a momentum
resolution Δkres ¼ 0.2 μm−1 [37]. From these images we
extract the evolution of the initial momentum population
nðki; tÞ, as shown in Fig. 2(a) [32]. At low disorder strength
jVRj, an exponential decay is observed for almost two
orders of magnitude and a fit yields the experimental value
of τs [refer to Eq. (1)]. Such exponential decay is expected
to persist at larger disorder amplitudes, except if one drives
the system to the very strong scattering regime (see, e.g.,
Ref. [38]). However, no significant departure from an
exponential decay was observed in our experiment and
all the recorded decays could be fitted by an exponential
function.
General results.—Figure 2(b) shows the measured val-

ues of the elastic scattering time τs for both the attractive
and repulsive laser speckle disorder cases. The large set
of disorder amplitude and initial momenta allows us to
observe variations of τs from 40 μs to 100 ms. These
observations are compared to 2D numerical calculations
(solid lines) [32], with a remarkable agreement over almost
the whole data range, confirming the quasi-2D character of

our configuration. Deviations are nevertheless observed in
a small zone (very low momenta and disorder amplitudes,
upper left part on the graphs) and may be attributed to
technical difficulties to precisely measure τs in this regime
due to the finite momentum resolution Δkres.
The Born prediction (2) is also shown in Fig. 2(b)

(dashed lines) [39]. Note that τBorns scales with the rms value
jVRj as 1=jVRj2 [32], but does not depend on the specific
form of the disorder amplitude distribution PðVÞ. As a
consequence, the prediction is strictly identical for both
attractive and repulsive speckles, since they possess the
same frequency distribution C̃ðkdisÞ. In general, τBorns
shows a very good agreement with the data at low
scattering strength, i.e., weak jVRj and large ki [upper
right part on Fig. 2(b)], as expected for this first order
perturbative approach. However significant deviations
appear at the lowest disorder amplitude (jVRj=h ¼ 39 Hz,
black dots) when considering the low initial momentum
range ki ≲ σ−1. As the disorder strength jVRj increases, the
deviations become more pronounced and extend to larger
momenta. In strong scattering conditions, the two regimes
previously identified (isotropic and forward scattering) are
then not relevant anymore. Moreover, large differences are
observed between attractive and repulsive disorders, another
signature of the complete failure of the Born approximation.
In order to visualize these deviations, we show in Fig. 3

maps of the ratio τs=τBorns as a function of the parameters ki
and jVRj. The important role of the disorder statistics is
further emphasized by numerically extending our analysis
to the case of a disorder with a Gaussian amplitude

(a) (b)

FIG. 2. Measurements of the elastic scattering time τs. (a) Measurement procedure. The momentum distributions nðk; tÞ are observed
for different propagation times t in the disorder, here shown for the parameters VR=h ¼ −104 Hz (attractive case) and ki ¼ 2.31σ−1. The
normalized height ñiðtÞ is determined from nðk; tÞ by a Gaussian fit of the radially integrated angular profile [32]. When plotted as a
function of the time t, it shows an exponential decay from which we extract τs, as illustrated for two different initial momenta
ki ¼ 0.76σ−1 and ki ¼ 2.31σ−1, still at VR=h ¼ −104 Hz. (b) Experimental (points) and numerical (solid lines) values of τs as a
function of the initial momentum ki for different values of the disorder amplitude jVRj, for attractive disorder (left panel) and repulsive
disorder (right panel). The initial momenta are shown in units of the characteristic frequency σ−1 of the disorder. Born predictions τBorns
are indicated by dashed lines. Note that the Born curves are simply shifted down for the various disorder amplitudes due to the scaling
τBorns ∝ 1=jVRj2 (see text).
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probability distribution PðVÞ ¼ ð ffiffiffiffiffiffi
2π

p
VRÞ−1e−V2=2V2

R (inset
of Fig. 3), jVRj being still the rms value. For consistency,
we have chosen the same two-point correlation function
CðΔrÞ as the one of the laser speckles considered so
far [32].
Weak to strong scattering crossover.—The maps shown

in Fig. 3 allow us to investigate the crossover between the
weak (Born regime) and strong scattering regimes.
Considering first the case of a Gaussian-distributed dis-
order (3rd row), we observe a striking coincidence between
the isodeviation lines and the dimensionless parameter
kilBorns . In particular, the kilBorns ¼ 1 line, i.e., the usual
criterion introduced earlier, corresponds to a typical
deviation of 25%. Importantly enough, this observation
confirms, in a quantitative manner, the relevance of the
criterion kilBorns ¼ 1 to differentiate the weak and strong
scattering regimes for this commonly used type of disorder.

In contrast, this criterion does not hold for laser speckle
disorders, for which the deviations to the Born prediction
are much more pronounced. For instance, the kilBorns ¼ 1
line corresponds now to deviations up to 250% for the
attractive case (1st row) and to 400% for the repulsive case
(2nd row). As a result, the crossover is significantly shifted
towards larger kilBorns values, i.e., larger momenta and lower
disorder amplitudes. More precisely, the same 25%
deviation as considered above corresponds to an effective
criterion kilBorns ¼ 40 (white dashed lines).
Beyond the 1st order Born approximation.—An exhaus-

tive description of the deviations from the Born prediction
is beyond the scope of the present Letter [40]. However, it is
possible to get some physical insight by considering two
different regimes. First, in the intermediate scattering regime
of low momenta and low disorder amplitude (upper left part
of the maps in Fig. 3), the deviations can still be understood
within perturbative theory [1,2], going to higher-order
corrections [21,41,42]. Since the next higher-order term
scales as 1=V3

R, it is negative for attractive speckle disorder,
positive for the repulsive one, but vanishes for Gaussian
disorder due to the symmetry of the probability distribution.
This explains the important difference between the three
types of disorder in this parameter range.
When going to the very strong scattering regime (lower

left part of the maps), the perturbative approach completely
breaks down. To interpret the data, it is then fruitful to
invoke the general concept of spectral functions Aki

ðEÞ,
which give the energy probability distribution of the initial
state jkii once the disorder is suddenly switched on. Their
width is indeed inversely proportional to the measured
scattering time τs [43]. In the strong disorder limit, the
spectral functions are known to converge towards the
disorder amplitude distribution PðVÞ [38,44,45]. As a
result τs essentially scales as 1=jVRj in this limit, yielding
values well above the Born prediction (scaling as 1=jVRj2,
see above). That general trend explains the large positive
deviations observed in Fig. 3. In this regime, the specific
shape of the spectral functions associated to each type of
disorder leads however to discrepancies for the measured
scattering times [38,44,45]. In particular the spectral
functions for the repulsive speckle disorder exhibit a
narrow peak at low energy [46], which is responsible for
the striking increase of the scattering time (almost 2 orders
of magnitude from the Born prediction). In order to support
this analysis, we have verified the very good agreement
between the present measurements and the width of the
spectral functions recently measured for laser speckle
disorders in Ref. [45].
Conclusion.—Combining direct experimental measure-

ments, numerical simulations, and comparison with ab ini-
tio Born calculations, we have provided an extensive
analysis of the elastic scattering time τs for ultracold atoms
in disordered potential. Using the large accessible range of
parameters, we have demonstrated the strong influence of

FIG. 3. Deviations from the Born predictions for different
disorder amplitude distributions. 2D representation (logarithmic
color scale) of the ratio τs=τBorns as a function of jVRj and ki for
attractive (1st row) and repulsive (2nd row) disordered potentials.
Both experimental (left column) and numerical (right column)
data are shown. 3rd row: same representation for a Gaussian-
distributed disorder (numerical study). The amplitude probability
distributions PðVÞ for the three types of disorders are plotted in
the inset.
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the disorder statistics on the relevance of the commonly
accepted kls ∼ 1 criterion to identify the crossover from the
weak to strong scattering regime: while it is relevant for
Gaussian disorder, large deviations are reported for laser
speckle disorder.
Our results open various prospects. On the theory side, a

natural follow-up would be to go beyond the Born approxi-
mation and compare our data to higher order perturbative
treatments [21,30,41,42], self-consistent Born approxima-
tion [22,24,47], the recently developed Schwinger-Ward-
Dyson theory [48], or semiclassical approaches [38,44]. On
the experimental side, the precise knowledge of the elastic
scattering time for laser speckle reported here is of particular
importance in view, for instance, to investigate Anderson
localization [49,50]. Thiswork then paves theway for further
experimental investigation in strong connection with micro-
scopic theories, either using the spectroscopic scheme
proposed in Ref. [45], or searching for direct signatures in
momentum space [25,33,34,51–53].
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