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Entanglement, a key feature of quantum me-
chanics, is a resource that allows the improve-
ment of precision measurements beyond the con-
ventional bound reachable by classical means [1].
This is known as the standard quantum limit, al-
ready defining the accuracy of the best available
sensors for various quantities such as time [2] or
position [3, 4]. Many of these sensors are inter-
ferometers in which the standard quantum limit
can be overcome by feeding their two input ports
with quantum-entangled states, in particular spin
squeezed states [5, 6]. For atomic interferometers,
Bose-Einstein condensates of ultracold atoms are
considered good candidates to provide such states
involving a large number of particles [7]. In this
letter, we demonstrate their experimental realiza-
tion by splitting a condensate in a few parts us-
ing a lattice potential. Site resolved detection of
the atoms allows the measurement of the conju-
gated variables atom number difference and rela-
tive phase. The observed fluctuations imply en-
tanglement between the particles [7, 8, 9], a re-
source that would allow a precision gain of 3.8 dB
over the standard quantum limit for interferomet-
ric measurements.

Spin squeezing was one of the first quantum strategies
proposed to overcome the standard quantum limit in a
precision measurement [5, 6] that triggered many experi-
ments [10, 11, 12, 13, 14, 15, 16, 17]. It applies to mea-
surements where the final readout is done by counting the
occupancy difference between two quantum states, as in
interferometry or in spectroscopy. The name ”spin squeez-
ing” originates from the fact that the N particles used in
the measurement can be described by a fictitious spin
J = N/2. In an interferometric sequence, the spin under-
goes a series of rotations where one of the rotation angles
is the phase shift to be measured. A sufficient criterion for
the input state allowing for quantum enhanced metrology
is given by ξS < 1 where ξ2

S = 2J∆J2
z /(〈Jx〉2 + 〈Jy〉2) is

the squeezing parameter introduced in ref. [6]. The fluc-
tuations of the spin in one direction have to be reduced
below shot-noise ∆J2

z < J/2, and the spin polarization in
the orthogonal plane 〈Jx〉2 + 〈Jy〉2 has to be large enough
to maintain the sensitivity of the interferometer. A picto-
rial representation of this condition is shown in figure 1b.
The precision of such a quantum enhanced measurement
is ξS/

√
N , whereas the standard quantum limit set by

shot-noise is 1/
√
N .

In this Letter, we report on the observation of entangled
squeezed states in a Bose-Einstein condensate of 87Rb
atoms. The particles are distributed over a small number

of lattice sites (between 2 and 6) in a one dimensional
optical lattice (see figure 1a). The occupation number
per site ranges from 100 to 1100 atoms. The two modes
supporting the squeezing are two states of the external
atomic motion corresponding to the condensate mean-
field wave-functions in two adjacent lattice sites. These
modes are spatially well separated and thus represent an
ideal starting condition for a spatially split interferome-
ter. Labeling a† and b† the creation operators associated
with the two modes, the fictitious spin components can
be defined as Jx = (a†b + b†a)/2, Jy = i(a†b − b†a)/2
and Jz = (a†a− b†b)/2. The z component corresponds to
half the atom number difference between the wells. Be-
cause the mean occupation numbers in the two wells, na

and nb, are large, the expectation value of the x, y com-
ponents can be approximated by 〈Jx〉 '

√
na nb〈cosφ〉,

〈Jy〉 '
√
na nb〈sinφ〉, respectively, where φ is the phase

difference between the two macroscopic wave-functions.
Spin squeezing by means of unitary evolution requires a

non-linear component in the Hamiltonian [5]; this is pro-
vided by the repulsive interactions between the atoms of
the condensate. The corresponding suppression of atom
number fluctuations in a Bose-Einstein condensate has
been indirectly observed [18, 19, 20, 21, 22, 23]. However,
by definition of the squeezing factor ξS , its experimental
determination requires to access the local properties of
the atoms occupying the two sites of interest. By imaging
the condensate with a resolution of 1 µm (fwhm), which
is well below the lattice spacing of 5.7 µm, we fulfill this
criterion of a local measurement. The wells of the lattice
are fully resolved (see figure 1a), which allows the deter-
mination of the atom number in each lattice site by direct
integration of the atomic density as obtained by absorp-
tion imaging. Local interference measurements after a
short time of expansion of the condensate such that only
neighboring sites overlap reveal the phase between these
wells. In Figures 1c and d, we display typical data sets for
the two types of measurement. The technical details for
the precise experimental procedures and calculations used
to deduce the number squeezing factor and the phase co-
herence are given in the supplementary information. The
fluctuation measurement of the two conjugated variables,
number and phase, yields information about the quantum
state of the system and, in particular, allows the detection
of macroscopic entanglement between the particles.

Figure 2 summarizes the conjugated number - phase
measurements in different experimental situations. The
vertical axis corresponds to the number squeezing param-
eter, ξ2

N = ∆J2
z /∆J

2
z,ref which measures how much the

fluctuations of the atom number difference are suppressed
in comparison with a binomial distribution with variance

ar
X

iv
:0

81
0.

06
00

v1
  [

co
nd

-m
at

.o
th

er
] 

 3
 O

ct
 2

00
8



2

a c

b
5.7μm

−2 0 2
2 Δn

N

0

50

100

C
ou

nt
s

d

0

π

π
2

φ

π2
3

  20
  10

FIG. 1: Observing spin squeezing in a Bose-Einstein condensate confined in a double- or six-well trap. a) The
atoms are trapped in an optical lattice potential superimposed on an harmonic dipole trap. The number of occupied sites is
adjusted by changing the confinement in lattice direction. High-resolution imaging allows us to resolve each site. b) Gain in
quantum metrology is obtained for spin squeezed states exhibiting reduced fluctuations in one direction (z) and a large enough
polarization in the orthogonal plane (x, y) as depicted on the Bloch sphere. For our system, spin fluctuations in the z direction
translate to atom number difference fluctuations ∆n between two adjacent wells. The polarization of the spin in the x− y plane
is proportional to the phase coherence, 〈cosφ〉, between the wells. c) The atom number fluctuations at each site are measured
by integrating the atomic density obtained from absorption images. A typical histogram showing sub-Poissonian fluctuations
in the atom number difference is compared with the binomial distribution (red curve). The green curve corresponds to the
deduced distribution after subtracting the photon shot noise, leading to a number squeezing factor of ξ2N = −6.6 dB. d) The
phase coherence is inferred from the interference patterns between adjacent wells. The shown histogram corresponds to a phase
coherence of 〈cosφ〉 = 0.9.

∆J2
z,ref = nanb/N , which is expected in a non-squeezed

situation. The phase coherence, 〈cosφ〉, between the two
wells defines the horizontal axis. We choose the origin of
the phase such that the Jy component has a zero mean
value. In this case, the relevant squeezing parameter for
quantum metrology, ξS , is given by ξS = ξN/〈cosφ〉. In
the following, we will refer to it as the coherent number
squeezing parameter. Lines corresponding to ξ2

S = −3 dB
and -6 dB are plotted in the figure. The different data
points correspond to different preparations of the atoms
in the lattice, as detailed in the caption of figure 3, and
to different numbers of occupied sites. The simultane-
ous observation of number squeezing and high phase co-
herence (solid symbols) reveals the presence of coherent
number squeezing. In the double-well and six-well situa-
tion, we deduce best squeezing factors ξ2

S = −2.3 dB and
ξ2
S = −3.8 dB, respectively. The statistical error bars and

bounds for systematic errors are indicated in the figure.
The open symbols show that atom number fluctuations
can be further suppressed at the expense of lower phase
coherence. In the six-well situation, we observe number
squeezing down to ξ2

N = −7.2 dB, which corresponds to
fluctuations of 15 atoms per well, out of 1100. The inset
in figure 2 shows the optimal number squeezing for a given
phase coherence [24] in our experimental situation of 2200
atoms in a double-well, revealing that there is still a great

potential for improvement. Our best measurements yields
number fluctuations approximately 25 dB higher than the
Heisenberg limited states with the same phase coherence.

Entanglement in the context of spin squeezing has been
intensively discussed [7, 8, 9]. In a first quantization ap-
proach, it can be defined as the non separability of the
N body density matrix. With this definition, a sufficient
criterion for entanglement coincides with the criterion for
quantum metrology, namely ξS < 1, which identifies spin-
squeezing type entanglement as a useful resource [7]. In
the context of indistinguishable bosons, as in our experi-
ment, the number squeezing ξN < 1 has been shown to be
a sufficient criterion for the nonseparability of the reduced
two-body density matrix [8, 9]. This criterion is fulfilled
for all the measurements shown in figure 2. However,
without the possibility of accessing the single-particle spin
properties (by contrast to the case of an ion string [25]),
this type of bipartite entanglement may not be usable as
a resource. For this reason, only measurements in the co-
herent number squeezed region (solid symbols) indicate
the definite presence of useful entanglement.

To identify what limits the amount of squeezing, we
consider the two-mode Josephson Hamiltonian EC/2J2

z −
2EJ/NJx that describes two weakly coupled condensates.
The Josephson energy, EJ , and the charging energy, EC ,
respectively characterize the tunneling rate between the
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FIG. 2: Number squeezing and phase coherence as a
criterion for quantum metrology and entanglement.
Measurements are shown for the two main well pairs of a six-
well lattice (red and blue circles) and for a double-well poten-
tial (green diamonds). The total atom number, N , in each
pair is approximately 2200 in the six-well case and 1600 in
the double-well case. Filled and open symbols discriminate
two different experimental regimes corresponding to different
final lattice depths (see figure 3). For filled symbols, number
squeezing and high phase coherence are simultaneously ob-
served, whereas for the open symbols the phase coherence is
degraded. The limits for different quantum metrology gains
ξ2S are plotted. In the coherent-number-squeezed region (be-
low the orange line), directly usable entanglement is necessar-
ily present in the system. The shaded areas show systematic
error bounds due to a possible miscalibration of the atom num-
ber (±20%) and to an underestimation of the phase coherence
caused by technical noise. The error bars indicate standard
deviation deduced from at least 400 experimental realizations.
The inset (same quantities as main panel) shows that our data
are approximately 25 dB above the optimal allowed number
squeezing (purple line), showing room for improvement [24].

two condensates and the repulsive interaction energy in-
side each well. Because the depletion of the condensates
in each well is small (≤12 atoms) we neglect intra-well
excitation. Longer wavelength excitations that exist in
the many well situation are also not considered. For the
purpose of identifying the limiting factors on squeezing,
this simplified model is sufficient because it captures the
correct scaling of next neighbor fluctuations with temper-
ature, tunneling rate and interaction energy [26]. In the
two-mode model and at temperatures T high compared
to the plasma energy,

√
ECEJ/kB, the thermal excitation

of the Josephson plasma mode limits the number squeez-
ing to ξ2

N ∼ kBT/µ where µ is the chemical potential that

measures the strength of the interaction (EC ∼ µ/N). In
a typical experimental situation at thermal equilibrium,
these fluctuations are a strong limit on both number and
coherent number squeezing, as it is difficult to evapora-
tively cool the condensate much below the chemical po-
tential.

To circumvent this limitation, we prepare the con-
densate in a shallow lattice before increasing the lat-
tice depth. During this splitting process, the tunneling
rate EJ decreases from its initial value, E(i)

J , to a final
value, E(f)

J , while the interaction energy EC stays almost
constant in our experimental situation. For sufficiently
slow ramp speeds, the evolution is expected to be adi-
abatic. Because the energy of the collective Josephson
mode decreases during the splitting, energy is removed
from the system, leading to an effective cooling of the
relevant degree of freedom. In the regime where only
the linear part of the collective spectrum is populated,

the effective temperature evolves as Teff = T

√
E

(f)
J /E

(i)
J

leading to a final number squeezing ξ2
N,f ≈ ξ2

N,i(Teff/T ),
where ξ2

N,i = 4kBT/(NEC) is the initial squeezing at
equilibrium with temperature T . The optimal number
squeezing, assuming adiabatic evolution, is obtained by
reducing further the Josephson energy to enter the Fock
regime (E(f)

J < EC) where the collective spectrum is
quadratic. The final number squeezing is then given by
ξ2
N,f ' ξ2

N,i (kBT/2E
(i)
J ).

The assumption of adiabaticity is investigated by per-
forming a series of experiments in the six-well situation.
The lattice depth is ramped from the initial value at
which the condensate is obtained (430 Hz) to a fixed
end value (1650 Hz) in different times. In figure 3a, the
final number squeezing factors for the two most popu-
lated well pairs are plotted versus the total ramping time.
As expected, no improvement in the number squeezing
is observed for too fast ramps (< 20 ms). For slower
ramps, the number squeezing increases and saturates at
ξ2
N,f = −6.6+0.8+0.8

−1.0−0.8 dB, where the given uncertainties are
one-sigma statistical errors obtained from approximately
1000 experimental realizations followed by systematic er-
ror bounds (see supplementary information). This im-
provement in number squeezing by approximately a fac-
tor of approximately three is a consequence of the effec-
tive cooling discussed above. As shown in figure 3a, the
observed behavior is reproduced by a numerical simula-
tion of the splitting process with the two-mode Josephson
Hamiltonian.

High phase coherence is the second ingredient for a co-
herent number squeezing factor ξS < 1. This requires
that the effective temperature of the Josephson mode
is below the tunneling coupling EJ , which is the case
for the initial lattice depth [27]. Increasing the lattice
depth decreases the phase coherence. Best coherent num-
ber squeezing is obtained by adiabatically increasing the
lattice depth to an optimal value such that coherence is
still high and number squeezing has occured. In order
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FIG. 3: Systematics on number squeezing and phase coherence during the splitting of a condensate. a) Investigating
the adiabaticity condition for the evolution of the many-body state during the splitting process. The number squeezing factors
for the two most populated well pairs (blue and red circles) are measured after ramping up the lattice depth from the value
at which the condensate is obtained (430 Hz) to a fixed end value (1650 Hz), for a number of different total ramp times (see
inset). Numerical simulations using the two-mode Josephson model reproduce the general observed behavior, assuming an
initial thermal population of the density matrix corresponding to temperatures between 20 nK and 40 nK (grey shaded area).
b) Number squeezing and phase coherence for different final lattice depths. The ramp speed is fixed to 4 Hz.ms−1 (300 ms ramp
time in a) to satisfy the adiabaticity criterion. Number squeezing improves before the phase coherence drops, leading to coherent
number squeezing. The grey shaded area shows the predictions of the two-mode model assuming an adiabatic evolution of the
density matrix with initial temperatures between 10 nK and 30 nK (three to ten populated many-body states). c) Same as b)
for a double-well. The ramp speed is 2 Hz/ms and 8 Hz/ms for the triangles and diamonds respectively. The symbols shown
in figure 2 correspond to the average of all the data measured for barrier heights between 650 and 900 Hz (filled symbols) and
above 1300 Hz (open symbols) in the six-well case (b) and between 650 and 1200 Hz (filled symbols) and above 1400 Hz (open
symbols) in the double-well case (c). Some data measured at very high lattice depth in the double-well case that participate in
the averaging do not appear here.

to find this optimum, we investigate the number squeez-
ing and the phase coherence as a function of tunneling
coupling. We linearly ramp up the barrier height to dif-
ferent end values, keeping the ramp speed in the adiabatic
regime. Figure 3 presents the results obtained both for
six (Fig. 3b) and two (Fig. 3c) occupied wells. In the six-
well case, we identify an optimum barrier height range
between 650 and 900 Hz, where we deduce a best coher-
ent number squeezing ξ2

S = −3.8+0.3+0.8
−0.4−1.8 dB averaging

over all the measurements. In the double-well situation,
averaging all the points between 650 and 1200 Hz, we
obtain ξ2

S = −2.3+0.2+0.8
−0.6−1.5 dB. The deduced mean phase

coherence and number squeezing in the optimal regions
correspond to the solid data points shown in figure 2.

For the best observed number squeezing, we measure
atom number fluctuations just above the detection thresh-
old of our absorption imaging technique. To reach this
sensitivity level, special care has to be taken to calibrate
the deduced atom number [28] (see supplementary in-
formation). Furthermore, the contribution of the pho-

ton shot-noise has to be precisely measured and sub-
tracted [29]. As an independent check of the reliability
of the atom counting, we monitor the evolution of num-
ber squeezing with atom loss. It is well known in quan-
tum optics that random loss processes rapidly degrade
the number squeezing. Red circles in figure 4 show this
restoring effect with a rate which is compatible with the
measured one- and three-body loss rates. A further check
is performed by monitoring the evolution of the number
fluctuations for an initial state with almost Poissonian
fluctuations; such a state is prepared by directly condens-
ing the atoms in a deep lattice. No change in the number
squeezing is observed through the loss process, within the
statistical errors. During the measurement, the relevant
parameters for the imaging, such as the extension of the
cloud and its optical density, are kept constant.

To confirm the successful implementation of a quan-
titative atom number fluctuation measurement, we in-
fer number squeezing out of 1000 measurements after a
10 s holding time, starting from a slightly squeezed situ-
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FIG. 4: Random loss restores poissonian fluctuations.
Holding the atoms in the lattice (six occupied sites), the atom
number in the decoupled two main well pairs decreases as
shown in the inset, owing to one- and three-body loss. Red
circles show the evolution of number squeezing starting from
a squeezed situation. The solid line is the prediction corre-
sponding to the measured loss rates and initial squeezing. Blue
diamonds show that in the absence of initial squeezing no fur-
ther evolution is observed. The consistent behavior of the
squeezing with loss is an independent check of the validity of
our squeezing measurement technique. A more quantitative
test is performed by holding the atoms 10 s and measuring
the number squeezing inferred from 1000 realizations. The
initial state is slightly squeezed (−3 dB < ξ2N < 0 dB) and a
squeezing factor −1.2 dB < ξ2N < −1 dB (green shaded area)
is expected at the time of measurement, when two-thirds of
the atoms have been lost. We measure ξ2N = −0.7+0.7

−0.7 dB
consistent with the expected value within the 95% statisti-
cal confidence bounds indicated by the error bar. The small
improvement of number squeezing in the upper boundary of
the green shaded area arises from the non-linear dependence
of three-body loss on atom number. After a sufficient time,
the one-body loss dominates and Poissonian fluctuations are
restored.

ation (−3 dB < ξ2
N < 0 dB). At this time, two-thirds of

the atoms are lost and a precise number squeezing fac-
tor −1.2 dB < ξ2

N < −1 dB is predicted from the mea-
sured one- and three- body loss coefficients. This exem-
plifies how particle losses can be used to prepare a well
defined number distribution in a condensate. We measure
ξ2
N = −0.7+0.7

−0.7 dB, where the indicated uncertainties are
here 95% statistical confidence bounds, in quantitative
agreement with the expected number squeezing.

The measured squeezing presented here concerns the
external degree of freedom of the atoms in the conden-
sate. It is comparable in amount to the latest measured

squeezing on internal atomic states also obtained by uni-
tary evolution of a nonlinear Hamiltonian [13, 14]. We
show that the achieved entanglement can be directly used
as a resource for quantum metrology with spatial atom in-
terferometers. This is a major step towards measuring at
the ultimate, Heisenberg, limit with a large number of
particles.
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[20] Gerbier, F., Fölling, S., Widera, A., Mandel, O. & Bloch,

I. Phys. Rev. Lett. 96, 090401 (2006).
[21] Sebby-Strabley, J. et al. Phys. Rev. Lett. 98, 200405

(2007).
[22] Jo, G.-B. et al. Phys. Rev. Lett. 98, 030407 (2007).
[23] Li, W., Tuchman, A. K., Chien, H.-C. & Kasevich, M. A.

Phys. Rev. Lett. 98, 040402 (2007).
[24] Sørensen, A. S. & Mølmer, K. Phys. Rev. Lett. 86, 4431–

4434 (2001).
[25] Korbicz, J. K. et al. Phys. Rev. A 74, 052319 (2006).
[26] Javanainen, J. Phys. Rev. A 60, 4902–4909 (1999).
[27] Gati, R., Hemmerling, B., Folling, J., Albiez, M. &

Oberthaler, M. K. Phys. Rev. Lett. 96, 130404 (2006).
[28] Reinaudi, G., Lahaye, T., Wang, Z. & Guéry-Odelin, D.
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SUPPLEMENTARY INFORMATION

MEASURING COHERENT NUMBER
SQUEEZING IN A BEC: EXPERIMENTAL

TECHNIQUES

Calculation of the number squeezing factor

We measure the atom number per well using absorp-
tion imaging (see next section). For the considered
pair of wells, the raw data consists of a set of atom
numbers na and nb obtained by repeating the exper-
iment 25 to 40 times. Data shown in figure 3 and
figure 4 represent an average over 4 such sets. For
each set, we define p = 〈na/(na + nb)〉 the probabil-
ity for an atom to be in well a. We compute ∆n2 =
〈[(na − nb)/2− (p− 1/2)(na + nb)]

2〉 to avoid taking into
account fluctuations in the total atom number. Photon
shot-noise contributes to the measured fluctuations of the
atom number per well by δna,psn and δnb,psn. These
two values are deduced from the light intensity on the
absorption and on the reference picture for each exper-
imental realization. We subtract this contribution and
obtain the corrected number fluctuations ∆n2

corrected =
∆n2− [1+4(p−1/2)2]〈δn2

a,psn +δn2
b,psn〉. The subtracted

photon shot noise corresponds to fluctuations of 10 to 12
atoms, which is comparable to the smallest fluctuations
that we deduce after subtraction. Finally the number
squeezing factor is calculated by normalizing these fluc-
tuations by the expected value for a binomial distribution
ξ2
N = ∆n2

corrected/[p(1− p)〈na + nb〉].

Atom number measurement and calibration

Our observations of number and coherent number
squeezing rely on a precise measurement of the atom num-
ber in each well. Special care has to be taken to deduce
the atomic density and thus the number of atoms from
absorption images. In fluctuation measurements, an im-
portant issue is the linearity of the measurement method.
While a small non-linearity can have a limited impact
on the absolute value of the measured atom number, the
deduced fluctuations can be dramatically wrong (see fig-
ure II).

For signal to noise optimization, our measurements are
performed at high imaging intensity compared to the sat-
uration intensity but still in the optically dense regime.
In this case, the atomic density is a non linear function
of the absorption as detailed in [G. Reinaudi et al., Opt.
Lett. 32 3143 (2007)]. In order to check that we correctly
take into account this non-linearity, we first take pictures
at high imaging intensity such that the cloud is optically
thin and the optical transition is saturated for all atoms.
In this regime, the deduced number depends linearly on
the real atom number. We use this measurement as a
reference atom number (horizontal axis in figure II) and
compare it to measurements taken at lower intensity and
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FIG. II: Deducing the atom number from absorption images.
Precise estimation of the atom number fluctuation requires a
linear dependence of the measured atom number on the real
atom number. The reference atom number defining the hori-
zontal axis is measured in the linear regime, i.e. at very high
intensity compared to the saturation intensity Isat (blue open
circles). Blue solid symbols, corresponding to measurements
taken after sufficient time of flight expansion (TOF) of the
cloud, feature this linear behavior. We use this expansion time
and an optical density around 1.5 for our measurements. Imag-
ing atomic clouds smaller than the optical resolution at in-
termediate imaging intensities (≈ 25 Isat) underestimates the
mean atom number and even more its fluctuations. This is
illustrated by the red data, where the dashed line is the tan-
gent to the measured atom number for a real atom number
of 750. The atom number is underestimated by only 15% but
the fluctuations by a factor of 2.

thus higher optical density. In this regime, it is essential
to make sure that the optical density varies on a length
bigger than the optical resolution of the imaging system.
In figure II, blue data show that after sufficient time of
flight the nonlinearity is indeed correctly taken into ac-
count. In contrast, a too short expansion time leads to
underestimation of the atom number and its fluctuation
(red squares).

Once the linearity of the measurement is ensured, the
conversion factor between the measured signal and the
absolute atom number has still to be determined. This
is done by comparing the observed density profiles of a
Bose-Einstein condensate in a harmonic trap with numer-
ical simulations of the three dimensional Gross-Pitaevskii
equation for different atom numbers. An independent
way to obtain the conversion factor are measurements in
the high saturation regime, where only the transmission
of the imaging system and the CCD sensitivity enter in
the atom number determination. Measuring these param-
eters gives a calibration that agrees with the first method
within 10%. The given systematic error of 20% on the
total atom number and its fluctuations is thus a conser-
vative upper bound.

As explained in the article, we independently check
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FIG. III: Variance of the atom number difference as a function
of the total atom number in a pair of wells. The data shown
here correspond to two of the data sets plotted in the figure 4
of the article. For these samples, we expect the fluctuations of
the atom number difference to be close to poissonian (dashed
line) as explained in the text. The grey shaded area correspond
to the ±20% systematic error considered on the atom number
that encompasses most of the data points.

the calibration by measuring the fluctuations of the atom
number difference between two wells in a situation where
they can be precisely calculated from first principles. For
that, we utilize losses of particles as a way to restore close
to poissonian fluctuations starting from a not well char-
acterized initial number distribution. Evaporative cool-
ing of the atomic cloud at a high lattice depth also leads
to poissonian fluctuations. For this second method, the
critical temperature to lattice depth ratio has to be well
chosen in order to avoid any boson bunching effect that
would cause super-poissonian fluctuations. In figure III,
we plot the variance associated to these two different re-
alizations of nearly poissonian samples as a function of
the mean total atom number. We indeed observe that
deviations from poissonian fluctuations indicated by the
dashed line are small and stay within our systematic error
estimation (grey shaded area).

Starting from a slightly squeezed situation, the green
point is measured after a long waiting time (10 s) during
which losses significantly reduce the atom number (see ar-
ticle). The slightly remaining squeezing that we observe
originates from the non-linear dependence of the three-
body loss rate with the atom number. With the knowl-
edge of the loss coefficients, this effect can be precisely
calculated and match our data as shown in figure 4.

The blue points are obtained by holding the atoms for
different times after evaporative cooling in a deep lattice.
In this case, the initial atom number is much lower than
for the green point, leading to a negligible three-body loss
rate. The initial nearly poissonian distribution remains
poissonian under the action of one-body loss.

Measuring the phase coherence

The relative phase between two neighboring wells is de-
duced from local interference measurements. Due to the
measurement process, high visibility fringes are present in
each individual realization of the experiment even if the
relative phase is not well defined. Fringes are observed
after a short expansion in the harmonic trap in absence
of the lattice potential (2 ms) followed by a free expan-
sion (400µs to 900µs). In order to choose the proper
timing, we image the cloud after different free expansion
times and observe the formation of the interference pat-
tern. For too short expansion times, clouds released from
neighboring wells do not overlap which is easily seen in
the images. In the case of a low lattice depth, all wells are
in phase leading to a maximum of the interference pattern
at the middle positions between the wells. We choose the
timing such that this central maximum is clearly visible.

The expansion velocity is dependent on the initial on-
site interaction energy and thus on the atom number and
on the barrier height. Since we measure the coherence for
different final barrier heights, we always jump to a high
barrier (1650 Hz) in 10 ms before releasing the atoms,
such that the same expansion time can be used for all
situations. For analysis, the observed fringe pattern is
cut at the position of the wells such that in the resulting
regions each sub pattern is dominated by the interference
between the two next neighbor wells. The sub-patterns
are Fourier transformed and the phase is measured at the
frequency of the dominant component. We checked the
validity of the method by simulating the expansion of the
condensate using the three-dimensional Gross-Pitaevskii
equation.

The phase coherence 〈cosφ〉 between two neighboring
wells is deduced by averaging the cosine of the different
phases obtained from the sub-patterns corresponding to
the wells of interest. The phase coherence would also cor-
respond to the mean visibility of the fringes after ensem-
ble averaging. The deduced coherence is a lower bound
for the real coherence. Photon shot-noise in the absorp-
tion image as well as camera position instability lead to
increased fluctuations of the fringe position and an un-
derestimation of the coherence. All indicated numbers in
this paper are not corrected for any of these noise sources.
We consider them as systematic errors, as indicated in the
text and in figure 2 by the horizontal width of the shaded
areas.
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