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We experimentally study cosmological particle production in a two-dimensional Bose-Einstein
condensate, whose density excitations map to an analog cosmology. The expansion of spacetime is
realized with tunable interactions. The particle spectrum can be understood through an analogy to
quantum mechanical scattering, in which the dynamics of the spacetime metric determine the shape
of the scattering potential. Hallmark scattering phenomena such as resonant forward scattering and
Bragg reflection are connected to their cosmological counterparts, namely linearly expanding space
and bouncing universes. We compare our findings to a theoretical description that extends beyond
the acoustic approximation, which enables us to apply the model to high-momentum excitations.

Introduction–Cosmological particle production is a
striking result of time-dependent spacetimes, where the
dynamics can result in the generation of excitations of a
quantum field even from an initial vacuum state. This phe-
nomenon is relevant in cosmological models [1–3], and has
been the topic of a variety of studies in analog cosmology.
In Bose-Einstein-Condensates (BEC) [4–19], the mean-
field density distribution defines an effective spacetime
metric, while phononic density-fluctuations are analogous
to a cosmological quantum field [20]. Since the speed of
sound sets a local physical ruler, time-dependence of the
metric can be implemented by adjusting the sound speed
via the inter-atomic interaction.

In this Letter, we give a new perspective on the particle
creation process, by reformulating particle-production in
two spatial dimensions as reflection on a one-dimensional
quantum mechanical scattering potential [21]. This work
establishes an intuitive framework with which to under-
stand the otherwise convoluted and out of equilibrium
process of particle production.
Scattering analogy–As has been discussed [5, 8, 20],

phononic excitations of a quasi two-dimensional BEC
with repulsive interactions define a massless, relativistic,
scalar field ϕ, which manifest in the form of density fluc-
tuations [22]. For homogeneous density distributions, the
field is governed by a spatially flat Friedmann-Lemâıtre-
Robertson-Walker metric,

ds2 = −dt2 + a2(t)
(
dr2 + r2dφ2

)
, (1)

in polar coordinates r and φ. The scale factor a(t) relates
to the speed of sound cs(t) in the condensate as a(t) =
1/cs(t), where cs is given by the linear low momentum

limit of the Bogoliubov dispersion relation. The field ϕ
can be expanded in time-dependent mode functions vk(t)
[22], and the time evolution of each vk is described by

v̈k + 2
ȧ

a
v̇k +

k2

a2
vk = 0, (2)

which is a Klein-Gordon type equation with an extra
Hubble-friction term in form of a first derivative [3, 23].
In a static spacetime (ȧ = 0), this equation is solved
by wave solutions with positive and negative frequencies,
and occupation numbers are constant and well defined.
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FIG. 1. Particle production and its scattering analog. (a) A
quantum field on a time-dependent spacetime develops exci-
tations, a process known as cosmological particle production.
In a 2D Bose gas of fixed size the expansion is realized by
changing the scattering length. Field excitations manifest in
increased density fluctuations, as visible in the shown density
contrasts. (b) Predicting the particle spectrum is equivalent
to solving a scattering problem in one dimension, where the
time dependence of the scale factor a(t) sets the potential
V (η) in conformal time η. Non-vanishing reflected amplitudes
bk correspond to the production of particles in a momentum
mode k.

ar
X

iv
:2

41
2.

18
88

9v
1 

 [
co

nd
-m

at
.q

ua
nt

-g
as

] 
 2

5 
D

ec
 2

02
4



2

Dynamics of a(t) linking two static regions, however, give
rise to a Hubble-friction term, breaking time-reversal
symmetry and energy conservation. This can result in
the generation of particle pair excitations of the field. A
field without excitations initially, i.e. in the vacuum state,
is transformed into a two-mode squeezed state after a
change of the scale factor.
The Hubble-friction term can be absorbed by per-

forming a coordinate transformation to conformal time
dη = 1

a(t)dt = cs(t)dt and considering the re-scaled mode-

functions ψk(η) =
√
a(η)vk(η). With these transforma-

tions Eq. (2) takes the form of a one-dimensional (non-
relativistic) Schrödinger type equation in conformal time(

− d2

dη2
+ V (η)

)
ψk(η) = k2ψk(η), (3)

with the (scattering) potential

V (η) =
1

4
ȧ2(t(η)) +

1

2
ä(t(η)) a(t(η)), (4)

where the dots denote the derivative with respect to labo-
ratory time. Within this description, the time dependent
scale factor a(t(η)) translates into a scattering potential,
and the particle production is connected to the momen-
tum dependent scattering amplitudes (details in [21]).
Figure 1 shows a prototypical example of the analogy,

using a linearly expanding spacetime (a). In regions I
and III (where the scale factor is constant), the potential
vanishes and the solutions take the form of waves (b). In
region II, however, the dynamics of the scale factor a(t) =
amin(1 +H0t) result in a non-zero potential, in this case
a box potential with height H2

0/4 and additional peaks
in the form of delta distributions from the abrupt start
and end of the ramp. An incoming wave from the right
(ake

−ikη) is scattered by the potential barrier, resulting
in a transmitted (cke

−ikη) and a reflected (bke
ikη) part.

The transmitted wave corresponds to the initial vacuum
state before the expansion in region I, and the reflected
wave corresponds to negative frequency waves in region
III. This reflection on the potential barrier corresponds to
particle production, which appears as enhanced density
fluctuations.
In region III incoming (positive frequency) and re-

flected (negative frequency) waves overlap, ψk(η) =
ake

−ikη + bke
ikη. This can be related to the experi-

mentally accessible density-fluctuation power spectrum
Sk(η) = |ψk(η)|2/

(
2|ck|2

)
, with |ck|2 = |ak|2 − |bk|2. Be-

cause the spacetime is static in region III, the interference
of reflected and incoming waves changing in η (Fig. 2d))
translates into an oscillation of the power spectrum in the
lab frame,

Sk = 1/2 +Nk +∆Nk cos(2ωkth + ϑk), (5)

with th the time in region III. Here, Nk = |bk|2/|ck|2 is
the occupation number of the mode, which corresponds
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FIG. 2. Systematic study of scattering states. a) Density
fluctuation power spectra Sk calculated from a rescaled density
contrast at different times th after a linear expansion in the
scale factor over 3ms. b) Observation of oscillating density
fluctuations as expected from interference of the incoming
and reflected waves (Sakharov oscillations). Solid lines are
cosine fits. c) The extracted amplitude vanishes at a specific
k, accompanied by a π phase shift. Orange lines are a guide
to the eye. d) Scattering potential (orange) and corresponding
scattering states |ψk|2 (gray) for the three indicated momenta.
The resonant k shows no reflection, analogous to the Ramsauer-
Townsend effect in electron scattering. Errors are 1σ standard
errors of the mean (a,b) or from the fit (c).

to the produced particles. ∆Nk = |akbk|/|ck|2 is the
standing wave contribution of the scattering state, oscil-
lating in time with twice their eigenfrequency 2ωk = 2csk,
and ϑk is the phase of this standing wave at the bound-
ary between regions II and III (th = 0). An incoherent,
e.g. thermal initial state can be captured by modifying
the spectrum to Sk → (1 + 2N in

k )Sk, where N
in
k is is the

initial occupation in region I [20, 22]. This captures stim-
ulated particle production from initially occupied modes,
and impacts all terms of Sk, such that the oscillation
amplitudes measured in the experiment, Ak, differ from
∆Nk by this k-dependent factor.

Implementation–The quantum field simulator is a BEC
consisting of around 40, 000 atoms of 39K, tightly con-
fined in the vertical direction using an optical lattice
with ωz = 2π × 1.5 kHz, resulting in an effectively two-
dimensional system. Radial confinement is realized with
a Digital-Micromirror Device for a configurable trap ge-
ometry. Because we consider spatially flat spacetimes,
we use homogeneous density distributions in a circular
box trap. Time dependence of the scale factor is imple-
mented by globally modifying the speed of sound with
the scattering length as ∝ c2s [19], using a magnetic Fes-
hbach resonance at 561G [24]. Excitations forming at
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FIG. 3. Comparison of theory and experiment in and beyond
the acoustic approximation. Extracted amplitudes (inset)
and phases after linear expansion by a factor of

√
8 over

∆t = 1.5ms (blue) and ∆t = 3.0ms (orange). Acoustic
theory predictions (dotted) fit well in the regime k < ξ−1 ∼
0.94µm−1, while a full Bogoliubov treatment (solid) gives
quantitative agreement for all measured length scales. All
errors are 1σ standard errors from the fit of the oscillations.

the walls of the box potential are minimized by adjusting
the potential height during the ramp. Two-dimensional
density distributions are read out via high resolution ab-
sorption imaging at high magnetic fields [25]. In order
to extract the spectrum, two-point correlations of the
density contrast are calculated and averaged over ∼ 50
shots, after discarding those that deviate more than 10%
from the mean atom number to ensure comparable sound
speeds. From these density-contrast correlations, the
density fluctuation power spectrum is calculated via a
Hankel-Transform, a transformation to momentum space
that respects the radial symmetry of the correlations. To
account for k-dependent imaging sensitivity, a modulation
transfer function is determined and corrected for in the
final spectrum [26]. We measure the speed of sound cs
independently via wave packet propagation.

Linear Expansion–Figure 2 shows results for a linear
expansion scenario. This is realized by a ramp in scat-
tering length from 400 aB to 50 aB of the form as ∝ 1/t2,
which increases the scale factor a linearly by a factor

√
8.

The spectrum is measured for different hold times th in
region III (Fig.2a). The oscillations described by Eq. 5
become apparent by plotting the value of the spectrum
at a specific momentum k as a function of time (Fig. 2b).
We use cosine fits to extract oscillation amplitude Ak and
initial phase ϑk, plotted in Fig. 2c.

A characteristic feature of this scenario is a minimum
in oscillation amplitude at k = 0.7µm−1, accompanied

by a rapid evolution in the extracted phase and large
uncertainties; the otherwise linear evolution of the phase
is shifted by π between the left and right of the feature.
Exemplary oscillations shown in Figure 2b demonstrate
this feature: k = 0.55µm−1 and k = 0.8µm−1 show
a difference in initial phase of roughly π. This can be
understood in the scattering framework, where the hold
times in the lab frame are equivalent to measuring var-
ious points along the standing wave to the right of the
potential as shown in Figure 2d. The box potential has a
height of 1

4 ȧ
2(η) = 0.01µm−2, indicating that momenta

k < 0.1µm−1 would be classically reflected. Quantum
mechanically, higher momenta will still be reflected on the
potential, which means their scattering states will have a
standing wave contribution in region III. The exception
are states with wavelengths that are resonant with the
potential width ∆η. Momenta k ≈ jπ/∆η, where j is an
integer, are not reflected but resonantly forward scattered
instead. They thus appear as a minimum in the oscillation
amplitude with ill-defined phase and correspond to a zero-
crossing of the interference term. Momenta left and right
of the resonance show opposite signs in the interference
term, and therefore result in a shift of the phase over the
resonance. This is analogous to the Ramsauer-Townsend
effect in electron scattering, where the scattering ampli-
tude is drastically reduced as a function of momentum
[27, 28].

The scattering picture suggests that these resonances
reoccur for higher multiples of j and should shift with
the width of the scattering barrier ∆η. Figure 3 shows a
comparison between a 3ms (orange) and a 1.5ms (blue)
ramp, which result in scattering barriers that differ by
a factor two in width. The two scenarios can be cleanly
differentiated in their phases ϑk. In the phase ϑk of
the previously discussed ramp we observe rapid phase
evolution (i.e. resonant modes) at k ∼ 1.2µm−1 and
k ∼ 1.6µm−1, in addition to the first resonance at k ∼
0.7µm−1. Each of these resonances is accompanied by
diminished oscillation amplitudes. For the faster ramp,
the resulting potential barrier is half as wide, and we
therefore expect every second resonance of the slow ramp.
Indeed, we observe the first resonance at k ∼ 1.2µm−1.
The precise position of the resonance is also influenced
by the potential height, but this effect is too small to be
resolvable. Modes with momenta k < 0.2µm−1 would be
tunneling modes that correspond to the decaying modes in
cosmology [3, 29], but they are below the experimentally
accessible range.

The theory prediction for the acoustic approximation is
shown as the dotted line in Fig. 3. While the experimen-
tal results agree with this prediction below the inverse
healing length ξ−1 =

√
2mcs/ℏ (dashed line), for larger

momenta the extracted phase deviates, because the disper-
sion significantly deviates from the linear approximation.
This is a common challenge in analog cosmology, and has
to be handled for each experimental platform individually
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FIG. 4. Bragg scattering in a periodically contracting and expanding spacetime. a) A harmonically modulated scale factor
results in a periodic potential (inset) dominated by a single Fourier component, leading to only one Bragg condition. Thus,
a single peak at π/∆η arises, accompanied by a slope in the phase (due to low amplitudes, phases at high momenta can not
be reliably extracted, gray-shaded). b) Realizing a series of sharp peaks in the potential landscape (inset) leads to higher
Fourier components, and thus multiple Bragg conditions. The experiments confirm the expected particle production at the
corresponding length scales. In all graphs solid lines show Bogoliubov theory predictions and the corresponding ξ−1 is indicated
with dashed lines. All errors are 1σ standard errors from the fit of the oscillations.

[30–32]. Similarly, modified dispersion relations have also
been discussed in the context of inflationary models for
cosmology [33].

We include the full Bogoliubov dispersion relation,

ωk = csk
√

1 + 1
2k

2ξ2 [34], leading to a k-dependent met-

ric and in turn potential [10, 21, 22]. Because the k-
dependence changes during expansion, the symmetry of
the box potential is broken, and the resonance condition
is weakened. As a result, the resonances do not have zero
amplitude (see inset) and the phase feature is broadened,
as can be seen by comparing the acoustic prediction to the
full Bogoliubov description (solid line). Because modes
are forward scattered if they have multiples of π-phase
evolution in the potential, the resonance positions shift to
lower momenta as the dispersion relation deviates from
the linear approximation.

In order to account for deviations in the precise shape
of the experimental ramp, which lead to an effective dif-
ference in conformal time during the dynamics, we adjust
both the linear and Bogoliubov models to include ramps
that are 10% shorter than programmed, and a final speed
of sound ∼ 10% lower than measured. All observed am-
plitudes Ak are a factor two lower than the theoretical
predictions, which have been scaled accordingly through-
out the manuscript.

Periodic spacetime–If the spacetime is subject to pe-
riodic expansions and contractions, the corresponding
potential will also be periodic. Periodic potentials will

result in a band structure with band gaps, where waves
of specific energy and momentum can not propagate and
therefore will be strongly reflected, known as the Bragg
condition [35].
The simplest periodic cosmology is a smooth transi-

tion into an oscillating scale factor, a(t) = ai+amin

2 +
ai−amin

2 cos(ωt), which results in a sinusoidal scattering
potential in the limit of small amplitude (compare equa-
tion 4). To implement this cosmology in the experiment,
we periodically modulate the scattering length with the
corresponding form starting from 200 aB to a maximum
value of 400 aB with frequency ω/(2π) = 500Hz.

Figure 4 a) shows results for 1, 2, and 4 drive periods.
We find large amplitudes in one resonant momentum mode
kres ∼ 0.65µm−1. This corresponds to high reflection at
kres = ω/(2cs), the edge of the first Brillouin zone, where
the first band gap is expected. The amplitudes grow with
the number of oscillation periods, while the corresponding
phases show a steepening in the slope around the peak.
The growth and sharpening of the peak can be understood
as the onset of band structure. As the periodic nature
of the potential becomes sharply defined the reflection
increases. Because this potential has no substantial con-
tributions of higher harmonics, higher band gaps beyond
the first are small and we find vanishing amplitudes.

In contrast, an anharmonic potential will result in band
gaps at higher harmonics of the periodicity of the po-
tential (Fig. 4b). We produce such a potential with a
cusp-like modulation of the scale factor. A single cusp
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is realised by a shape of a(t) = ai√
2
[1− 1/2| cos(ωt)|]−1/2

over half a period. In between the cusps the scale factor
is held constant at ai for ∆t = 2ms, which sets the period-
icity of the potential. In the experiment the cusps reach
from 200 aB to 400 aB , and ω/(2π) = 800Hz. The sudden
switch in the slope results in peaks in the potential (see
inset Fig. 4b). In contrast to the harmonic potential, a
single peak produces excitations over a broad range of
momenta. For more than one period we find a series of
resonances equally spaced in energy, each corresponding
to the higher band gaps, and in good agreement with the
prediction including the full Bogoliubov dispersion (solid
line, see [22]). Each peak is accompanied by a slope in
the phase and a smooth phase evolution between neigh-
bouring peaks, resembling a smoothed out version of the
theoretical prediction. While imperfections in the experi-
mentally implemented cusp shape are again corrected for
by a 10% adjustment in the speed of sound and a lag in
the magnetic field control by 230µs [22], these corrections
are not necessary for the harmonic potential.
Conclusion–We experimentally demonstrate the anal-

ogy between a scalar quantum field in time-dependent
spacetimes and quantum mechanical scattering in a one-
dimensional stationary Schrödinger equation. By includ-
ing Bogoliubov corrections in predictions obtained via
scattering theory, we find good agreement to experimental
data obtained from quantum field simulation in a BEC.
In addition to the discussed analogy, this establishes a
framework to describe quasi-particle production in cold
quantum gases. For example, populating a single narrow
band of momenta by sinusoidally modulating the scale
factor instead of the scattering length could be employed
to engineer far from equilibrium quantum states.
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SUPPLEMENTARY

Extraction of the sound speed

The essential scale in the experiment is set by the
sound speed. We use values which are obtained experi-
mentally via measuring the propagation of localized den-
sity perturbations. For this, we prepare a density wave
packet by creating a hole in the BEC with repulsive laser
light. When this light is switched off a circular wave front
moves outwards. By taking images after different times
we track the position of the wave packet, and then get
the speed of sound by fitting a slope to these positions.
The speed of sound sets the scale factor a, the chemi-
cal potential µ and together with the known interaction
strength the mean background density n̄0. The values
relevant for the scenarios discussed in the main text are
cs(50a0) = (1.07± 0.04)µm/ms for the linear expansion,
cs(200a0) = (2.01±0.03)µm/ms for the anharmonic cusp-
scalefactor and cs(200a0) = (1.87± 0.06)µm/ms for the
harmonically modulated scale-factor. As stated in the
main text, deviations between the experimentally realized
ramps and the theoretical shapes are accounted for by
adjusting the speed of sound.

Extraction of spectra

Starting from the experimentally extracted density dis-
tributions n(x, y), we first exclude runs where the total
atom number differs more than 10% from the mean value.
A renormalized density contrast is calculated via

δc(x, y) =

(
N̄

N
n(x, y)− n̄(x, y)

)
n̄1/2(x, y)

n̄
3/2
0

, (6)

where n̄(x, y) is the mean density distribution over all
shots and n̄0 is its value in the center of the condensate
averaged over a 20 pixel diameter. The factor N̄

N scales
the atom number N of the single shot to the mean atom
number N̄ to avoid introducing correlations on all length
scales.

From there, the ⟨δc(x, y)δc(x+∆x, y+∆y)⟩ correlation
function is extracted from a central area within 75% of
the radius of the BEC. This correlator is a function only

of the Euclidean distance L =
√

∆2
x +∆2

y, a reduction

that is justified by the isotropy and homogeneity of the
simulated space-time.

The bare spectrum is calculated via a Hankel-
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Transformation to momentum space,

S̃k =
2πm2c3s
ℏkλ

(
1 +

1

2
k2ξ2

)3/2 ∫
dLLJ0(kL)⟨δcδc⟩(L),

(7)
where J0 are Bessel functions of the first kind and order 0,
m is the mass of 39K, cs is the extracted speed of sound
in region III and λ =

√
8πωzℏ3/masc is the interaction

parameter depending on the transverse trap frequency ωz

and the scattering length asc. The term in brackets stems
from the Bogolibov dispersion relation. In the acoustic
limit (k → 0) the term reduces to one and the reported
form in [19] is recovered. The correlation function is
only taken up to distances L within 70% of the maximal
distance 1.5R, where R is the radius of the BEC, because
for the largest distances the available statistics is much
weaker. This is a limitation analog to the cosmic variance
problem [36].

The experimental imaging system introduces a k-
dependent sensitivity, due to a variety of optical abber-
ations. This is corrected for by measuring the modula-
tion transfer function of the imaging system MTF (k),
that captures the functional form of the k-dependence
[16, 26]. To extract this, we drive the magnetic field
multiple times close to the Feshbach resonance. As a con-
sequence, most of the atoms are lost from the trap and
the remaining ones form a low density gas. When taking
images of this cloud, the individual atoms can be seen
as point sources. We calculate a simple density contrast
δn(x, y) = n(x, y)/n̄(x, y)− 1. Via Fourier transform to
δn(kx, ky) we get: MTF (kx, ky) = |δn(kx, ky)|2, the two-
dimensional modulation transfer function. Consequently,
we subtract an offset, normalize the maximum to 1 and
take a radial average to reduce the result to one dimension.
Finally, the result is smoothed, interpolated to the k used
in the Hankel transform and applied to the spectrum :
Sk = S̃k/MTF (k).

To extract amplitudes and phases from the Sakharov
oscillations, we fit Sk(t) with Ak cos(2ωkt+ ϑk) + Sk,0,
where the fit’s starting value for ωk is set to the Bogoli-
ubov frequency calculated from the measured cs, and is
restricted to be compatible with the standard error of
the speed of sound. The offsets Sk,0 have start value
(maxt(Sk(t)) + mint(Sk(t))/2). The amplitudes Ak have
start value (maxt(Sk(t)) − mint(Sk(t))/2) and are re-
stricted to positive values to avoid ambiguity in the phase.
Because for the linear expansions beginning and end are
at a different scattering lengths, residual dynamics of the
background density are observed even with adjusted trap-
ping potential. This leads to an additional slow oscillatory
modulation of the extracted spectra for all k. For the
short hold times considered, this drift is well captured by
a linear decrease of the spectrum in time and compensated
for before the sinusoidal fit.

Derivation of the theory curves

General framework

We study the dynamics of a free massless scalar field
ϕ(t, r, φ) in an expanding (or contracting) flat (2 + 1)-
dimensional spacetime determined by the FLRW metric
or, equivalently in our analogy, the acoustic metric with
vanishing background superfluid velocity, given in equa-
tion (1). This field ϕ is obtained by splitting the funda-
mental field Φ into a background field ϕ0 and two real
scalar fields for the fluctuations: Φ = ϕ0 + (ϕr + iϕ) /

√
2.

In the acoustic limit, ϕ (which makes up the complex
part of the fluctuation field) is connected to the real part
ϕr via time derivative: ϕr ∼ ∂tϕ. Because the gauge is
chosen such that the background field is real, the real part
is to first order responsible for the density fluctuations
discussed before, such that: δc ∼ ∂tϕ. The corresponding
effective action for ϕ reads

Γ2[ϕ] = −ℏ2

2

∫
dtdr dφ

√
g gµν∂µϕ∂νϕ, (8)

with the metric gµν = diag
(
−1, a2(t), a2(t)r2

)
, where

a(t) = 1/cs(t) and
√
g ≡

√
−det(gµν). More details on

this particular choice of fields can be found in [20].
It is convenient to expand the field ϕ in terms of the

time-dependent mode functions vk(t),

ϕ(t, r) =

∫
d2k

2π

[
âkvk(t)e

−ikr + â†kv
∗
k(t)e

ikr
]
, (9)

where â
(†)
k are the (creation) annihilation operators in

region I that follow the bosonic canonical commutation
relations. The equation of motion for the scalar field ϕ is
obtained from a variation of the action 8 with respect to
the scalar field, leading the Klein-Gordon equation, and
allowing us to write the mode equation given in (2).

As described in the main text and extensively discussed
in [21], the components of the spectrum can be computed
from the amplitudes of the analogue scattering problem.
They follow from the matching conditions for the mode
function ψk =

√
avk at the beginning ηi and end ηf of

region II which are given by

ψk(ηi) = cke
−ikηi ,

ψ′
k(ηi) = −ikcke

−ikηi + 1
2 ȧ(ηi)cke

−ikηi ,
(10)

and

ψk(ηf) = ake
−ikηf + bke

ikηf ,

ψ′
k(ηf) = −ik[ake

−ikηf − bke
ikηf ]

+ 1
2 ȧ(ηf)[ake

−ikηf + bke
ikηf ],

(11)

with the abrupt transitions from static to dynamic space-
time being taken into account by the terms proportional
to the expansion (or contraction) rate ȧ(ηi,f).
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FIG. 5. Initial spectrum of the harmonically modulated scale-
factor scenario. The solid curve represents a thermal fit to
the data points lying in the domain 0.2µm−1 < k < 2.5µm−1.
The lower panel shows the fit residuals centered around unity.

Initial state

We assume a thermal initial state, ⟨â†kâk′⟩ = (1/2 +

N in
k )(2π)δ(k − k′)/k, where N in

k = 1/
[
exp

(
ℏωk

kBT

)
− 1

]
is the Bose-Einstein distribution and ωk is set by the
Bogoliubov dispersion relation.

The temperature T is determined by fitting a thermal
distribution to experimentally extracted spectra of the
state directly before dynamics, either at 400a0 before the
linear expansion or 200a0 before the periodic dynamics.
The independently extracted speed of sound is used, and
the temperature is the only free fit parameter. An example
of this procedure is shown in Fig 5. As described in further
detail in [20], the amplitude of the thermally stimulated
particle spectrum is then

Ak = (1 + 2N in
k )|akbk|/|ck|2, (12)

whereas the phase remains insensitive to the initial popu-
lation

ϑk = arg(−a∗kbke2ik∆η). (13)

Linear Expansion

The scattering landscape analogue to the linear expan-
sion, a(t) = amin(1 +H0t) , can be described by flat box
potential of height H2

0/4 with H0 ≈ 0.4µm−1 and width
∆η := ηf − ηi ≈ 5.2µm and admits an analytic solution

that is given by

ak
ck

=eik(ηf−ηi)
{
cos(µk∆η)−

k

µk
sin(µk∆η)

}
,

bk
ck

=
i

2

H0

µk
e−ik(ηf+ηi) sin(µk∆η)

(14)

for subhorizon modes (k > H0/2) with µk =
√
k2 −H2

0/4.
Further details can be found in [21].

Harmonically modulated scale-factor

The harmonically modulated scale-factor of the shape
a(t)/amin = 1

2 [γ + 1 + (γ − 1) cos(νt)] corresponds to the
non-trivial potential

V (η) =
ν2

4
(γ − 1)γ

×
1− γ +

[
γ − 1− cos

(√
γ ν η

)]
sec4(

√
γ ν η/2)[

1 + γ tan2
(√
γ ν η/2

)]2 ,

(15)
where the scenario discussed in the main text can be cap-
tured by setting γ =

√
2 and ν ≈ 5.9µm−1. In that case,

the analogue Schrödinger equation is solved numerically
in the dynamical region II and matched to plane-waves
according to eqs. (10) and (11) with ȧ(ηi,f) = 0.

Bouncing cusps

For the cusp-modulation, the procedure has to be ad-
justed to the presence of the fast cusps in the scale factor
and periods of static spacetime in between. Here it is con-
venient to adopt the transfer-matrix-method as described
in [21]. Let the transfer of the wavefunction along a single
cusp be described by(

acuspk e−ik(∆ηcusp+ηi)

bcuspk eik(∆ηcusp−ηi)

)
= Tcusp

(
ck e

−ikηi

0

)
(16)

with

Tcusp =

(
(acuspk /ck) e

−ik∆ηcusp (bcuspk /ck)
∗ e−ik∆ηcusp

(bcuspk /ck) e
ik∆ηcusp (acuspk /ck)

∗ eik∆ηcusp

)
,

(17)
where ∆ηcusp is the conformal time duration of the cusp.
Here, the 0 in the initial state indicates no contribu-
tion with negative frequency, whereas the off-diagonal
terms of Tcusp mix the positive and negative contribu-
tions. The coefficients acuspk and bcuspk are obtained via
the matching conditions (11) evaluated at the end of the
cusp where η = ηi +∆ηcusp and are equivalent to ak and
bk, if region II consists of a single cusp. To calculate
their values, the wavefunction ψk to be matched is in-
ferred from a numerical integration of the Schrödinger
equation within a single cusp. First, the integration
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is carried out until η = ηi + ∆ηcusp/2 where a delta-
peak is situated. At this location, we analytically take
into account that, according to similar reasoning enter-
ing Eqs. (10) and (11), ψ′

k changes discontinuously via
ψ′
k → ψ′

k + Ωψk(∆ηcusp/2) where Ω = 1
4 ωai/

√
2 is the

sum of the contraction speed into the cusp and expansion
speed away from the cusp. Then, the numerical integra-
tion is continued to η = ηi +∆ηcusp where the transfer
matrix elements are computed according to Eq. (11) with
ȧ(ηi + ∆ηcusp) = 0. The scenario in the main text cor-
responds to ai = 1/cs(200a0) and ω = 2π × 800Hz such
that Ω ≈ 0.4µm−1.

If region II contains multiple cusps, a holding period is
included in between. The corresponding transfer matrix
is Thold(∆ηhold) = diag(exp{−ik∆ηhold}, exp{ik∆ηhold})
where ∆ηhold = cs(200a0)∆thold is the sound-horizon
during the period of constant scale factor and ∆thold =
2ms. With the given transfer matrices, the scenarios
shown in Fig. 4 b) can be captured by

TN−Cusps = Thold(−∆ηlag)× Thold

(
−∆ηhold

2

)
× (Tcycle)

N × Thold

(
−∆ηhold

2

) (18)

where a single cycle can be described by
Tcycle = Thold(∆ηhold/2) × Tcusp × Thold(∆ηhold/2)
and Thold(−∆ηlag) accounts for a lag of the magnetic
field with ∆tlag = 0.23ms.

Bogoliubov corrections in the scattering framework

The dispersion relation of Bogoliubov excitations be-
comes linear only for low wavelengths. In particular the
phase velocity

cph =
ωk

k
= cs

√
1 + (kξ)2/2 (19)

approaches cs for small momenta, k ≪ ξ−1, where ξ is the
healing length, the inverse scale at which the free momen-
tum term becomes relevant over the chemical potential
µ = mc2s. However, even in the dispersive regime one can
identify a momentum dependent cosmological scale-factor

ak(t) ≡
1

cph(t)
=

a(t)√
1 + 1

2k
2ξ2(t)

, (20)

where a(t) is the scale factor as defined in the main text
and recovered for small momenta. With this the mode
equation can again be written in the form

v̈k(t) + 2
ȧk(t)

ak(t)
v̇k(t) +

k2

a2k(t)
vk(t) = 0. (21)

Employing the rescaling

vk(t) = a−1/2(t)
√

1 + 1
2k

2ξ2(t)ψk(t), (22)

one finds the mode equation

−ψ′′
k (η) + Vk(η)ψk(η) = 0 (23)

in conformal time dη = 1
a(t)dt with the momentum de-

pendent scattering potential

Vk(η) =
ξ−4(η)− 5k2ξ−2(η) + 4k4

4(ξ−2(η) + k2/2)2
ȧ2(η) +

1

2

ξ−2(η)− k2/2

ξ−2(η) + k2/2
ä(η)a(η)− 1

2
k4ξ2(η). (24)

This type of dispersive modification of the analogue cos-
mological spacetime below the healing length ξ which
takes the role of an analogue Planck-length has been
studied for example in [10].

For momenta much lower than ξ−1 the potential in
Eq.(4) is recovered. For higher k, the potential form
differs, as the ȧ term scales different from the ä term.
Additionally a third term arises, that accounts for the
dispersion and does not vanish in case of a static space-
time. The general framework described above can be still
employed in the dispersive case where the solutions in the
static regions I and III are now plane-waves that obey the
Bogoliubov dispersion relation. However, the matching
conditions in Eqs. (10) and (11) have to be generalized.
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[27] C. Ramsauer, Über den Wirkungsquerschnitt der Gas-
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