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Realization of an SU(1,1) Interferometer with Spinor
Bose-Einstein Condensates
An SU(1,1) interferometer is obtained from a Mach-Zehnder interferometer by replacing
both its beam splitters with parametric amplifiers. These new beam splitters are charac-
terized by a non-linear response to a strong coherent pump beam and produce entangled
photon pairs in its side, viz signal and idler, modes.

In quantum atom optics, a parametric amplifier can be realized by means of spin-
changing collisions. During these collisions atoms from a single spin component are pairwise
scattered into side modes. As a coherent process these collisions are reversible and are
utilized in the SU(1,1) interferometer as both a beam splitter as well as a beam combiner.
Highest phase sensitivity of such an interferometer is achieved when the second period of
spin-changing collisions completely reverses the effect of the first. At this point the initial
vacuum mode is recovered at the output and Heisenberg limited phase estimation can be
obtained.

We report on the experimental implementation of an SU(1,1) interferometer using
Rb-87 atoms in the F = 1 ground state. We observe the phase-dependent output signal for
small average atom numbers inside the interferometer and characterize its phase sensitivity.

Realisierung eines SU(1,1) Interferometers mit Spinor
Bose-Einstein Kondensaten

Ein SU(1,1) Interferometer erhält man durch den Austausch beider Strahlteiler eines
Mach-Zehnder Interferometers mit parametrischen Verstärkern. Diese neuen Strahlteiler
zeichnen sich durch eine nichtlineare Antwort auf einen starken, kohärenten Pumpstrahl
aus und produzieren verschränkte Photonenpaare in ihren Seiten-, also „Signal“- und
„Idler“-, Moden.

In der Quantenatomoptik kann ein parametrischer Verstärker durch spinaustauschende
Stöße realisiert werden. Im Verlauf dieser Stöße werden Atome aus einer einzelnen Spinkom-
ponente paarweise in Seitenmoden gestreut. Als kohärenter Prozess sind diese Kollisionen
reversible und in einem SU(1,1) Interferometer werden sie sowohl als Strahlteiler als auch
als Strahlkombinierer genutzt. Höchste Phasensensitivität eines solchen Interferometers
wird erreicht, wenn die zweiten spinaustauschenden Kollisionen den Effekt der ersten
rückgängig machen. Unter diesen Umständen erhält man das anfängliche Vakuum am
Eingang auch am Ausgang und Phasensensitivität am Heisenberg-Limit ist möglich.

Wir berichten über die experimentelle Implementierung eines SU(1,1) Interferometers
mit Rb-87 Atomen, die in ihrem F = 1 Grundzustand sind. Wir beobachten das phasenab-
hängige Ausgangssignal für kleine mittlere Atomzahlen im Interferometer und bestimmen
die Phasensensitivität.
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Introduction

Introduction

Interferometry and the Heisenberg sensitivity limit
Interferometry is concerned with estimating the differential phase accumulated between
(usually) two states. Its ubiquitous use in science and technology is the consequence of at
least three characteristics: the plethora of physical processes expressing themselves in phase
differences; the exceptional high precision obtainable in determining these phases; and its
conceptually very simple working principle: When a known quantum state is fed into the
interferometer, a differential phase shift ϕ can be estimated by comparing the output signal
to the known input. Quite intuitively the phase change can be determined the better, the
greater the difference between input and output is. We can quantify this by introducing
the infinitesimal distance dH of two quantum states [1]: d2

H = arccos2F = 1 − F2 [2].
Here F denotes the fidelity of the two states |Ψin〉 and |Ψout〉 which shall be distinguished,
F = | 〈Ψin|Ψout〉 |. F2 is the probability of mistaking the state |Ψin〉 for state |Ψout〉in a
single measurement. In the case of coherent states dH corresponds to the angle between
both states in a Bloch sphere picture [3].

As a prototypical example we might consider the Mach-Zehnder interferometer, as
shown in Figure 1. Starting from the probe state |Ψin〉, a phase difference ϕ between both
arms is accrued, thereby rotating the input state by an angle ϕ on the Bloch sphere. The
connection between interferometric sensitivity and change of distance is made by means of
the Cramer-Rao bound. This relation states that the minimal achievable phase uncertainty
〈(∆ϕ)2〉 is bounded by the inverse Fisher information F , given in turn by the change of
distance with the parameter [4]:

〈(∆ϕ)2〉 ≥ 1/F , with F = dd2
H

dϕ2

If the interferometer is fed with N identical and non-entangled particles, F2 =∣∣∣〈Ψin|⊗N |Ψout〉⊗N
∣∣∣2 = cos2N ϕ. For small angles, we have cos2N ϕ = 1−Nϕ2 +O(ϕ4) and

thus F ≤ N . This basically reformulates the square-root-law, 〈∆ϕ〉 = 1/
√
N , known from

statistics for independent observations. Since the input state is separable, we can also
interpret a single measurement with N particles as N single measurements. By introducing
correlations between particles, this limit, also known as the standard quantum limit, can be
surpassed, thereby allowing for more efficient phase estimations. For linear interferometers
the fundamental limit is set by 〈(∆ϕ)2〉 = 1/N2 [5] known as the Heisenberg-limit. To
attain this limit one requires maximally entangled states [6] which are very fragile. Non-
linear interferometers relax the requirements on the level of entanglement [7] and are thus
a promising candidate to demonstrate sensitivity at the Heisenberg limit in experiments
with ultracold gases.

In this work we will describe the realization of such a non-linear interferometer. It has
already been proposed and studied theoretically in the realm of optics in the 1980s to
harness the at the time new non-linear media by [8], who called it an SU(1,1) Mach-Zehnder
interferometer. The key idea is to exchange the beam splitters of a Mach-Zehnder by
non-linear crystals. The response of these crystals to a strong pump beam is characterized
by harmonics different to the fundamental (pump) frequency. In particular they allow
parametric down-conversion, whereby a photon of the pump beam is converted into a pair of
(lower energetic) photons as long as energy and momentum are both conserved. Quantum
mechanically one might also interpret the process as an amplifier, which intensifies the
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|Ψin〉 = |0〉

|Ψ〉 ∝ |0〉 + e
iϕ |1〉

|Ψout〉

ϕ

Figure 1: Mach-Zehnder interferom-
eter. The input state |Ψin〉 is divided into
two paths by a beam splitter. A phase-
shifting element affects both paths differ-
ently, before they are reunited by a second
beam-splitter. The entire interferometer
constitutes a rotation of |Ψin〉 by an angle
ϕ on the Bloch-Sphere.

ever-present vacuum fluctuations such that a pair of real photons is created. In this sense
the non-linear medium becomes an active one. Due to their joint creation these photons
are highly correlated with each other, albeit each might travel in different direction. [8]
showed that these entangled photon pairs can be used to achieve phase estimation at the
Heisenberg-limit.

The Mach-Zehnder interferometer uses passive beam splitters and is thus described by
the rotational group SU(2), encoding the conservation of energy. It is this conservation of
energy which constrains its effect to rotations on a fixed-radius Bloch sphere, as stated
above. In contrast the non-linear interferometer uses active media, thereby violating energy
conservation and unitary evolution. This interferometer is described by the symmetry
group SU(1,1) and is therefore called an SU(1,1) interferometer [8]. Spinor Bose-Einstein
condensates provide a very similar mechanism to parametric down-conversion [9, 10]. This
mechanism has already been used to create entangled states of massive particles, which
when fed into the atomic counterpart [11, 12] of a conventional optical Mach-Zehnder
interferometer outperform classical states [13].

General idea of an implementation in ultracold gases
In a homogenous magnetic field, the magnetic quantum number m is a strictly conserved
quantity. In collisions between atoms, however, each individual atom may be scattered
into states with different magnetic moment – as long as their combined magnetic moment
remains unaltered. We use this very fact to produce entangled pairs of massive atoms,
which when used in an interferometer surpass the classical sensitivity limit. 87Rb atoms
in their ground state manifold have spin F = 1 and thus only three possible orientations
of spin. We prepare hundreds of atoms in a pure |0〉 ≡ |F = 1,mF = 0〉 Bose-Einstein
condensate. Atom pairs are subsequently produced by sustained scattering of two |0〉
atoms into states |1〉 ≡ |1, 1〉 and |−1〉 ≡ |1,−1〉, respectively: |0〉 + |0〉 → |+1〉 + |−1〉.
At these ultracold temperatures individual collisions become collective and coherent due
to the very limited phase space attainable. With initially empty modes |±1〉 = |vac〉 this
process acts as an non-linear amplifier [14, 15], which will provide the foundation for an
active SU(1,1) interferometer.

Outline of this thesis
In the first section we will detail the experimental system and introduce the theoretical de-
scription of spinor Bose-Einstein condensates. The Hamiltonian of spin-changing collisions
will be discussed especially from the perspective of how to experimentally gain control
over these collisions. Having discussed the experimental techniques to use spin-exchange
as a well-isolated beam splitter we will study its quantum effect in the second section.
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The third section is finally devoted to the SU(1,1) interferometer. Its appearance
resembles the Mach-Zehnder interferometer but uses spin-exchange as beam splitters. In
this section, the previous discussion of spin-exchange will be put into context and we will
discuss the constituents of the SU(1,1) interferometer in detail. Special attention will be
paid to phase shifting elements and the interferometer’s performance on measuring these
phases. We will study the phase sensitivity both, theoretically as well as experimentally
and give an account of technical limitations.

Most importantly, as this is very much work in progress only started two months ago,
we will conclude with an agenda of how to pursue further. The work which has been done
in the remainder of the year is not part of this thesis and will be published elsewhere [16].
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1 Experimental techniques and Hamiltonian

1.1 Studying spinor dynamics in an optical lattice
We consider 87Rb atoms in their ground state manifold, F = 1, confined in a tight optical
trap [18]. This trap is composed of an optical dipole trap beam with superimposed lattice
beams, as shown in Figure 2. The dipole trap beam captures the atoms along its axis but
only provides very shallow confinement on-axis, since the aspect ratio of on-axis to radial
trap frequency is about 50. Additionally, two lattice beams are crossed under an angle
of 9 ◦ and interfere to yield a one-dimensional lattice with lattice spacing of λl = 5.5µm.
The trap frequency sets the highest energy scale and the spin-healing length is larger than
the extent of the wave function at each lattice site. Then the external motion is frozen
and all dynamics happen exclusively in the internal degrees of freedom. This situation
is known as the single (spatial)-mode approximation [19, 20]. On the timescale of our
experiments no tunnelling takes place between adjacent lattice sites for the reason of
both high inter-well potential and large lattice spacing. The trapping potential is in good
approximation independent of the internal degrees of freedom, thus allowing to study
spinor dynamics.

1.2 Hamiltonian of F = 1 spinor Bose-Einstein condensates
In dilute ultracold gases, we only have to consider binary collisions between particles. The
scattering potential is then solely described by the s-wave scattering length cFc , which
depends on the total angular momentum Fc the two individual F = 1 atoms couple to
[19–22]. This is either Fc = 2 or Fc = 0 due to bosonic symmetry requirements. Noting
that the operator F1 ·F2 has eigenvalue 1 for Fc = 2 and eigenvalue −2 for Fc = 0, we can
write the interaction term as

V ∝ (2c2 + c0) + (c2 − c0)F1 · F2

For 87Rb the scattering length c0(c2) is about 102(100) Bohr radii, such that (c2 − c0) < 0.
For angular momentum operators

F1 · F2 = F1,zF2,z + 1
2(F1,+F2,− + F1,−F2,+) (1)

holds where Fi,± denote the ladder operators for the i-th angular momentum. The second
term in this decomposition really spells out the production of correlated pairs whereby,
starting from atoms in state |0〉 a pair atom state is produced with exactly one atom in
the |1〉 and the other in the |−1〉 state. Similar to the Schwinger representation for two
modes we can construct angular momentum operators for the three levels of F = 1 which
will become useful later on:

F− = a†↑a0 + a†0a↓

F+ = a†0a↑ + a†↓a0

Fx = 1
2(F+ + F−)

Fy = 1
2i(F+ − F−)

Fz = a†↓a↓ − a
†
↑a↑

(2)

Here a↑(↓) denotes the annihilation operator for the mode |+1〉 (|−1〉) (from now on called
side modes) and a0 is the corresponding operator for the pump mode |0〉. Due to symmetry
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1 Experimental techniques and Hamiltonian

lattice beamlattice beam

resonant

imaging beam

dipole trap

x

y

z

Figure 2: Setup of the optical lattice in which all experiments are performed. A
strong dipole trap laser at λ = 1030 nm captures the atoms along the x-direction, while
providing only very weak confinement on its axis. The ratio of transverse to longitudinal
trap frequencies is about 50. Two lattice beams at λ = 820 nm cross under an angle
of 9 ◦ yielding a standing wave potential with λl = 5.5µm. The atoms are trapped in
the anti-nodes of the intensity pattern. Resonant light is used for lattice site resolved
absorption imaging [17]. This imaging is irrespective of the internal state. To account for
the internal state a magnetic field gradient in z-direction serves as a Stern-Gerlach pulse
to spatially separate the three magnetic sublevels of the 87Rb atoms in their ground state
manifold F = 1.

arguments the Hamiltonian can be cast into a form which shows the collective behaviour
arising from these individual collisions [23].

H = (c2 − c0)
2 L2

Here L is a spin of size N composed of the N individual spin-1 particles and all constant
terms (∝ N = N0 + N↑ + N↓ and N2) have been dropped. Of course, L2 can also be
represented in terms of ladder-operators and equation (1) holds as well. The much larger
combined spin now allows for the production of many atom pairs. In our case of an initially
pure mF = 0 condensate, we have Lz = 0 for all times, since Lz is an conserved quantity of
the ladder operators. Together with equation (2) we can then reformulate the Hamiltonian
as [24]

H = Hinel +Hel with
Hinel ∝ (c2 − c0)

(
a0a0a

†
↑a
†
↓ + a†0a

†
0a↑a↓

)
Hel ∝ (c2 − c0)(2N0 − 1)(N↑ +N↓)

(3)

For very short times, we can assume the pump mode to be undepleted and perform a
Bogoliubov approximation: a0 |N0〉 = a†0 |N0〉 =

√
N0 |N0〉, N0 � 1 [25]. Then

Hinel = (c2 − c0)N0(a†↑a
†
↓ + h.c.) (4)

While Hinel produces the desired pairs the term Hel leads in principle to a phase
mismatch between the pump and side modes: Whereas the phase evolution of a0 due to
Hel is given by exp (N↑ +N↓) with N↑ +N↓ ≈ 0, both, a↓ and a↑ evolve with expN0 [26].
As it turns out the mean-field shift responsible for Hel is very small, but terms of the same
form will become important later on.
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1 Experimental techniques and Hamiltonian

∆E =
µBB

2

∆E = −

µBB

2

(a) Linear Zeeman effect

∆E = 3qB2 ∆E = 3qB2

∆E = 4qB2

(b) Quadratic Zeeman effect

Figure 3: Energy levels of the ground state manifold of 87Rb in a magnetic
field. The linear Zeeman effect as depicted in a) does not affect the spin-changing collisions,
since the energy gained by one particle has to be spent by the other, µB = 2 · 700 kHz

G . The
quadratic Zeeman effect shifts the levels of F = 1 energetically down. However, the pump
mode is shifted further than the side modes by q = 72 Hz

G2 . This can be used to control the
spin-exchange.

1.3 Experimental control
The Hamiltonian supports the production of perfectly correlated atom pairs by means of
the term Hinel = a0a0a

†
↑a
†
↓ + h.c. which we would like to harness. We thus need to find

ways to experimentally control the process. In particular we need to be able to turn it on
and off at will to realize a well isolated non-linear beam splitter.

1.3.1 Magnetic fields

The Zeeman effect adds a term HB ∝ BLz to the Hamiltonian. As we have already seen
above, all terms proportional to Lz do not influence the spin-changing collisions. Besides
the linear shift in a magnetic field there are, however, also higher order terms. These come
about due to the mixing of states in the upper F = 2 and lower F = 1 manifold, since F is
only an approximate quantum number in a small magnetic field. The Breit-Rabi formula
considers these effects and yields the so-called quadratic Zeeman effect: It shifts the
levels of the F = 1 manifold of 87Rb energetically down, see Figure 3 b). The differential
energy shift between |1, 0〉 and |1,±1〉 is q = 72Hz/G2. The Hamiltonian can thus be
supplemented with HB2 = qB2(N↑ + N↓), which is of the same form as Hel and can be
used to stop the effect of Hinel by introducing a phase mismatch as discussed above.

This situation is different to the F = 2 manifold of 87Rb . For the upper manifold the
mean-field shift is larger and Hel needs to be compensated in order to start spin-changing
collisions [27]. This can be done for instance by a magnetic field [28], since the mean-field
shiftand second order Zeeman effect have opposite sign and counteract. Starting from a
well characterized state where all atoms are in |0〉 at high field, spin-exchange might be
initiated by quenching the magnetic field down to almost zero [29]. However, to realize
two well isolated beam splitters, ramping up and down magnetic fields lacks the necessary
control and speed. Instead we use microwave dressing.

6



1 Experimental techniques and Hamiltonian

z
/
µ
m

20

0

z
/
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x/µm
0 50 100 150

20

0

Figure 4: Typical experimental picture illustrating the magnetic field gradient
over the extent of the optical lattice. Shown is the outcome of a Ramsey sequence
[12] with 30 ms evolution time between states |2,−2〉 (upper panel) and |1,−1〉. This
transition is three times linearly Zeeman sensitive, ∆E = 3 · µB

2 B. The magnetic field
gradient amounts to about 100µG over the entire lattice at a magnetic field of B = 1.56 G.
Absorption imaging of the F = 2 and F = 1 manifold are done in sequence which is why
for the F = 1 image the clouds are more dilute due to the longer time of flight.

1.3.2 Microwave dressing

By state selective microwave dressing, we can initiate and maintain the spin-changing
collisions both very quickly and in a controlled manner [30]. Coupling two states by
coherent microwave radiation with the resonant Rabi frequency Ω and the detuning ∆ to
the atomic resonance is described by the Hamiltonian [31]

H = 1
2(Ωσx −∆σz) ≈

1
2
(√

Ω2 + ∆2 −∆
)
σz

with the Pauli-matrices σi. The approximation is valid for far-off resonant driving,
∆� Ω and we have H ≈ Ω2

4∆σz, which means that the levels are shifted in energy by

∆E = ±Ω2

4∆ (5)

respectively. We employ microwave dressing of the |1, 0〉 state by coupling it off-
resonantly to the |2, 0〉 state. The resonance frequency of this π transition occurs only once
in the entire level scheme which minimizes the effect of other perturbing level couplings, see
Figure 5. Both m = 0 states do not shift linearly in a magnetic field and are only affected
via the second order Zeeman effect. The microwave dressing is thus mostly immune to
magnetic field noise. Microwave dressing supplements the Hamiltonian with HΩ = −Ω2

4∆N0.
Dropping constant terms, this can also be written as HΩ = Ω2

4∆(N↑ + N↓) which can be
used to compensate for terms due to the quadratic Zeeman effect (and Hel). Additionally,
by either red or blue detuning the microwave to atomic resonance the energy level can be
shifted up and down.

1.4 Experimental sequence
We magnetically trap [32] 87Rb atoms in the |1,−1〉 state before transferring them into
a crossed dipole trap. The light intensity is subsequently reduced to evaporatively cool
the atoms to a temperature of a few 10 nK, well below the transition temperature to a
Bose-Einstein condensate [33]. Adiabatically ramping down one of the crossed dipole laser
beams lets the condensate spread along the axis of the remaining dipole trap beam. This
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1 Experimental techniques and Hamiltonian
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Figure 5: Microwave dressing of the |1, 0〉 state. Left) a) The energy shift due to the
linear Zeeman effect is 700 kHz

G and is much larger than the detuning ∆ used for microwave
dressing, such that the coupling of other states is negligible. The inset b) shows the effect
of the microwave dressing when only the second order Zeeman effect is considered. Right)
Observed level shifts in a Ramsey sequence between |1, 0〉 and |2, 0〉. The fit of the form
∆E/2 = Ω2

4∆ gives Ω/2π = 7.5 ± 0.1 kHz in perfect agreement with measurements via
resonant Rabi flopping.
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Figure 6: Microwave power gradient over the extent of the lattice. The left
panel depicts a typical experimental picture obtained after 10 ms of resonant Rabi flopping
between |2, 0〉 (upper picture) and |1, 0〉 (lower picture). The right panel shows that the
Rabi frequency Ω varies linearly with lattice site. The gradient is 3.88 Hz/Well which
amounts to 1.4 % from the very left to the very right of the cloud. This relative power
gradient is due to geometry and independent of the absolute power used.
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1 Experimental techniques and Hamiltonian

spreading eventually stops when a one-dimensional lattice is ramped up, trapping the
atoms in the anti-nodes, distant by λl ≈ 5.5µm. This situation is depicted in Figure 2.

At an initial magnetic field of B ≈ 9 G, we transfer the atoms in state |1,−1〉 to
|1, 0〉 by means of a radio-frequency π-pulse. At this magnetic field the second order
Zeeman-effect is already high enough to ensure no significant population of the state |1, 1〉.
The magnetic field is subsequently ramped down to B ≈ 3 G. At this point a strong
magnetic field gradient serves as a Stern-Gerlach cleaning pulse to remove all spurious
atoms in both the |1,−1〉 state as well as the |1,+1〉 state. We are then left with a pure
mF = 0 condensate and raise the standing wave further to ensure the validity of the
single-spatial-mode approximation, while at the same time reducing the magnetic field to
the final value at which the experiment is performed.

The magnetic field is actively stabilized by means of a fluxgate sensor. The shot-to-shot
fluctuations are less than 100µG at magnetic fields in the range of B ≈ 1 G. These
remaining fluctuations play no role for the dynamics and the residual level fluctuations,
δE = 2qBδB ≈ 140 mHz/mG can be neglected. The same is true for the magnetic field
gradient over the lattice, which is of the same order of magnitude as depicted in Figure 4.

Most of the experiments were performed at either B = 1.64 G or B = 0.91 G. To
compensate for the quadratic Zeeman effect and mean-field shift we chose Ω/2π =
7.56 kHz(5.47 kHz) and ∆/2π = 100 kHz(190 kHz) for B = 1.64 G(0.91 G). In both cases,
we see no evidence for level shifts due to other couplings, e.g. the ones indicated by dashed,
grey arrows in the left panel of Figure 5.
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2 Spin-exchange as beam splitter

2 Spin-exchange as beam splitter
Now we have the experimental tools at hand to tailor the spin-exchange Hamiltonian such
that it constitutes a well isolated non-linear beam splitter. This non-linear beam splitter
will provide the basis of the SU(1,1) interferometer. In this section we study its effect in
detail.

2.1 Non-linear amplification
The Hamiltonian Hinel = (c2 − c0)N0a

†
↓a
†
↑ + h.c. constitutes a parametric amplifier [14, 15].

Its action has extensively been studied in Quantum optics [34–36].

2.1.1 SU(1,1) mode transformation

As an amplifier its effect can be described by a Bogoliubov mode transformation on
the operators a↓ and a↑, mixing annihilation and creation operators [37]. The general
transformation has the form [36]a↑

a†↓

 =
(
α β
γ δ

)a′↑
a′†↓

 (6)

The transformation is required to maintain the bosonic nature of the modes, viz [a↑(↓), a†↑(↓)] =
1. This enforces α = δ∗, β = γ∗ and |α|2 − |β|2 = 1 (unit determinant). A possible
parametrization readsa↑

a†↓

 =
(

cosh r eiϕ sinh r
e−iϕ sinh r cosh r

)a′↑
a′†↓

 = U(ϕ)
a′↑
a′†↓

 (7)

As it turns out [8], ϕ can be controlled by changing the phase of the pump mode. This
pump mode is assumed to be in a strong coherent field, such that it is not affected
by removing atoms. Then the transformation only acts on the operators of the side
modes. The parameter r is proportional to the evolution time tevo and nonlinearity of the
process, r = (c2 − c0)N0tevo. This mode transformation somewhat resembles a Lorentz-
transformation [38, 39]. The matrix U(ϕ) belongs to the group of SU(1,1), which for real
matrix elements is isomorph to the group of Lorentz transformations in two dimensions.

A passive beam splitter as in the Mach-Zehnder interferometer is described by the
symmetry group of SU(2), which requires the conservation of atom number (equivalent to
a constant L2). Since the transformation (7) only considers the side modes, it seemingly

a
′
↑

a
′
↑

pumppump

a
′†
↓

a
′†
↓ a↑

a↑

pumppump

a
†
↓

a
†
↓ HinelHinel

Figure 7: Mode-transformation on the operators performed by the Hamiltonian
Hinel. The Hamiltonian for spin-changing collisions (left hand side) is the same as for
parametric down conversion in optics by means of non-linear crystals. We will use both
representations interchangeably.

10



2 Spin-exchange as beam splitter

violates energy and particle conservation. Its action is described by a constant Lz rather
than L2. This means that the mean number of atoms in each side mode is identical,
〈n〉 = 〈a†↑a↑〉 = 〈a†↓a↓〉. It can easily be calculated to be

〈n〉 = sinh2 r (8)

which describes exponential growth of the side mode population versus evolution time tevo.
The mode transformation can be rewritten in experimentally direct accessible quantities:

U(ϕ) =


√

1 + 〈n〉 eiϕ
√
〈n〉

e−iϕ
√
〈n〉

√
1 + 〈n〉


2.1.2 Experimental characterization

In Figure 9 (left panel) we study the exponential growth of the side mode population
during spin-changing collisions: For short evolution times the experimental curve follows
the theory expectation. For longer evolution times, however, further grow of the side
modes eventually stops and the side mode population saturates. The onset of this can be
seen for evolution times exceeding 280 ms where theory prediction and observed population
clearly differ for the central lattice site (plot marker ©).

This saturation is due to the break down of the low-depletion approximation: In the
course of the parametric amplifier more and more atoms are removed from the pump
mode and put into the side modes. Then the non-linearity r ∝ N0 decreases, which slows
down the exponential growth. Additionally, the mean-field shift, given by the term Hel

changes and creates an energy difference during the evolution time which translates into a
phase mismatch. We can estimate this energy difference by requiring that a significant
phase mismatch occurs at evolution times around 500 ms (at this point a peak side mode
population is reached which for further times decreases again), ∆Et ≈ 1/2. Then the
change of the mean-field shift amounts to ∆E = O(1 Hz). Thus already very small energy
differences become relevant due to the long evolution time. A fact which will become
important in the further discussion.

The exponent r describing the non-linearity is extracted for each lattice site individually
in the right panel. It is expected to be proportional to the number of atoms N0 in each
particular site. As can be seen, this relation holds, but the proportionality factor is
different for the centre and wings of the optical lattice. We attribute this to a power
gradient of the microwave. The energy level shift due to microwave dressing varies over
the extent of the optical lattice (see Figure 6) and perfect compensation of the quadratic
Zeeman shift (and Hel) is not achieved everywhere, as can already be seen by naked eye
in the raw data, Figure 8. Similarly to the case considered before this energy difference
yields a phase mismatch which slows down the spin-exchange. A direct comparison of the
spin-changing collisions for a central lattice site (©) and one at the edge (�) is given in
the left panel of Figure 9

Since the energy difference’s origin is external it already affects the process in the
very beginning, even when it is still in the low-depletion limit. To minimize this effect
we changed the magnetic field from B = 1.64 G to B = 0.91 G and thereby reduced the
quadratic Zeeman effect by a factor of three. To overcome this energy less power (only
a third) is needed for microwave dressing, therefore reducing the inhomogeneity. The
spin-changing collisions then take place over a wider range of lattice sites and more data
can be collected.
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Figure 8: Typical experimental pictures of spin-changing collisions after an
evolution time of 260 ms (upper panel) and 360 ms. A strong magnetic field gradient in
z-direction serves as a Stern-Gerlach pulse to spatially separate the three mF substates.
The |+1〉 (|−1〉) state is torn upwards (downwards), while the |0〉 states experiences no
force. The absorption imaging after about 1 ms time of flight is irrespective of the magnetic
substate. Only atoms in the centre around lattice site 14 participate in the spin-exchange.
A microwave power gradient over the cloud prevents the other lattice sites from being
shifted into resonance, c.f. Figure 6
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Figure 9: Dynamics of spin-changing collisions. left) For times up to tevo ≈ 250 ms
we observe no deviation from an exponential growth of the side mode atoms as expected
from theory. However the exponent, describing the growth shows a spatial dependence.
Besides the spatial dependence due to a microwave power gradient the proportionality to
the pump mode atom number N0 still holds as shown in the right) panel. The numbers
indicate which specific lattice site (for a definition, c.f. Figure 8) has been analyzed.
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Figure 10: The spin-changing collisions produce a state which is highly fluc-
tuating in atom number. Left) Variance versus mean atom number inside the
interferometer for different evolution times. The line shows the theory prediction,
〈(∆2n)2〉 = ns(ns + 1), where ns = 2 〈n〉 Deviations become apparent only for evolu-
tion times larger than 280 ms. Right) Histogram of observed side mode population n
after spin-changing collisions for 160 ms. The black line is a fit to theory (thermal state,
equation (10)) also taking into account detection noise by convolution with a Gaussian.
The detection noise is σ = 5.5 atoms and has been determined independently.

2.2 Generation of entanglement
By exploiting quantum effects such as entanglement the standard quantum limit can be
surpassed [5, 40].

2.2.1 Two-mode squeezed vacuum and twin-atom states

The parametric amplifier entangles the two side modes, leaving their atom number difference
constant. The quantum state after the spin-changing collisions is given by [34]:

|Ψ〉 = 1
tanh r

∑
n

einϕ tanhn r |n〉↑ |n〉↓ (9)

where |n〉↑(↓) denotes the Fock state with exactly n atoms in mode |+1〉 (|−1〉), which
also constitute the Schmidt-basis in this case. Since there are infinitely many Schmidt
coefficients this is a highly entangled state also known as two-mode squeezed vacuum
[41, 42]

2.2.2 Looking at a single mode

From the Schmidt decomposition follows that tracing out one mode leaves the other mode
|n〉 in a mixed state described by the density matrix

ρ = 1
tanh2 r

∑
n

tanh2n r |n〉 〈n| =
∑
n

〈n〉n

(1 + 〈n〉)n+1 |n〉 〈n| (10)

This density matrix describes a thermal state with mean atom number 〈n〉 = sinh2 r
and variance 〈(∆n)2〉 = 〈n〉 (〈n〉 + 1). In Figure 10 we compare these expectations to
experimental results and show that they hold very well for not too long evolution times.
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|vac〉

pump

|vac〉 Hinel

|Ψ〉 〈Ψ|

ρ

Figure 11: Entanglement. The spin-exchange produces the perfectly correlated state
|Ψ〉, called two-mode squeezed vacuum. While the entire system is in a pure state |Ψ〉 〈Ψ|
and consequently bears no entropy, its individual modes are in a thermal and thus mixed
states described by a density matrix ρ, equation (10). This is the hallmark of entanglement.
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3 SU(1,1) interferometer

3 SU(1,1) interferometer
Substituting the beam splitters of a Mach-Zehnder interferometer with parametric ampli-
fiers yields the so-called SU(1,1) Interferometer as depicted in Figure 12.

It has been shown theoretically that in such an interferometer the phase difference ϕs
accumulated between the upper and lower arm can be estimated at the Heisenberg limit.
The number of atoms ns sensing the phase shift ϕs is given by the average number of atoms
in both side-modes, ns = 2 〈n〉. The Heisenberg-limit therefore reads 〈(∆ϕs)2〉 = O(1/n2

s).

3.1 Working principle: Undoing spin-changing collisions
For an individual parametric amplifier the pump mode merely provides the necessary
energy and particle resources for amplification of the initially empty side-modes. In this
setup, however, the pump mode plays a more involved role. Changing the phase of the
pump mode in between both parametric amplifiers sets the second process to reverse the
effect of the first one.

Even a small differential phase accrued by only few atoms in the side-modes foils the
reversibility and leaves the output state different from the otherwise perfectly reconstructed
input vacuum state. It is this increased vulnerability for phase mismatches of the second
non-linear process which yields Heisenberg limited phase sensitivity. Unfortunately, this
implies that enhanced phase estimation only works around ϕs = 0. To overcome this
drawback one can in principle introduce an additional, known phase shift into the other
arm until the differential phase shift is balanced, thereby implementing a feed-back on the
interferometer’s set-point [8].

3.1.1 Experimental control over the pump phase

The key idea of the SU(1,1) interferometer is to reverse the dynamics of the second
parametric amplifier. This is done by introducing a phase shift of π/2 into the otherwise
common pump mode, amounting to the change a0 → ia0. The Hamiltonian Hinel ∝
a†0a

†
0a↑a↓ + h.c. changes sign under this transformation which means that time evolution is

reversed: U(t) = eiHt → eiH(−t) = U(−t).
By turning off the microwave dressing, the second order Zeeman effect is not com-

pensated and the conditions for the spin-exchange are not met any longer. Then the
spin-changing collisions stop and the energy difference between the |0〉 and |±1〉 modes
yields a differential phase. This phase is given by ϕ0 = ∆Etphase, if tphase is the duration

+π

2

ϕs

|vac〉

|vac〉

pump

n

N

PAPA

Figure 12: Setup of an SU(1,1) Interferometer. The beam splitters of a Mach-
Zehnder interferometer are substituted by parametric amplifiers (PA). The second para-
metric amplifier is set to reverse the effect of the first by introducing a phase shift of π/2
in the pump mode. Heisenberg-limited performance is expected only around ϕs = 0.
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∆E

|−1〉 |+1〉

|0〉

Figure 13: Experimental control over the pump-phase. Spin-exchange is initiated
by dressing the |0〉 level to be energetically as high as the side-mode levels |±1〉. Once the
dressing microwave is turned off the energy mismatch ∆E yields to a differential phase ϕ0
building up versus time tphase as ϕ0 = ∆Etphase. The energy difference is almost completely
given by the second order Zeeman shift, ∆E = qB2, since the mean-field shift can be
neglected in the low depletion limit.

where the energy difference ∆E is maintained. Since the mean-field shift can be neglected
the energy difference ∆E is given by the second order Zeeman effect, ∆E = HB2 = qB2.
The linear Zeeman effect is irrelevant due to the special superposition of |+1〉 and |−1〉
showing up in equation (9).

3.1.2 Which phase is actually being measured?

The first parametric amplifier produces the two-mode squeezed vacuum state |Ψ〉 of
equation (9). The phase shift ϕs between both arms then shows up in all powers of eiϕs ,
making it very distinct from the state |Ψ〉 already for small phase changes ϕs. Since the
second parametric amplifier is set to undo the dynamics for state |Ψ〉 it fails so for non-zero
phase shift ϕs. This is a very general concept and has already been applied to prove the
entanglement production of particular processes in ion traps [43] and optics [44].

The entire SU(1,1) interferometer as shown in Figure 12 performs the transformationa↑
a†↓

 = U(π/2)
(

1 0
0 eiϕs

)
U(0)

a↑
a†↓


However, from a mathematical point of view it is somewhat artificial to distinguish

between the phase ϕs = ϕ↑ − ϕ↓ with ϕ↑(↓) denoting the phase of mode |+1〉 (|−1〉),
and the pump mode phase ϕ0. This becomes obvious when considering the underlying
Hamiltonian Hinel ∝ eiϕa0a0a

†
↓a
†
↑+h.c., where the only relevant phase which enters is given

by ϕ = (2ϕ0 − ϕ↑ − ϕ↓). Although conceptually quite different, the same interferometer is
described by the much simpler transformationa↑

a†↓

 = U(ϕ)U(0)
a↑
a†↓

 (11)

This transformation explicitly reads

a↑ = µa↑ + νa†↓ (12)
a↓ = νa†↑ + µa↓ (13)

with µ = n(1 + eiϕ) + 1 and ν =
√
n(n+ 1)(1 + eiϕ). For ϕ = π we have µ = 1 and

ν = 0, such that the initial vacuum is restored. Also |ν|2 = 2n(n + 1)(1 + cosϕ) and
|µ|2 = |ν|2 + 1, as expected for an SU(1,1) transformation [45].
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Figure 14: Experimental realization of the SU(1,1) interferometer. The upper
panel a) shows the schematic adopted from the original optical proposal. Panel b) shows
the timing diagram of the microwave power ∝ Ω2 used for dressing. It is turned on for time
tevo to facilitate spin-changing collisions and turned off for time tphase in between. Panel c)
shows the involved energy levels. The Rabi frequency Ω used for microwave dressing is
chosen such that it compensates the level shift due to the quadratic Zeeman effect. The
phase ϕ builds up via the energy difference ∆E during time tphase without compensating
microwave, ϕ = 2∆Etphase. The number of atoms inside the interferometer is 2n. This
number gets non-linearly amplified by a second period of spin-changing collisions and the
atom number N is measured in the end.

3.1.3 Experimental realization

Since we have direct experimental control over the pump phase ϕ0, the transformation (11)
can directly be implemented as depicted in Figure 14. The interpretation, however, changes
slightly: In its original proposal the interferometer directly resembles the Mach-Zehnder
interferometer since it had only two arms and measures its relative phase difference ϕs. It
is then intuitively clear that the phase sensing atoms are those in the sidearms while those
in the pump mode just ensure functionality but do not intervene otherwise.

In this configuration, however, the phase of the pump mode is scanned and the output
signal is recorded. Still the side-mode population of just a few atoms influences the observed
fringe and we can use this setup nonetheless to measure the phase shift experienced by
atoms in the side-mode. This is similar to what [8] mentioned by a feedback, i.e. to
introduce a known phase shift into the other arm to shift the interferometer’s working
point to its maximal sensitivity. We do not shift one of the interferometer arms in phase
to level the differential phase however, but instead introduce a known phase shift into the
pump mode.
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3.2 Observed interferometry fringe
The output signal of the interferometer is given by the mean number of atoms in the
side-modes 〈N〉, see Figure 14. This is different from the usual SU(2) Mach-Zehnder
interferometer where the total number of atoms is conserved (this corresponds to L2) and
read-out is given by the operator Lz, viz the atom number difference after the last beam
splitter. For the SU(1,1) interferometer the situation is interchanged, since Lz remains
constant. The phase dependent output is then given by

〈N〉 = 〈a†↑a↑〉+ 〈a†↓a↓〉 = 2|ν|2 = ns(ns + 2)(1 + cosϕ) (14)

where ns = 2 〈n〉 is the phase sensing mean atom number inside the interferometer. Due
to the non-linear amplification already very small side-mode populations (as low as a few
atoms on average) inside the interferometer translate into a phase-dependent output.

3.2.1 Importance of a non-depleted pump mode

In Figure 15 we show an experimentally obtained fringe for different evolution times of
the parametric amplifier. In any case, the duration of spin-changing collisions is always
the same for both parametric amplifiers. The ideal theory assumes no pump-depletion
whatsoever and an infinitely large pump mode, allowing the state inside the interferometer
to be a coherent sum of infinitely many twin Fock states. As already seen in Figure
10 deviations from theory arise for evolution times exceeding 250 ms. In the SU(1,1)
interferometer reversibility gets degraded the longer the evolution time and a phase-
independent atom number offset appears. At phase time tphase ≈ 1.8 ms a phase of ϕ = π
is accumulated. Via the relation ϕ = 2ϕ0 = 2∆Etphase we can estimate the ∆E to be given
by the second order Zeeman shift exclusively. At this stage we observe no difference in
frequency for different side-mode populations, indicating an unobservable small mean-field
shift as already taken for granted before.

3.2.2 Frequency of phase evolution

The frequency of the observed fringe is given by the energy difference during the phase
time in between both parametric amplifiers. To check this for a wider energy range, we
applied microwave dressing also during the time tphase such that the energy difference could
be varied by changing the microwave detuning ∆ to resonance |1, 0〉 ↔ |2, 0〉. In Figure 16
we show the observed fringe frequencies, extracted from measurements similar to those
shown in Figure 18, including four full periods of the fringe. The observed frequencies
follow the expected law for microwave dressing, equation (5), and the fitted slope agrees
well with independent measurements of the resonant Rabi frequency Ω.

3.3 Sensitivity
The SU(1,1) interferometer has especially been discussed in the context of improved phase
sensitivity.

18



3 SU(1,1) interferometer

 

 

180 ms
160 ms
140 ms
120 ms

Phase time tphase / ms

S
id

e
m

o
d
e

p
op

u
la

ti
on

〈N
〉

2 4
0

20

40

60

80

100

Figure 15: Interferometer fringe for different evolution times. For longer evo-
lution times reversibility is diminished and a phase independent atom offset appears.
Five adjacent wells have been averaged for increased statistics without any atom number
post-selection. The frequency of each fringe is about 390 Hz consistent with an energy
difference exclusively due to the second order Zeeman effect at magnetic field B = 1.64 G.
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Figure 16: Frequency of the output fringe. During phase evolution microwave
dressing is usually turned off and the frequency of the fringe is given by twice the
energy difference due to the quadratic Zeeman effect. Here we additionally dress the |0〉
mode during phase evolution to address various energy differences. The observed fringe
frequency is in accordance with the theoretical expectation: The fit to the data gives a
Ω/2π = 7.2± 0.5 kHz, which agrees with independent measurements via resonant Rabi
flopping. For no additional microwave dressing, i.e. the scenario in which the fringe of
Figure 15 has been recorded, the fit predicts a frequency of f = 267 . . . 389 Hz compliant
with our experimental observation.
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3.3.1 Theory

The sensitivity 〈(∆ϕ)2〉 of the interferometer can be calculated via error propagation
[8, 45],

〈(∆ϕ)2〉 = 〈(∆N)2〉
/∣∣∣∣∣∂ 〈N〉∂ϕ

∣∣∣∣∣
2

(15)

and thus depends on both, the variance 〈(∆N)2〉 of the output signal 〈N〉 as well as its
rate of change with parameter ϕ.

Inserting
∂ 〈N〉
∂ϕ

= ns(ns + 2) sinϕ (16)

and

〈(∆N)2〉 = 4|ν|2|µ|2 = ns(ns + 2)(1 + cosϕ)
[
2 + ns(ns + 2)(1 + cosϕ)

]
= 2ns(ns + 2)(1 + cosϕ) +

[
ns(ns + 2)(1 + cosϕ)

]2 (17)

yields

〈(∆ϕ)2〉 = 1
1− cosϕ

[
2

ns(ns + 2) + (1 + cosϕ)
]

(18)

which proves that Heisenberg scaling is achieved. The Heisenberg limit itself is attained
for large mean atom number ns and only around ϕ = π, as long as the second term in square
brackets does not start to dominate [45]. For small mean atom number ns performance
around ϕ = π is even better than the Heisenberg-limit. The SU(1,1) interferometer thereby
constitutes a somewhat counter intuitive example of increased phase sensitivity around a
fringe minimum, i.e. a dark fringe. At this working point the derivative vanishes and the
sensitivity comprises a division of zero by zero. This makes the observable sensitivity very
susceptible towards excess noise. Figure 17 shows the expected sensitivity for ns = 2.5
atoms on average inside the interferometer in the ideal case (dashed grey line) and also
with excess detection noise of σ = 1 atom (black line). The right panel shows the range of
phases ϕ for which Heisenberg-limited performance is expected versus the number of atoms
ns inside the interferometer. This has been estimated by requiring 1 + cosϕ < 2/ns(ns + 2)
as in [45].

In [45] the performance of the SU(1,1) interferometer is studied taking losses into
account: While the absence of internal loss is indispensable, perfect detection is not so
crucial. Detection inefficiencies only affect the reached phase precision by a factor, i.e.
the Heisenberg limit might not be reached, but does not prevent one from still observing
Heisenberg scaling.

The improved sensitivity stems from the fact that signal and variance have different
functional dependencies. While the signal 〈N〉 varies like a cosine, the variance additionally
involves a higher Fourier component, see equation (17). This yields a significantly flatter
behaviour at the minimum, as can be seen in the right panel of Figure 18.

3.3.2 Experimental extraction of the phase sensitivity

To stay within the low-depletion limit we perform spin-changing collisions for 80 ms. In
Figure 19 a) we show the recorded output fringe which comprises about half a period in
order to be able to fit a cosine. From the amplitude of this fit we can extract the mean
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Figure 17: Left) Effect of detection noise on the sensitivity of the SU(1,1) interfer-
ometer. The sensitivity is given by error propagation and thus by the quotient of obtained
variance and the derivative of the output signal as detailed in the text. In theory a division
of zero by zero is encountered at phase ϕ = π, which gives a defined result. Due to finite
detection noise, however, the observed variance is never excactly zero and a singularity
arises due to the division by essentially zero. Right) Heisenberg limited performance is
only expected around ϕ = π. The range of phases ϕ for which this sensitivity is reached
shrinks for greater side-mode population as given by equation (18)

 

 

200ms
140ms

S
id

e
m

o
d
e

p
o
p
u
la

ti
o
n
〈N

〉

time tphase / ms
0 2.5 5 7.5 10

0

25

50

75

100

125

 

 

200ms
140ms

V
a
ri

a
n
ce

〈(
∆
N
)2
〉

time tphase / ms
0 2.5 5 7.5 10
0

2000

4000

6000

8000

Figure 18: Left) SU(1,1) interferometer fringe for two experimental runs with different
evolution times of the beam splitters. The line is a fit to equation (14) with an additional
phase-offset, which will be discussed in Section 3.4. According to the fit, the mean
number of atoms inside the interferometer is ns = 3.9± 0.1 or ns = 5.0± 0.2, respectively.
Although the mean number of atoms differs by only one atom, the two curves can clearly be
distinguished. Right) Observed variance. Error bars have been estimated by a jackknife
procedure, as detailed in the text. The line is a fit to equation (17). The observed
variance for 140 ms of spin-changing collisions in each beam splitter fits better to the
theoretical expectation than the 200 ms one. The flattened behaviour around its minima
is a characteristic of the SU(1,1) interferometer. Fits of the output signal (left) as well as
fits of the output variance (right) yield identical values on the mean atom number inside
the interferometer.
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atom number inside the interferometer which is ns = 2.5± 0.2 atoms, see equation (14).
Even for this small atom number complete reversibility is not achieved at phase ϕ = π.
Additionally, imperfections of the absorption imaging lead to an atom-independent offset
of about two atoms as indicated by the dashed line.

To properly account for detection inefficiencies we performed the same experimental
sequence without spin-changing collisions such that the side-modes are left empty. These
measurements are taken interleaved with the actual SU(1,1) interferometer to also contain
eventual drifts during the experiment. In Figure 20 we show histograms of the observed
atom number for both empty modes |±1〉. The mean atom number clearly differs from
zero and is, furthermore, different in the two regions. This is most likely due to problems
with stray light which we will resolve in future experiments.

More important than the mean atom number is the variance, which is mainly given by
photon shot-noise of the laser beam used for absorption imaging [17]. Phase estimation is
expected to perform best at a fringe minimum where the derivative vanishes and a division
by zero is encountered. This makes it extremely sensitive to any excess noise. We thus
rely on the subtraction of detection noise, which we find to have a Gaussian distribution
and is characterized by its Gaussian width σ.

In Figure 19 b) the resulting detection noise is indicated by the dashed line. While the
variance roughly resembles the squared mean signal it is much flatter in its minimum, i.e.
around phase π. This is expected from theory, equation (17), since the variance includes a
second Fourier component. The black line is a fit to the theory prediction and fits the data
very well. For comparison we also show a cosine fit in grey. Most strikingly it goes below
the value of mere detection-noise, which is unphysical. This is shown in more detail in
panel c). The variance includes about 90 experimental realizations in the same lattice site.
The fit predicts a mean number of atoms inside the interferometer of ns = 2.8± 0.2 atoms
consistent with the results obtained from the mean atom number |N〉 in panel a). Error
bars of the variance are obtained by a jackknife procedure: Here, the error is estimated by
calculating the variance for an ensemble containing all data points but one. One excludes
each data point exactly once and calculates the variance for the remaining ones. Since this
is based on resampling, statistically dependent results are obtained which nevertheless
give an accurate estimate of the error [46].

In panel d) the sensitivity is plotted. The thick black line gives the shot-noise limit
〈(∆ϕ)2〉 = 1/ns for the average atom number ns = 2.5 atoms obtained from the fringe in
panel a). To not overestimate the fringe’s derivative, the fit allows for a constant atom
offset. The error bars take into account both uncertainties in the variance as well as fit
errors of the observed output fringe. Due to the limited number of measurements the
statistical error of the variance is most important in this case. However, we also include
the fit uncertainties of the detection noise. The thin black line is a fit of the theoretically
expected performance, equation (18). The fit yields a mean atom number of ns = 1.5± 0.2
significantly lower than what we expect. Data points in direct proximity to the minimum
at ϕ = π have been excluded since a division by essentially zero makes them extremely
vulnerable to excess noise. The dashed line gives the theory prediction for ns = 2.5 atoms.
The error bars are too large to make any quantitative statement yet.

3.4 Challenges and opportunities in an optical lattice
The one-dimensional optical lattice allows in principle to perform the experiment in
all lattice sites in parallel and independent of each other. However, due to spatial
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(d) phase-sensitivity around ϕ = π

Figure 19: Measured phase sensitivity for an evolution time of 80 ms at magnetic
field B = 0.91 G. Panel a) shows the output fringe. The dashed line indicates an atom offset
due to imperfect detection, which has been determined independently. Still reversibility
at phase π is not reached. From the sinusoidal fit of panel a) a mean atom number of
ns = 2.5 is expected to be inside the interferometer. Panel b) shows the variance 〈(∆N)2〉.
The dashed line indicates detection noise, mainly due to photon shot-noise. The black line
is a fit to equation (17) including two Fourier components, while the grey line indicates a
cosine, unphysically going below the detection noise. c) is a zoom-in of the variance in
the vicinity of the minimum, ϕ = π, illustrating the flattened behaviour. Panel d) shows
the obtained sensitivity. A fit to equation (18) predicts a mean atom number of ns = 1.5
and thus a reduced sensitivity compared to ns = 2.5. However, both curves are within the
error bars (1σ). We post-selected experimental realizations with total atom number in the
range 630± 20 atoms.
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Figure 20: To characterize the detection noise of the absorption imaging we rou-
tinely perform experiments without atoms in the side-modes. These measurements are
taken interleaved with the SU(1,1) interferometer. Due to technical imperfections we
observe a small atom number offset. The left (right) histogram shows the obtained atom
numbers for the |+1〉 (|−1〉) state. The mean atom number, µ = 4.9 or µ = −3, respec-
tively, is clearly different from zero. The width of the Gaussian fit is σ = 6.5± 0.4 atoms
in the left histogram and σ = 6.1± 0.4 atoms in the right one.
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Figure 21: Many Realizations in an optical lattice. Shown is the mean side mode
population 〈N〉 of the SU(1,1) interferometer for different phase times. As already expected
from Figure 9 the amplitude shows a spatial dependence, inherited from the two constituent
periods of spin-changing collisions (tevo = 155 ms). However not only does the amplitude
vary with lattice position, so does the phase. The legend states which particular lattice
site has been analyzed.
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inhomogeneities each well looks markedly different. We demonstrate this in Figure 21,
showing the output fringe for different lattice sites at a magnetic field of B = 0.91 G. Both
the amplitude and the phase of the observed fringes differ from lattice site to lattice site.
The reduced amplitude for sites at the edge of the lattice can be understood easily and is
inherited from the spatial dependence of the spin-changing collisions, c.f. Figure 9. Since
the amplitude represents the number of atoms inside the interferometer, each lattice site
probes the sensitivity for different ns. One of the appealing features is that the atom
number scaling of the sensitivity might thus be measured in parallel. In this perspective
the spatial inhomogeneity might come as a handy feature.

What is more perturbing is the different starting phase of the fringe for different lattice
sites. We attribute this to the failing of the approximation of well separated individual
processes, i.e. an isolated beam splitter at a time and only after that phase evolution.
In reality, phase evolution occurs also during the beam splitter period, as already noted
in section 2.1.2. When discussing the spin-changing collisions we saw that the phase
evolution due to energy mismatches limits the growth of the side modes. Now we can
directly observe this phase mismatch as the starting phase of the fringe. Moreover we can
separate both contributions: The change of the mean-field shift and the power gradient of
the microwave dressing.

The power gradient shows up when comparing neighbouring lattice sites. In the ideal
theory the mean atom number is given by a cosine. In Figure 22 (right panel) we plot
the starting phase of the fringe versus lattice position for an evolution time of 140 ms. In
the ideal case the phase of the cosine is zero. A phase ϕ > 0 denotes an already evolved
fringe, as described by cos(ωtphase + ϕ).

Qualitatively the microwave dressing yields an overcompensation, i.e. the pump mode
is energetically higher than the side modes, for the right part of the lattice. In the left
part the pump mode is energetically lower than the side modes. After the first period of
spin-changing collisions, that is during the time left for phase evolution tphase, the pump
mode is also shifted down in energy. One therefore expects, that the overall observed
phase is greater in the left part of the cloud. This resembles what we observe in Figure 22
(right panel).

The linear dependence of the phase over lattice position is evident. The magnitude of
the slope can be made plausible by a simple estimation: The microwave power gradient
amounts to a change of Rabi frequency by δΩ/2π = 3.9 Hz per lattice site. This translates
into a energy level shift of about δE = 0.15 Hz per lattice site. A rough estimate for the
phase shift would thus read δϕ = 2πδEtevo ≈ π

2 for 10 lattice sites. This is very similar to
what we observe experimentally.

It is remarkable that at the point where the spin-changing collisions work best, i.e.
lattice site 13, c.f. Figure 22, a non-zero phase shift of ≈ π/4 is accrued. We believe that
this is due to the changing mean-field shift: The phase is positive, which means that the
pump mode is energetically lower than the side modes and phase already runs ahead. This
is consistent with a mean field shift interpretation: In the course of the spin-changing
collisions atoms are removed from the pump which is why the pump-level shifts down in
energy.

We checked whether or not the same holds for longer evolution times. We still
find a linear dependence of the phase with lattice site, but the deviations between the
observed slope and our simple estimation are more severe. This might be due to the larger
contribution of mean-field shifts for longer evolution times. In particular, it might not be
possible to separate between the microwave gradient and the mean-field shift as looking at
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the slope and offset separately.

3.4.1 Assessing technical limitations

Since heavy fluctuations are inherent to the spin-changing collisions one needs many
experimental repetitions to extract mean values and variances. Long-term stability is thus
of utmost importance. The spin-exchange relies on both a stable magnetic field as well as
reliable microwave dressing.

We routinely perform Ramsey-type experiments on magnetically sensitive states to
adjust the set point of the electronic feedback loop regulating the magnetic field. This
is necessary since the sensitivity of the magnetic field sensor reacts on slow temperature
drifts. These measurements are interleaved with those of the actual SU(1,1) interferometer.
Long term fluctuations are lower than δB = 0.5 mG and can be considered irrelevant for
the spin-exchange.

The spin-changing collisions are most sensitive to long-term drifts of the microwave
power. Due to the microwave gradient power fluctuations show up as the wandering around
of resonant spin-exchange in the optical lattice: Then the lattice sites participating in
spin-exchange change. For instance if we start with resonant spin-exchange in the centre it
drifts to one edge of the lattice. All experiments are typically performed during an entire
weekend to collect sufficient data and to minimize external influences. Usually, long term
drifts are due to temperature fluctuations. Although the lab’s temperature is actively
stabilized, residual changes lead to a varying microwave power of about 1% over the course
of a weekend, which directly show up in the experimental pictures.

The one-dimensional optical lattice helps us to assess the consequences of long term
drifts of this type: The overall drift has a similar magnitude as the microwave power
gradient when applied over the entire lattice. In the preceding paragraph we explained
why each lattice site looks distinct. In particular the varying starting phase of the output
fringe is bothering. A fluctuating microwave power yields the same phase jitter but in
time instead of lattice site. This might be the reason why we did not observe sub-shot
noise performance so far. For higher side mode population inside the interferometer the
phase jitter becomes even more important, since theory predicts that Heisenberg limited
phase estimation is only possible within a small range around phase ϕ = π, see Figure
17. To check this we built in a microwave power stabilization and are now repeating the
SU(1,1) experiments. First results for the sensitivity look promising and are presented in
the following section.

3.5 Preliminary results with revised microwave dressing
In Figure 23 we show the results of an experiment very much like the one discussed in
Section 3.3.2, but now with revised microwave power stabilization. In direct comparison
to the result obtained before we find a much higher mean atom number ns inside the
interferometer. In both experiments we only considered central lattice sites, in which spin-
exchange worked best and averaged a single lattice site over a weekend of measurements.

A fit to the observed output fringe 〈N〉 (panel a) yields a mean atom number of
ns = 3.9± 0.1 consistent with an independent fit to the variance 〈(∆N)2〉 (panel b), which
predicts ns = 3.8 ± 0.1. Most importantly a fit of the theoretically expected form (18)
with ns as free parameter yields an average atom number of ns = 4.4 ± 1.3 inside the
interferometer. Each data point comprises about 200 individual measurements. Panel d)
shows a zoom-in of the observed sensitivity around ϕ = π. We observe sub-shot noise
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Figure 22: SU(1,1) Interferometer in a one-dimensional lattice. Due to a power
gradient of the applied microwave, each lattice well experiences a slightly different level
shift. a) shows the modulation of the fitted side mode population 〈N〉 obtained after the
interferometer for an evolution time of 140 ms in each beam splitter. b) The phase of
the output fringe varies linearly with lattice position. This data has been extracted from
measurements comprising four full periods of the signal, like those shown in Figure 18

performance. All error bars are 1σ and are reduced compared to the previous measurement
as a result of more experimental realizations shrinking the statistical error on the variance
measurements. This statistical error is predominant.

Pictures of empty side modes (see Figure 24) are recorded interleaved with the SU(1,1)
interferometer, as discussed above. The error on estimating the detection noise is included
into the measurement of the phase sensitivity but play only a minor role.

However, the experimentally observed phase sensitivity relies crucially on the subtrac-
tion of the mean detection noise. Although this contribution is well characterized and
included into the error budget it might appear refutable – especially, since we could not
observe sub-shot noise performance in neighbouring lattice sites. The variance at the
interferometer’s most sensitive point almost fully consists of detection noise and in order
to extract the phase sensitivity we subtract two large numbers yielding almost zero. To
circumvent this problem in the future, we will constrain ourselves to study the scaling
of phase sensitivity with mean atom number inside the interferometer. This is possible
without any subtraction of detection noise [45] and undisputable evidence for Heisenberg
scaling might be given, rather than claiming sensitivity at the Heisenberg limit.
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Figure 23: Measured phase sensitivity for an evolution time of 80 ms at magnetic
field B = 0.91 G with stabilized microwave power. Each data point comprises more than
200 experimental realizations in a single lattice site. We post-selected experimental shots
with total atom number in the range 630 ± 60 atoms, a region much larger than in the
corresponding previous measurement.
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Figure 24: Characterization of detection noise for the measurement of Figure 23.
Around 400 physical realizations with empty side modes have been measured interleaved
with the actual SU(1,1) Interferometer. The left (right) histogram shows the observed atom
number for state |+1〉 (|−1〉). The Gaussian fit gives a mean value of µ = 4.2± 0.2 atoms
for state |1〉 and µ = 0.2 ± 0.2 atoms for state |−1〉. The atom number independent
detection noise is given by its Gaussian width. We find σ = 5.0 ± 0.2 for the left and
σ = 4.5± 0.2 for the right histogram.
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4 Outlook
We have presented the implementation of an active SU(1,1) interferometer harnessing spin-
exchange in a Bose-Einstein condensate. A controlled period of spin-changing collisions
acts as an active beam splitter. During this time entangled atom pairs are produced. By
accessing the differential phase the spin-changing collisions have been inverted and a beam
combiner has been implemented. We characterized the individual processes as well as the
overall performance of the SU(1,1) interferometer. Both the beam splitter as well as the
beam combiner are non-linear elements.

The SU(1,1) interferometer has been studied in particular with focus on its phase
sensitivity. Only very recently has such an interferometer been realized with photons,
but in a purely classical framework with no access to phase sensitivity [47]. We observed
phase sensitivity exceeding the classical shot-noise limit in accordance with the theoretical
prediction. However a systematic study is still pending and will be the focus of future work.
In particular we want to investigate the phase sensitivity for different mean atom numbers
inside the interferometer. The experimentally obtained phase sensitivity relies crucially on
the subtraction of detection noise and performance at the Heisenberg limit 〈(∆ϕ)2〉 = 1/n2

s

can only be inferred. The weaker statement of Heisenberg scaling, 〈(∆ϕ)2〉 ∝ 1/n2
s,

however, is directly accessible even with imperfect detection. So far the reasons for not
observing sub-shot noise performance in the entire optical lattice remain unresolved, but
we believe that compelling evidence for Heisenberg scaling can be obtained in this system.

In a next step we want to realize the SU(1,1) interferometer in its original proposal.
Instead of varying the phase of the pump mode as we did in this proof-of-principle scheme
we intend to introduce a differential phase between the side modes by applying microwave
dressing to one of the arms. Then the pump mode is only shifted by a constant phase of
π/2 and the sensitivity can be recorded by varying the phase ϕs between both side modes.

The ability to observe already small average atom numbers (on the order of one
atom per arm) inside the interferometer is due to the non-linear amplifiers. Instead of
incorporating these into an interferometer we are also considering to utilize them in general
for non-linear read out. It is planned to improve our current setup with single atom
resolution [48].

In quantum optics parametric down-conversion opened up a cornucopia of new per-
spectives: Experiments questioning the foundations of quantum mechanics arose from it
as well as it constitutes the corner stone for applications of photonic entanglement [42, 49].
The same might become true for spin-exchange generating entanglement in the realm of
massive particles. For instance EPR correlations [50, 51] and Bell’s inequality [49] might
become experimentally accessible.
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