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Direct Observation of Tunneling and Nonlinear Self-Trapping in a single Bosonic

Josephson Junction
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We report on the first realization of a single bosonic Josephson junction, implemented by two
weakly linked Bose-Einstein condensates in a double-well potential. In order to fully investigate
the nonlinear tunneling dynamics we measure the density distribution in situ and deduce the evo-
lution of the relative phase between the two condensates from interference fringes. Our results
verify the predicted nonlinear generalization of tunneling oscillations in superconducting and super-
fluid Josephson junctions. Additionally we confirm a novel nonlinear effect known as macroscopic
quantum self-trapping, which leads to the inhibition of large amplitude tunneling oscillations.

PACS numbers: 03.75.Lm,05.45.-a

Tunneling through a barrier is a paradigm of quan-
tum mechanics and usually takes place on a nanoscopic
scale. A well known phenomenon based on tunneling is
the Josephson effect [1] between two macroscopic phase
coherent wave functions. This effect has been observed
in different systems such as two superconductors sepa-
rated by a thin insulator [2] and two reservoirs of super-
fluid Helium connected by nanoscopic apertures [3, 4].
In this letter we report on the first successful implemen-
tation of a bosonic Josephson junction consisting of two
weakly coupled Bose-Einstein condensates in a macro-
scopic double-well potential.

This new experimental system makes it possible for
the first time to directly observe the density distribu-
tion of the tunneling particles in situ. Furthermore we
measure the evolution of the relative quantum mechan-
ical phase between both condensates by means of inter-
ference [5]. In contrast to all hitherto realized Joseph-
son junctions in superconductors and superfluids, in our
experiment the interaction between the tunneling par-
ticles plays a crucial role. This nonlinearity gives rise
to new dynamical regimes. Anharmonic Josephson os-
cillations are predicted [6, 7, 8], if the initial popula-
tion imbalance of the two wells is below a critical value.
The dynamics changes drastically for initial population
differences above the threshold of macroscopic quantum
self-trapping [9, 10, 11] where large amplitude Josephson
oscillations are inhibited.

The experimentally observed time evolution of the
atomic density distribution in a symmetric bosonic
Josephson junction is shown in Fig. 1 for two different ini-
tial population imbalances (depicted in the top graphs).
In Fig. 1(a) the initial population difference between the
two wells is chosen to be well below the self-trapping
threshold. Clearly nonlinear Josephson oscillations are
observed i.e. the atoms tunnel back and forth over time.
The period of the observed oscillation is 40(2)ms which
is much shorter than the tunneling period of approxi-

FIG. 1: Observation of the quantum dynamics of two weakly
linked Bose-Einstein condensates in a symmetric double-well
potential as indicated in the schematics. The time evolution
of the population of the left and right potential well is directly
visible in the absorption images (19.4 µm×10.2 µm). The dis-
tance between the two wavepackets is increased to 6.7µm for
imaging (see text). (a): Josephson oscillations are observed
when the initial population difference is chosen to be below
the critical value zC . (b): In the case of an initial population
difference greater than the critical value the population in
the potential minima is nearly stationary. This phenomenon
is known as macroscopic quantum self-trapping.

mately 500ms expected for non-interacting atoms in the
realized potential. This reveals the important role of
the atom-atom interaction in Josephson junction experi-
ments with Bose-Einstein condensates. A different man-
ifestation of the nonlinearity is shown in Fig. 1(b) ex-
hibiting macroscopic quantum self-trapping, which im-
plies that the population imbalance does not change over
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time within the experimental errors. The only difference
to the experiment shown in Fig. 1(a) is that the initial
population imbalance is above the critical value.

The experimental setup and procedure to create the
87Rb Bose-Einstein condensates is similar to that used
in our previous work [12]. A sufficiently precooled ther-
mal cloud is loaded into an optical dipole trap consisting
of two crossed, focussed laser beams and is subsequently
evaporatively cooled by lowering the light intensities.
We produce pure condensates consisting of 1150(150)
atoms and final trap frequencies of ωx = 2π × 78(1)Hz,
ωy = 2π × 66(1)Hz and ωz = 2π × 90(1)Hz, with gravity
acting in the y-direction. Subsequently we adiabatically
ramp up a periodic one-dimensional light shift potential
in x-direction to a depth of 2π × 412(20)Hz with peri-
odicity 5.2(2)µm realized by a pair of laser beams at
a wavelength of 811nm crossing at a relative angle of
9◦. The superposition of this periodic potential with the
strong harmonic confinement creates an effective double-
well potential in x-direction with a barrier height of
2π × 263(20)Hz, which splits the initial condensate into
two parts separated by 4.4(2)µm realizing a single weak
link (see schematics in Fig. 1). This is in contrast to the
experiments performed in the context of Josephson junc-
tion arrays [13, 14, 15], where the small periodicity of the
optical lattice does not allow to resolve individual wells
and thus the dynamics between neighboring sites.

The initial population difference z = (Nl − Nr)/(Nl +
Nr) between the left(l) and right(r) component is ob-
tained by loading the Bose-Einstein condensate into an
asymmetric double-well potential, which is created by a
displacement of the harmonic confinement with respect
to the periodic potential. The asymmetry can be ad-
justed by shifting the focussed laser beam which realizes
the harmonic confinement in x-direction. This is done by
means of a piezo actuated mirror mount. A relative shift
of only 350nm leads to a relative population difference
corresponding to the self trapping threshold. This de-
mands high passive stability of the mechanical setup and
makes it necessary to actively stabilize the phase of the
periodic potential. With out setup we can adjust any
initial population imbalance with a standard deviation
of ∆z = 0.06. The Josephson dynamics is initiated at
t = 0 by non-adiabatically (with respect to the tunneling
dynamics) changing the potential to a symmetric double-
well (see schematics in Fig. 2). After a variable evolution
time the potential barrier is suddenly ramped up and the
harmonic potential in x-direction is switched off. This
results in dipole oscillations of the atomic clouds around
two neighboring minima of the periodic potential. Thus
by imaging at the time of maximum separation (1.5ms)
we can observe clearly distinct wave packets with a dis-
tance of 6.7(5)µm. The atomic density is deduced from
absorption images with a spatial resolution of 2.8(2)µm.
In previously reported realizations of Bose-Einstein con-
densates in double-well potentials [16, 17] the time scale

of tunneling dynamics was in the range of thousands of
seconds. In contrast, our setup allows the realization of
nonlinear tunneling times on the order of 50ms, which
makes the direct observation of the nonlinear dynamics
in a single bosonic Josephson junction possible for the
first time.

The physics of Josephson junctions is based on the
presence of two weakly coupled macroscopic wave func-
tions separated by a thin potential barrier. Insight into
the dynamics of the system can be gained by employ-
ing a two mode approximation which characterizes the
wave function by only two parameters, the fractional rel-
ative population z = (Nl −Nr)/(Nl +Nr) and the quan-
tum phase difference φ = φl − φr between the two Bose-
Einstein condensates. In this framework the resulting
quantum dynamics in a symmetric double-well potential
is described by two coupled differential equations

ż = −
√

1 − z2 sin φ (1)

φ̇ = Λz +
z√

1 − z2
cosφ

where Λ is proportional to the ratio of the on-site in-
teraction energy and the coupling matrix element given
in [10]. These equations represent the nonlinear general-
ization of the sinusoidal Josephson oscillations occurring
in superconducting junctions. An intuitive understand-
ing of the rich dynamics of this system can be gained by
considering a descriptive mechanical analog. The equa-
tions given above describe a classical non-rigid pendulum
of tilt angle φ, angular momentum z, and a length pro-
portional to

√
1 − z2. In the following discussion we will

only consider the case of vanishing initial phase differ-
ence φ(0) = 0. If the initial population imbalance is
below the critical value [11] |z(0)| < zC (from our ex-
perimental results we deduce zC ≈ 0.5 corresponding to
Λ ≈ 15), equ. 1 describes oscillations in z and φ, and
reduces in the limit of |z(0)| ≪ zC to that of a harmoni-
cally oscillating mathematical pendulum. In the context
of Josephson junctions this behavior is known as plasma
oscillations. If the initial population imbalance is above
the critical value, implying that the difference of the two
on-site interaction energies becomes larger than the tun-
neling energy splitting, a striking novel effect occurs in
bosonic Josephson junctions. In this case the population
difference is self-locked to the initial value and the rel-
ative phase is increasing monotonically (running phase
modes [11]). In the mechanical analogue this critical im-
balance corresponds to an initial angular momentum suf-
ficiently large that the pendulum reaches the top position
and continues to rotate with a non vanishing angular mo-
mentum.

In order to fully characterize the evolution of the sys-
tem we measure not only the absolute value but also the
relative phase of the macroscopic wave functions. This
is achieved by releasing the Bose-Einstein condensates
from the double-well potential after different evolution
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FIG. 2: Detailed analysis of the time dependence of the two dynamical variables z and φ describing the system. The top
graphs depict the experimental preparation scheme implemented to realize different initial atomic distributions. The dynamics
is initiated at t = 0 by switching non-adiabatically to the symmetric double-well potential. Graph (a) shows the familiar
oscillating behavior of both the population imbalance and the relative phase in the Josephson regime. The solid lines represent
the results obtained by numerically integrating the non-polynomial Schrödinger equation, and are in excellent agreement with
our experimental findings. The shaded region shows the theoretically expected scattering of the data due to the uncertainties
of the initial parameters. The insets depict representative atomic interference patterns obtained by integrating the absorption
images along the y- and z-direction after the indicated evolution times. In Graph (b) the totally different dynamics in the
regime of macroscopic quantum self-trapping becomes obvious. The population imbalance exhibits no dynamics within the
experimental errors and reveals the expected nonzero average 〈z〉 6= 0. Clearly the phase is unbound and winds up over
time. The error bars in the phase measurements denote statistical errors arising from the uncertainty of the initial population
imbalance.

times. After time of flight the wave packets interfere
unveiling the relative phase in a direct way since the re-
sulting atomic fringes are a double slit diffraction pattern
[18].

In Fig. 2 we present the quantitative analysis of our
experimental results. The measured fractional popula-
tion imbalance and the relative phase in the regime of
Josephson oscillations (z(0) = 0.28(6) < zC) are shown
in Fig. 2(a). As expected for a symmetric double-well
potential the relative population oscillates around its
mean value 〈z〉 = 0. The relative phase of the two
Bose-Einstein condensates oscillates with a finite ampli-
tude of φ = 0.5(2)π around 〈φ〉 = 0. The self trap-
ping regime can be reached by simply increasing the
initial asymmetry of the double-well potential as indi-
cated in the schematic diagram in Fig. 2(b) realizing
z(0) = 0.62(6) > zC . In this case theory predicts that
z exhibits only small amplitude oscillations which never
cross z = 0 i.e. 〈z〉 6= 0. Additionally the relative phase φ
is unbound and is supposed to wind up in time (running-
phase mode). In Fig. 2(b) these characteristics of macro-
scopic quantum self-trapping are evident. The popula-

tion difference does not change over time within the ex-
perimental errors and the phase increases monotonically.
The initial deviation from the linear time dependence of
the phase is due to the finite response time of the piezo
actuated mirror.

The experimentally obtained results can be understood
quantitatively by going beyond the two mode model
which assumes stationary wave functions in the individ-
ual wells which is only justified for Nl + Nr ≪ 1000
atoms [9]. Therefore we numerically integrate the non-
polynomial Schrödinger equation [19] using the indepen-
dently measured trap parameters and atom numbers.
The calculations also include the fact that the piezo ac-
tuated mirror initiating the Josephson dynamics reaches
its final position only after 7ms. It is remarkable that all
experimental findings are in excellent quantitative agree-
ment with our numerical simulation without free param-
eters.

The distinction between the two dynamical regimes -
Josephson tunneling and macroscopic self-trapping - be-
comes very apparent in the phase-plane portrait of the
dynamical variables z and φ. For our experimental situa-
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FIG. 3: Quantum phase-plane portrait for the bosonic
Josephson junction. In the regime of Josephson oscillations
the experimental data are represented with filled circles and
in the self-trapping regime with open circles. The shaded
region, which indicates the Josephson regime, and the solid
lines are obtained by solving the coupled differential equ. 1
with our specific experimental parameters. The two mode
model explains the observed z(φ) dependence reasonably in
both dynamical regimes. The error bars represent the statis-
tical error and mainly result from the high sensitivity of the
relative phase on the initial population imbalance especially
for long evolution times.

tion this is shown in Fig. 3 where we compare our results
with the prediction of the simple two mode model. From
our experimental observations the critical population im-
balance can be estimated to zC = 0.50(5). In the frame-
work of the two mode model [11] this yields Λ = 15(3).
The corresponding solutions of equ. 1 are depicted with
solid lines. Clearly the basic features of the dynamics are
well captured by this approach. In the nonlinear Joseph-
son tunneling regime (z < zC) the dynamical variables
follow a closed phase plane trajectory as predicted by
our simple model. The observed phase oscillation am-
plitude of φmax ≈ 0.5π is consistent with this theory.
For z(0) > zC the running phase modes follow an open
trajectory with an unbound phase.

The successful experimental realization of weakly cou-
pled Bose-Einstein condensates adds a new tool to
quantum optics with interacting matter waves. It
opens up new avenues ranging from the generation of
squeezed atomic states [20] and entangled number states
(Schrödinger cat states) [21] to applications such as atom
interferometry [22]. Moreover the detailed investigation
of the self-trapping phenomenon could provide a test of
the validity of the mean field description in atomic gases
in the strong nonlinear regime [23].
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