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Abstract

吀�e ability to manipulate cold atoms has been constantly improved over the past three decades
in an endeavour to achieve the best control and the best detection of these particles. Atom-light
interaction has proven fundamental for the cooling and trapping of neutral atoms and several
detection techniques have been developed, including absorption and fluorescence imaging. Here
we present a detection technique based on fluorescence imaging, which is able to reach the ultimate
limit of single-atom resolution for mesoscopic samples of up to 1200 particles. In order to render
the detection sensitive to multiple hyperfine states of the atomic system, we developed a novel
hybrid trap in form of a dissipative double-well potential. 吀�is allows the accurate determination of
the difference in the hyperfine state population for samples with up to 500 particles. Furthermore,
by varying the potential barrier height between the two sites of the double-well, with this unique
system it is possible to measure hopping rates over five orders of magnitude. We confirmArrhenius’
law for small barriers and find that particle exchange induced by light-assisted collisions dominates
the dynamics for large barriers. Finally, we observe the stochastic resonance effect, in which
a weak external driving of the double-well system is amplified by the addition of thermal noise.
Accurate measurements enable the extraction of both amplitude and phase lag of the linear system
response and we see indications of a non-linear response as well as effects of intra-well motion.

Zusammenfassung

Die Fähigkeit kalte Atome zu manipulieren wurde über die vergangenen drei Jahrzehnte immer
wieder verbessert, in dem Bestreben die beste Kontrolle und die beste Detektion dieser Teilchen
zu erreichen. Atom-Licht-Wechselwirkung erwies sich als fundamental für das Kühlen und Fan-
gen von neutralen Atomen und verschiedene Detektionstechniken wurden entwickelt, inklusive
Absorptions- und Fluoreszenzbildgebung. Hier präsentieren wir eine Detektionstechnik, die auf
Fluoreszenzbildgebung basiert und in der Lage ist das ultimative Limit der Einzelatomauflösung für
mesoskopische Probenmit bis zu 1200 Teilchen zu erreichen. Um die Detektion sensitiv auf mehrere
Hyperfeinzustände des atomaren Systems zu machen, entwickelten wir eine neuartige Hybridfalle
in Form eines dissipativen Doppelmuldenpotentials. Dies erlaubt die genaue Bestimmung der
Differenz der Hyperfeinzustandspopulation für Proben mit bis zu 500 Teilchen. Des Weiteren ist es
mit diesem einzigartigen System möglich, durch das Variieren der Höhe der Potentialbarriere zwi-
schen den zwei Minima des Doppeltopfs, Hüpfraten über fünf Größenordnungen zu messen. Wir
bestätigen das Arrhenius-Gesetz für kleine Barrieren und stellen fest, dass Teilchenaustausch indu-
ziert durch lichtunterstützte Kollisionen die Dynamik bei hohen Barrieren dominieren. Schließlich
beobachten wir den Effekt der stochastischen Resonanz, bei der ein schwaches externes Treiben
des Doppeltopfsystems durch zusätzliches thermisches Rauschen verstärkt wird. Präzise Messun-
gen ermöglichen die Bestimmung sowohl der Amplitude als auch der Phasenverzögerung der
linearen Systemantwort und wir sehen Indikationen einer nicht-linearen Antwort sowie Effekte
von Bewegung innerhalb einer Senke.
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1 Introduction

Since the advent of laser cooling and trapping of neutral atoms in the 1980s, the manipulation of
cold atoms has been steadily refined [1–3]. 吀�e history of laser cooling begins with the proposition
by 吀�eodor Hänsch in 1975 to cool atomic gases by laser radiation [4]. Four years later, laser
cooling of atoms was elaborated more quantitatively [5], however, it took another six years before
the first experimental realisation [6]. Shortly a昀�er, trapping of atoms via optical dipole force [7] as
well as magneto-optical trapping [8] was presented. 吀�e observed temperatures were considerably
lower than expected from Doppler cooling theory, which required a new theoretical description
based on polarisation gradient cooling [9].

We started out with the goal to find the best particle number detector for mesoscopic samples
of atomic gases. Single-particle resolution in atom number detection, i. e. atom counting, is crucial
in a number of ways. Spin-squeezing and entanglement in Bose-Einstein condensates has been
shown [10, 11], as well as the resulting improvement of atom interferometry [12, 13]. Having a
detector with single-particle resolution would eliminate technical detection noise, thereby fully
harnessing the quantum resource of the interferometer, not only going beyond the standard
quantum limit of the interferometric phase scaling with the atom number as Δ𝜙 ∼ 1/

√
𝑁 , but

towards the Heisenberg limit Δ𝜙 ∼ 1/𝑁 .
Single-particle resolution is required for stringent tests of quantum mechanics, such as the

Einstein-Podolsky-Rosen (EPR) paradox [14] and violations of quantum realism. 吀�is leads to
the Bell inequality [15, 16], which has been first experimentally tested with photons in 1982
by Alain Aspect et al. [17] and later with strict condition of locality by sufficient spatial sepa-
ration [18]. Bell’s inequality has been tested with ions overcoming the detection loophole [19],
however, an experiment with neutral atoms is pending. Furthermore, single-atom resolution
would allow the detection of mesoscopic highly entangled quantum states like the Greenberger-
Horne-Zeilinger (GHZ) state [20], the NOON state [21] or the W state [22]. With these one could
study the effect of decoherence on many-particle entanglement. Photonic NOON states have been
observed [23], however the mesoscopic atomic counterpart is yet to be realised and detected. Also
with photons EPR-steering has been experimentally achieved [24], while so far on the neutral
ma琀�er side, continuous-variable entanglement [25] has been shown. While it is difficult to create
mesoscopic samples of entangled atoms, we show that the detection is within reach.

Using a magneto-optical trap single atoms have been observed [26–28], as well as a few atoms
simultaneously [29], via fluorescence imaging. 吀�is technique was successfully extended to optical
la琀�ices [30–34] and cavities [35, 36]. Freely propagating atoms could be detected in a time-of-flight
experiment [37, 38]. Lately, more exotic detection techniques like photoionisation of single atoms
were demonstrated [39]. It was even shown that absorption imaging can be used to detect a single
atom [40].

Detecting mesoscopic atom numbers, however, is a different story. 吀�e most common technique
for this is absorption imaging [41], which can be improved by image processing [42] to a resolution
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1 Introduction

of about four atoms. Cavity based detection of mesoscopic samples has been shown [43], however,
accurate atom counting is not possible due to inhomogeneous coupling of the standing-wave light
to the atoms. We argue that fluorescence imaging in a magneto-optical trap is a very powerful
approach, because of the large trap depth and the long lifetime, which enables ample integration
time.

吀�e probabilistic preparation of atom numbers is a topic of ongoing research [44, 45]. While
sub-Poissonian loading of single atoms in dipole trap has been feasible for quite some time [46,
47], the focus has turned towards the access to full counting statistics for asymmetric noise,
i. e. non-Gaussian distribution for which the third and higher cumulants do not vanish. We present
a device which is able to detect Fock states and prepare a mesoscopic ensemble of thermal atoms
with a defined atom number.

吀�e requirement of state-selectivity in atom counting lead us to the concept of a novel hybrid trap,
enabling magneto-optical trapping in two spatially separated regions. 吀�is dissipative double-well
system allows the study of intra- and inter-well dynamics with a high level of control over the
potential landscape and the temperature of the system. Our primary observations are described
by reaction-rate theory [48, 49] which can also be applied to chemical processes. 吀�e system is
enriched by the manifestation of cold collisions [50]. By changing the potential barrier between
the two sites, we gain access to different energy scales. We are able to freeze out thermal hopping
and enter a regime where collisional hopping starts to dominate the many-particle dynamics,
while single-atom resolution allows us to measure the Poisson statistics of very rare hopping
events for few particles in the system.

吀�e dissipative double-well potential also allows us to investigate the stochastic resonance
effect, whereby a weak external signal is amplified, i. e. the signal-to-noise ratio is improved, by
the addition of noise [51]. Historically, the concept has been used to explain the incidence of ice
ages [52], yet it has been since become evident that the stochastic resonance effect is so robust
and general to bistable systems that it is found in a multitude of instances. Stochastic resonances
are present in biological systems [53, 54] and can be beneficial for medical science [55]. Like in
evolution, or in fact science itself, increasing the level of noise can sometimes yield new results
more efficiently.

In Chapter 2 we introduce the concepts of laser cooling and trapping, relevant both for flu-
orescence imaging as well as the creation of a novel trap configuration in which we study the
dynamics of cold atoms. Chapter 3 describes the accurate detection of mesoscopic atom numbers,
including a model of the different noise contributions, which was published in [56]. 吀�e extension
to state-selective atom counting is done in Chapter 4, where the dissipative double-well potential is
introduced. In Chapter 5 we investigate the dynamics of cold atoms in this potential by measuring
the hopping rates between the two sites and comparing those to reaction-rate theory. Finally, in
Chapter 6, the stochastic resonance effect is introduced and experimentally demonstrated for the
first time in such a system.
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2 Laser cooling and trapping of neutral
atoms

In this chapter we establish the basic concepts of atom-light interactions that are necessary
to understand for both manipulating atoms with light, i. e. cooling and trapping the neutral
particles, as well as detecting them via resonant fluorescence imaging. We will discuss Doppler
and sub-Doppler cooling, as well as optical molasses, leading to atomic samples at low temperatures,
which is beneficial for the detection. A crucial aspect of particle number detection via fluorescence
imaging is the trapping of the atoms, at first realised by magneto-optical forces. In combination
with the radiative force of an additional single laser beam, this enables the sequential state-selective
detection of the atom number in an ensemble. Simultaneous state-selective detection, as well as
investigating reaction rates and the stochastic resonance effect, require the addition of an optical
dipole force, which realises a potential barrier.

Let us assume a two-level atomic system with states |1⟩ and |2⟩ having energies 𝐸1 and 𝐸2,
respectively. 吀�e resonant absorption of a photon from a laser beam occurs when the condition

𝐸2 − 𝐸1 = ℏ𝜔, (2.1)

is met, where 𝜔 is the light frequency. 吀�e inverse process, spontaneous emission of a photon by
de-excitation of the atom, occurs on average a昀�er a typical radiative lifetime of the excited state.
Spontaneous emission can be understood as a stimulated emission process randomly initiated by
a vacuum photon. Considering the two-level approximation instead of the complex level structure
of a real atomic system is valid when Eqn. 2.1 is fulfilled. 吀�e classical picture is that the light
frequency 𝜔 is tuned to the frequency (𝐸2 − 𝐸1)/ℏ of the induced dipole oscillation of the atom,
while all other transitions are off-resonant.

We can allow for small deviations from the strict resonance condition by se琀�ing 𝜔 = 𝜔0 + 𝛿,
where 𝛿 ≪ 𝜔0 is the detuning of the laser frequency 𝜔 with respect to the atomic transition 𝜔0.
吀�e time-dependent Schrödinger equation for the two-level system reads

�̂�Ψ = 𝑖ℏ𝜕Ψ
𝜕𝑡

, (2.2)

where the Hamiltonian can be split into a part which describes the unperturbed atom and one
which describes the time-dependent interaction between the light and the atom

�̂� = �̂�0(𝒓) + ̂𝑉 (𝑡). (2.3)

In the two-state approximation, Eqn. 2.2 is solved by

Ψ(𝒓, 𝑡) = 𝑐1(𝑡)𝜓1(𝒓)𝑒−u�u�1u�/ℏ + 𝑐2(𝑡)𝜓2(𝒓)𝑒−u�u�2u�/ℏ, (2.4)
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2 Laser cooling and trapping of neutral atoms

where the stationary properties are described by

�̂�0(𝒓)𝜓u�(𝒓) = 𝐸u�𝜓u�(𝒓), (2.5)

for the two states 𝑖 = 1, 2. 吀�e time evolution of the coefficients is given by

̇𝑐1(𝑡) = − 𝑖
ℏ

(𝑐1(𝑡)𝑉11 + 𝑐2(𝑡)𝑉12𝑒−u�u�0u�) , (2.6)

̇𝑐2(𝑡) = − 𝑖
ℏ

(𝑐1(𝑡)𝑉21𝑒u�u�0u� + 𝑐2(𝑡)𝑉22) , (2.7)

where
𝑉u�u�(𝑡) ≡ ⟨𝑖| ̂𝑉 (𝑡)|𝑗⟩ = ∫ 𝜓∗

u�
̂𝑉 (𝑡)𝜓u� d3𝒓. (2.8)

Semi-classically, we can write the interaction between the light and the atomic dipole as ̂𝑉 (𝑡) =
𝑒𝒓 ⋅ 𝑬(𝑡), where 𝑒 is the magnitude of the electron charge and 𝑬(𝑡) = (𝐸u�, 0, 0) cos(𝜔𝑡) is the
electric field of the light, chosen here with a polarisation along the 𝑥-axis [57]. 吀�is assumes the
dipole approximation 𝒌 ⋅ 𝒓 ≪ 1, where 𝒌 is the wave vector of the laser beam. 吀�e perturbation
matrix elements can be rewri琀�en as

𝑉u�u� = −𝐸u�
2

(𝑒u�u�u� + 𝑒−u�u�u�) 𝜇u�u�, (2.9)

with the dipole matrix element

𝜇u�u� = −𝑒 ∫ 𝜓∗
u�𝑥𝜓u� d3𝒓. (2.10)

In the atomic dipole approximation 𝜇11 = 𝜇22 = 0, since 𝑥 has odd parity. Furthermore, because
the dipole matrix elements are measurable, 𝜇∗

12 = 𝜇21, and thus 𝜇12 = 𝜇21. Eqs. 2.6 and 2.7 can
now be rewri琀�en as

̇𝑐1(𝑡) = 𝑖
2

Ω0 (𝑒u�(u�−u�0)u� + 𝑒−u�(u�+u�0)u�) 𝑐2(𝑡), (2.11)

̇𝑐2(𝑡) = 𝑖
2

Ω0 (𝑒−u�(u�−u�0)u� + 𝑒u�(u�+u�0)u�) 𝑐1(𝑡), (2.12)

with the Rabi frequency Ω0 ≡ |𝜇12𝐸u�/ℏ|. 吀�is set of coupled differential equations can be solved
by making two approximations [58]. First, the rotating-wave approximation neglects rapidly
oscillating terms with ±(𝜔 + 𝜔0), since 𝛿 ≪ (𝜔 + 𝜔0) [59]. Second, we consider for now the
resonant case of 𝛿 = 0, and obtain

̇𝑐1(𝑡) = 𝑖
2

Ω0𝑐2(𝑡), (2.13)

̇𝑐2(𝑡) = 𝑖
2

Ω0𝑐1(𝑡). (2.14)

吀�ese equations can be decoupled and for the starting conditions 𝑐1(0) = 1 and 𝑐2(0) = 0, i. e. the
atom being initially in the ground state, the solution is given by

𝑐1(𝑡) = cos(Ω0𝑡/2), (2.15)
𝑐2(𝑡) = 𝑖 sin(Ω0𝑡/2). (2.16)
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2.1 Doppler cooling

吀�e oscillation between the probabilities to find the electron in state |1⟩ or |2⟩, given by |𝑐1(𝑡)|2
and |𝑐2(𝑡)|2, respectively, is called Rabi flopping. In case of finite detuning 𝛿, one obtains

|𝑐2(𝑡)|2 = Ω2
0

Ω2 sin2(Ω𝑡/2), (2.17)

where Ω = √Ω2
0 + 𝛿2 is the effective Rabi frequency.

If the laser frequency is set correctly, either close to the resonant transition or far detuned, the
light can be used to cool and trap neutral atoms, enabling us to collect the emi琀�ed fluorescence
over a much longer time, compared to a freely propagating atomic sample at room temperature.

2.1 Doppler cooling

In an ensemble of atoms in thermal equilibrium at temperature 𝑇 each particle has a thermal
energy of 1

2𝑘B𝑇 per degree of freedom, where 𝑘B is the Boltzmann constant. Equating the thermal
energy to the particle’s kinetic energy 1

2𝑚𝑣2
u�, we obtain the root-mean-square of the thermal

velocity

𝑣rms
u� = √𝑘B𝑇

𝑚
. (2.18)

Laser cooling relies on a mechanical force to slow down atoms, thereby achieving low tempera-
tures [60]. Such low temperatures have been reached in solid states, however, here we are dealing
with a low density gas of atoms, allowing us to study weakly interacting systems.

Let us consider an atom, moving along the 𝑥-direction with a thermal velocity 𝑣u�, and a
counter-propagating laser beam with frequency 𝜔 = 𝜔0 + 𝛿. Due to the Doppler effect, the
frequency of the laser is shi昀�ed up in the rest frame of the atom. 吀�e resulting frequency is

𝜔′ = 𝜔 (1 + 𝑣u�
𝑐

) ≃ 𝜔0 + 𝛿 + 𝜔0
𝑣u�
𝑐

, (2.19)

assuming that 𝑣u� is much smaller than the speed of light 𝑐. 吀�e shi昀�ed laser frequency is brought
to resonance with the atomic transition, 𝜔′ = 𝜔0, for a detuning 𝛿 = −𝜔0𝑣u�/𝑐. 吀�is holds for
atoms moving in 𝑥-direction, but not in any other direction [4].

Each time the atom absorbs a photon from the laser beam, its momentum is changed by
Δ𝑝u� = −ℎ/𝜆, where 𝜆 is the wavelength of the laser. Eventually, the atom will emit a photon,
typically a昀�er the characteristic lifetime 𝜏 of the excited state. Since the emission can occur in
any direction, on average the momentum transfer from photon re-emission is zero. Hence, the
atom experiences a net frictional force in −𝑥-direction, which can be approximated by

𝐹u� = d𝑝u�
d𝑡

≈ Δ𝑝u�
2𝜏

= − ℎ
2𝜆𝜏

. (2.20)

吀�e factor of two is introduced due to the fact that in this incoherent process the maximum
population of the excited state is 1/2, as will become clear later on.

吀�e optimal detuning, at which the laser frequency resonates with the atomic transition, depends
on the velocity of the particle. 吀�e slower the particle, the smaller the required detuning. Once the
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2 Laser cooling and trapping of neutral atoms

detuning is on the order of the natural linewidth Γ ≡ 1/𝜏 of the transition, the limit of Doppler
cooling is reached. 吀�e minimum thermal energy of the atom can be estimated by 𝑘B𝑇min ∼ ℏΓ,
such that the minimum temperature

𝑇min ∼ ℏ
𝑘B𝜏

(2.21)

is limited by the lifetime of the transition.

2.2 Optical molasses

So far we have used a simple picture in order to intuitively understand the process of laser cooling.
Let us now take a more detailed approach and consider again a laser beam with detuning 𝛿 and an
atom with velocity 𝑣u�. We now also take into account the laser beam intensity 𝐼 . 吀�e net force
on the atom upon interaction with the light is given by the momentum change in each cycle of
absorption and re-emission times the rate at which this process occurs, namely

𝐹u� = −ℏ𝑘 × 𝑅sc(𝐼, 𝛿), (2.22)

where 𝑘 ≡ 2𝜋/𝜆 is the photon wave vector [61]. 吀�e scattering rate 𝑅sc corresponds to the
absorption rate minus the rate of stimulated emission1 and is given by

𝑅sc(𝐼, 𝛿) = Γ
2

( 𝐼/𝐼sat
1 + 𝐼/𝐼sat + 4(𝛿 + 𝑘𝑣u�)2/Γ2 ) , (2.23)

where 𝐼sat is the saturation intensity [62]. For large intensities, 𝐼 → ∞, the sca琀�ering rate
approaches 𝑅sc = Γ/2 as a limit, where we encounter the maximum excited state population of
1/2, which we have introduced earlier. In the low intensity limit, 𝐼/𝐼sat ≪ 1, the sca琀�ering rate
grows linearly with 𝐼 .

We now add a second laser beam in the 𝑥-direction, counter-propagating with the first beam.
吀�e total force acting on the atom is

𝐹u� = 𝐹+ + 𝐹−, (2.24)

where 𝐹± denotes the individual forces arising from the laser beams traveling in ±𝑥-direction.
For cold atoms the thermal velocity is reduced so much that |𝑘𝑣u�| ≪ 𝛿, where the detuning 𝛿 is
now chosen such that it is comparable to Γ, in which case we obtain

𝐹u� = 8ℏ𝑘2𝛿
Γ

( 𝑠0
1 + 𝑠0 + 4𝛿2/Γ2 ) 𝑣u� ≡ −𝛼𝑣u�, (2.25)

with the saturation parameter 𝑠0 = 𝐼/𝐼sat. For a negative detuning, the damping coefficient 𝛼
is positive and the resulting damping is independent of the direction of 𝑣u�. 吀�is effect is called

1In the stimulated emission process, a photon interacts with an atom in its excited state, whereby the light particle is
absorbed and two identical photons are re-emi琀�ed, resulting in a momentum transfer in the opposite direction of
the incident photon.
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2.3 Sub-Doppler cooling

optical molasses, due to the apparent ”viscosity” the atom encounters when moving in the light
field.

To find the temperature limit, we compare the cooling effect of the damping force

(d𝐸
d𝑡

)
cool

= 𝐹u�𝑣u� = −𝛼𝑣2
u� (2.26)

to the heating effect due to repeated absorption and re-emission of photons, given by

(d𝐸
d𝑡

)
heat

=
𝐷u�

𝑚
, (2.27)

where 𝐷u� is the momentum diffusion constant. 吀�e atoms undergo a random walk in momentum
space, where ⟨𝑝u�⟩ = 0, but the second moment does not vanish and is given by ⟨𝑝2

u�⟩ = 2𝑁(ℏ𝑘)2,
with the number of steps 𝑁 = 2𝑅sc𝑡 during the time 𝑡. 吀�e momentum diffusion constant can be
expressed as

𝐷u� ≡ 1
2

d⟨𝑝2
u�⟩

d𝑡
= 4ℏ2𝑘2𝑅sc. (2.28)

Requiring the total energy change, i. e. the sum of the cooling and the heating rate given by
Eqn. 2.26 and 2.27, respectively, to vanish, we obtain

𝐷u�

𝑚
− 𝛼𝑣2

u� = 0 (2.29)

and thus 𝐷u� = 𝑚𝛼𝑣2
u�. Using Eqn. 2.18 to eliminate 𝑣u�, the temperature of the ensemble can be

expressed as

𝑇 =
𝐷u�

𝛼𝑘B
= − ℏΓ

8𝑘B
(1 + 𝑠0 + 4𝛿2/Γ2

𝛿/Γ
) . (2.30)

For small intensities, 𝐼 ≪ 𝐼sat, the lowest temperature is found at a detuning of 𝛿 = −Γ/2 [3].
吀�e so-called Doppler limit is given by

𝑇D = ℏΓ
2𝑘B

≡ ℏ
2𝑘B𝜏

. (2.31)

For laser cooling of 87Rbwe use the |5 2S1/2⟩ ⟷ |5 2P3/2⟩ transition with a lifetime of 𝜏 = 26 ns,
resulting in a Doppler temperature 𝑇D = 146 µK. 吀�is corresponds to a minimum thermal velocity
of 12 cm/s.

2.3 Sub-Doppler cooling

Experiments on sodium [63] and caesium [64] atoms have shown temperatures much lower than
the Doppler limit, indicating that the simple considerations we have made so far omit important
aspects of laser cooling. In order to explain the low temperatures in the experiments, the theory
of polarisation gradient cooling was developed [9, 65, 66].

Let us consider an alkali atom, moving along the 𝑥-direction, with ground state 2S1/2 and
excited state 2P3/2. 吀�e ground state has a total angular momentum of 𝐽 = 1/2, which splits
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2 Laser cooling and trapping of neutral atoms

Figure 2.1: Scheme of the polarisation gradient cooling process. An atom travelling in 𝑥-direction
only absorbs a photon, when it is at the maximum of the spatially oscillating energy
landscape. If the decay from the 𝐽 = 3/2 excited state occurs into the other 𝑚u� state
of the 𝐽 = 1/2 ground state manifold, the total energy of the atom is reduced, and
thus the temperature lowered.

into two Zeeman sub-levels with 𝑚u� = ±1/2. 吀�e atom shall be moving in the light field of two
counter-propagating laser beams. 吀�e interference of the laser beams gives rise to a polarisation
gradient, which is intrinsic to the configuration. 吀�is leads to a periodic spatial modulation of
the multilevel structure of the 2S1/2 ground state, as shown in Fig. 2.1. 吀�e opposite differential
light-shi昀�s of the two sub-levels enable the following process. If the laser detuning is set correctly,
the atom can only absorb a photon when it is a the top of the sinusoidal energy landscape. 吀�e
subsequent decay from the 2P3/2 excited state can either occur into the initial 𝑚u� sub-state or the
other one, which at that position has a lower energy2. If the atom decays into the lower sub-state,
the energy difference is carried away by the emi琀�ed photon and thus the total energy of the atom
is reduced, leading to a cooling effect.

吀�e temperature limit of this process is given by the recoil an atom experiences each time it
emits a photon with momentum ℎ/𝜆. If we equate the minimum thermal energy 1

2𝑘B𝑇r with the
kinetic energy 1

2u�(ℎ/𝜆)2, we obtain the recoil temperature

𝑇r = ℎ2

𝑚𝑘B𝜆2 , (2.32)

which in the case of the D2 transition in 87Rb is 𝑇r = 362 nK. 吀�is corresponds to a recoil velocity
of 𝑣r = ℎ/𝑚𝜆 = 5.9mm/s.

2Selection rules actually favour the energetically lower state, leading to an even more efficient cooling process.
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2.4 Magneto-optical trapping

Figure 2.2: Scheme ofmagneto-optical cooling. (a)吀�e energy of the 𝐽 = 1 excited state of the atom
is shi昀�ed by the magnetic field gradient. In the light field of two counter-propagating
laser beams with opposite circular polarisation this leads to a position dependent
restoring force. In this simplified picture we assume the ground state to have 𝐽 = 0,
without any sub-structure. (b) 吀�e magnetic field gradient is created by a pair of coils in
the anti-Helmholtz configuration, in which the current is flowing in opposite directions.
吀�ree pairs of counter-propagating laser beams evoke cooling and trapping of the
atoms in three dimensions.

2.4 Magneto-optical trapping

吀�e laser cooling technique can be extended to three spatial dimensions by introducing two
additional pairs of counter-propagating laser beams, both orthogonal to the first pair and to each
other. 吀�is configuration alone, however, does not provide any confinement of the atoms, but
merely slows them down. In order to trap the atoms, a position dependent force is required.
For this a magnetic field gradient can be applied, creating a magneto-optical trap (MOT), which
typically has a large volume and a large depth compared to the temperature of the atoms. Let us
consider the one-dimensional case with an atom having a 𝐽 = 0 ground state and a 𝐽 = 1 excited
state. 吀�ere are again two counter-propagating laser beams present, both with the same detuning
and the same intensity, but opposite circular polarisations 𝜎±. Due to the Zeeman effect, the
energy levels are shi昀�ed in a magnetic field 𝐵u� = 𝐵′ ⋅ 𝑥, where 𝐵′ is the magnetic field gradient,
such that the resonance condition for the optical transition to occur is met a different positions
along 𝑥. 吀�e spatially dependent force imbalance between the two laser beams gives rise to a net
restoring force, which pushes the atoms to the centre of the trap, where the net force vanishes, as
depicted in Fig. 2.2. 吀�e total force, comprised of the frictional force from laser cooling and the
restoring force from trapping, can be expanded about the centre of the trap, which yields

𝐹u� ≃ −𝛼𝑣u� − 𝜅𝑥, (2.33)
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2 Laser cooling and trapping of neutral atoms

where 𝛼 is the damping coefficient defined in Eqn. 2.25 and the spring constant is given by

𝜅 = 2𝑘𝜇𝐵′𝑠0
−𝛿Γ

𝛿2 + Γ2/4
, (2.34)

where 𝜇 is the magnetic moment of the excited state [67].
As before, for laser cooling of alkali atoms, the cycling transition |𝐹 = 2⟩ ⟷ |𝐹 ′ = 3⟩ is used.

However, there can be some off-resonant population of the |𝐹 ′ = 2⟩ excited state, followed by
a decay into the |𝐹 = 1⟩ ground state, which is not trapped. In order to prevent the loss of the
atom, a repumping beam is needed, pumping the atom in |𝐹 = 1⟩ back to |𝐹 ′ = 2⟩, from where
it can decay into the |𝐹 = 2⟩ ground state. Among many beneficial properties of a MOT are its
robustness and the relatively large recapture velocities of up to typically 20m/s for rubidium.
Magneto-optical trapping has been first demonstrated in the late 1980s [8, 68] and is still a valuable
technique today.

One can estimate the expected size of theMOT assuming thermal equilibrium3. 吀�e equipartition
theorem then states

𝜅⟨𝑥2⟩ = 𝑘B𝑇 . (2.35)

Using Eqn. 2.34 with a detuning of 𝛿 = −Γ/2, a saturation parameter of 𝑠0 = 1, a typical magnetic
field gradient of 𝐵′ = 0.1Tm−1 and assuming the magnetic moment of the excited state to
be given by Bohr’s magneton, i. e. 𝜇 = 𝜇B, one obtains 𝜅 = 1.5 × 10−17 Nm−1 and a size of
√⟨𝑥2⟩ ∼ 10 µm for a temperature of 𝑇 = 100 µK. 吀�is assumes that the atomic density is small
enough, such that there is no reabsorption of sca琀�ered photons. If the density is high enough, the
gas is no longer non-interacting and light-assisted collisions can occur [70, 71].

2.5 Optical dipole traps

So far we have considered a detuning of the laser frequency comparable to the natural linewidth,
which is close to the resonant transition frequency. We will now investigate a different regime,
where the laser is detuned far from resonance and the atoms experience an optical dipole force. An
electric field 𝑬(𝑡) = (𝐸0, 0, 0)𝑒−u�u�u�, with polarisation chosen here along the 𝑥-axis, induces an
atomic dipole moment 𝒑(𝑡) = (𝑝0, 0, 0)𝑒−u�u�u� oscillating at the driving frequency 𝜔. 吀�e relation
between the amplitude of the dipole moment and the electric field amplitude is given by 𝑝0 = 𝛼𝐸0,
where

𝛼 = 𝑒2

𝑚u�

1
𝜔2

0 − 𝜔2 − 𝑖𝜔Γu�
(2.36)

is the complex polarisability [72], which depends on the classical damping rate

Γu� = 𝑒2𝜔2

6𝜋𝜀0𝑚u�𝑐3 ≡ ( 𝜔
𝜔0

)
2

Γ, (2.37)

where Γ is the on-resonance damping rate. In the semiclassical picture of a two-level atom
interacting with the light field, Γ corresponds to the natural linewidth, i. e. the inverse lifetime of
the excited state.

3吀�is is technically not true, since the MOT is not an isolated system [69].
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2.5 Optical dipole traps

吀�e two main properties of optical dipole traps are the interaction potential

𝑈dip = −1
2

⟨𝒑𝑬⟩ = − 1
2𝜀0𝑐

Re(𝛼)𝐼 (2.38)

and the sca琀�ering rate

Γsc = 1
ℏ𝜀0𝑐

Im(𝛼)𝐼, (2.39)

which both depend on the intensity 𝐼 = 2𝜀0𝑐|𝐸0|2 of the light field. Here we are interested in
the far-detuned case, where Γsc ≪ Γ and the conservative potential 𝑈dip gives rise to an optical
dipole force 𝑭dip = −∇𝑈dip. In the rotating-wave approximation, discussed earlier in this chapter,
we can write

𝑈dip(𝒓) = 3𝜋𝑐2

2𝜔3
0

Γ
Δ

𝐼(𝒓) (2.40)

and

Γsc(𝒓) = 3𝜋𝑐2

2ℏ𝜔3
0

( Γ
Δ

)
2

𝐼(𝒓) ≡ Γ
ℏΔ

𝑈dip(𝒓), (2.41)

where Δ ≡ 𝜔 − 𝜔0 is the detuning of the laser frequency to the resonance [72]. For red detuning,
Δ < 0, the interaction potential is negative and the atoms are a琀�racted to the intensity maximum,
forming an optical dipole trap. However, the idea is to split the magneto-optical trap in two parts,
in which we can count the atoms individually. 吀�erefore we superimpose a focused light-sheet
onto the centre of the MOT. In order to create a potential barrier, fromwhich the atoms are repelled,
we choose a blue detuning, Δ > 0 [73]. Usually it is favourable to use a large detuning, as to
keep the sca琀�ering rate at a minimum. However, since the atoms experience constant cooling in
the MOT, we can decrease the detuning to a few tens of GHz, before the sca琀�ering rate from the
potential barrier starts to contribute significantly, meanwhile achieving the largest barrier height
for a given intensity. 吀�e benefit of blue detuning is that the atoms are in the intensity minimum,
such that the sca琀�ering rate is reduced compared to its maximum value at peak intensity.
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3 Accurate detection of mesoscopic atom
numbers

When it comes to detecting the particle number in experiments with neutral atoms, a widely used
method is absorption imaging. A resonant laser beam is directed onto the atomic cloud, where
part of the light is sca琀�ered and the reduced transmission is used to infer the atomic density. 吀�is
method is favourable for large atom numbers (∼ 104 and higher), especially in combination with
time-of-flight, which reduces the optical density. Due to the short imaging pulses on the order of a
few µs, a certain degree of spatial resolution is given, which is limited by the expansion of the cloud
due to heating. However, this imaging technique is limited in atom number resolution to about
4 particles [41, 42] for mesoscopic samples of hundreds of atoms. A single atomic ion has been
detected with absorption imaging [40], albeit with an exposure time of 1 s and the signal-to-noise
ratio does not scale favourably with the particle number.

An alternative imaging technique is fluorescence imaging, whereby the atoms are excited
and the isotropically re-emi琀�ed light is collected. Laser cooling naturally exhibits the effect of
repeatedly exciting the atoms with the advantage of simultaneously prolonging the interrogation
time. If the atoms are additionally trapped, the detection time can be very long and is limited
only by loss from the trap. We will see that this method is suitable not only for detecting single
atoms with very high fidelities, but also for achieving single-particle resolution in mesoscopic
ensembles with more than one thousand atoms. Measurements for small atom numbers have been
performed in free space [37] and magneto-optical traps [26, 45, 74], as well as in optical dipole
traps [44] and cavities [36, 75, 76]. Optical la琀�ices have the disadvantage of high atomic densities,
where light-assisted collisions quickly lead to pair-wise loss of the atoms, allowing only for the
measurement of the parity, but not the actual atom number [30, 32, 77, 78]. Cavity based atom
number detection is limited by inhomogeneous coupling of the atoms to the standing-wave probe
light, allowing for a good signal stability up to 150 atoms, but not showing discrete steps with the
addition of each further atom [43].

It is possible to count individual atoms by collecting the fluorescence from a magneto-optical
trap, which intrinsically is very deep (∼ 1K) compared to the temperature of the trapped atoms
(∼ 100 µK) and therefore can have a long lifetime of hundreds of seconds. Considering the
measurement of 𝑁 atoms, the accuracy is limited by two processes: fluorescence noise and atom
loss. Photon shot noise contributes to the variance of the signal with 𝑁/𝑛ph, where 𝑛ph = 𝜂𝑅sc𝑡
is the number of photons collected during the time 𝑡, given a photon sca琀�ering rate of the atoms
of 𝑅sc and an overall detector efficiency of 𝜂. Atom loss, on the other hand, contributes to the
variance with 𝑁𝑡/2𝜏 , where 𝜏 is the lifetime of the MOT. In this simple model, the total variance

𝜎2
u� = 𝑁

𝜂𝑅sc𝑡
+ 𝑁𝑡

2𝜏
(3.1)
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3 Accurate detection of mesoscopic atom numbers

is minimised for an optimal detection time of 𝑡opt = √2𝜏/𝜂𝑅sc, independent of the atom number.
By se琀�ing 𝜎2

u� = 1 to obtain the single-particle resolution threshold, we obtain an upper bound
𝑁max = √𝜏𝜂𝑅sc/2. In the case of 87Rb, if we assume a saturation parameter 𝑠0 = 1, a detuning of
𝛿 = −Γ/2, a detector efficiency of 𝜂 = 0.01 and a trap lifetime of 𝜏 = 100 s, we find 𝑡opt = 56ms
and 𝑁max = 1800. We will see that there are further contributions to the variance, limiting
the maximum atom number that can be detected with single-particle resolution, however, by
optimising experimental parameters, it is in principle possible to even surpass the limit of this
simple consideration.

3.1 Laser system

Being fairly robust, the magneto-optical trap itself does neither require a very high stability of
the laser frequency and intensity, nor a very good vacuum inside the experimental chamber.
However, these are key issues when it comes to atom number detection, since a modulation
of the laser frequency and intensity changes the sca琀�ering rate of the atoms, while residual
background gas reduces the lifetime in the trap. We employ a tapered amplifier (TA) for the
generation of the laser cooling light. 吀�e amplified spontaneous emission from the TA does
not have a considerable impact on the MOT, since the sca琀�ering rate is already close to its
maximum of Γ/2. A fast photo-diode detects the intensity of the laser, before it is divided into
three counter-propagating pairs of MOT beams, and feeds the signal back to an acousto-optical
modulator (AOM) which stabilises the power. 吀�e peak intensity, summed over all six beams, is
23mWcm−2, corresponding to a saturation parameter of 𝑠0 ≃ 7. 吀�e laser frequency is locked to
a Rb spectroscopy of the |2S1/2, 𝐹 = 2⟩ ⟷ |2P3/2, 𝐹 = 3⟩ transition using a lock-in amplifier
and a detuning of 𝛿 ≃ −Γ/2 is set by the same AOM. With these parameters we estimate a
sca琀�ering rate per atom of 𝑅sc = 15 × 106 s−1.

An additional single laser beam, resonant with the |2S1/2, 𝐹 = 1⟩ ⟷ |2P3/2, 𝐹 = 2⟩ transition,
with a waist of 3mm and an intensity of 3.0mWcm−2 is employed in order to repump atoms that
have decayed into the |2S1/2, 𝐹 = 1⟩ state.

In order to reduce the amount of stray light in the system, we use a motorised iris that reduces
the MOT beam size to about 1mm during the detection, while facilitating a higher loading rate
with bigger beams during other stages of the experiment. A spatial filter a昀�er the motorised
iris is implemented to reduce interference fringes on the MOT beams that can lead to intensity
imbalance across the MOT and thus to fluorescence noise and heating [79]. 吀�e repumping is
done via a single laser beam with a waist below 1mm. Another measure to reduce stray light is
the introduction of an intermediate image, as described in the following section.

3.2 Imaging system and detector non-linearity

吀�e fluorescence light from the atoms, which are trapped inside an evacuated glass cell, is collected
by an aspheric lens1 with a numerical aperture (NA) of 0.23 and imaged onto a low-noise CCD

1吀�orlabs AL2550-B, 50mm effective focal length, 46mm working distance.
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3.2 Imaging system and detector non-linearity

MOT NA = 0.23

Low noise
QE = 95%Razor blades

CCD

Small beams (~1 mm) during detection

Figure 3.1: Ray traced illustration of the imaging system. An aspheric objective and a spherical
secondary lens image the fluorescence from the trapped atoms onto an intermediate
plane framed by razor blades. From there the signal is imaged 1:1 onto the CCD camera.

camera2, as shown in Fig. 3.1. 吀�e covered solid angle is Ω = NA2/4 ≈ 1.3%. A high quantum
efficiency (QE) of 95% of the CCD camera reduces the impact of photon shot noise onto the
signal, while the read-out noise per pixel has to be small enough, such that the noise summed
over the entire region of interest is smaller than the signal from a single atom. Taking into
account the 4% signal loss each time the fluorescence passes through one of the uncoated glass
cell walls, the transmission coefficient is 𝑇 = 0.962. 吀�e total detector efficiency is then given by
𝜂 = Ω ⋅ 𝑇 ⋅ QE ≈ 1.1%.

An intermediate image, located in the focus of the spherical secondary lens with 100mm focal
length, is framed by a small aperture, formed by razor blades, that strongly reduces the amount of
stray light coming from reflections of the laser cooling light off the glass cell walls or other parts
of the experimental setup. 吀�e intermediate image is transmi琀�ed by two spherical lenses with
100mm focal length 1:1 onto the edge of the CCD on the opposite side of the read-out register.
A昀�er an exposure, the charge built up in the illuminated pixels is shi昀�ed towards the register
to allow for a subsequent exposure. 吀�is frame shi昀�ing technique enables us to expose up to 10
times, before closing the CCD shu琀�er and starting the electronic read-out. Since the read-out
typically takes about 4 seconds, the frame transfer greatly increases the duty cycle. It also allows
for accurate timing between the exposures. A narrowband optical filter3 centred at 780 nm reduces
ambient stray light.

儀�antitative measurements with CCD cameras rely on a good linearity between the number of
collected photons and the digital output of the signal amplifier, even when approaching the full
well capacity, i. e. when a pixel is close to saturation. 吀�ere is no single definite measure for the
nonlinearity of a camera. One way of characterising it uses a small input signal, like that from
a low intensity light source. 吀�e average pixel count is recorded for varying exposure times, as
shown in Fig. 3.2. A linear least-squares regression to the signal 𝑆 yields the residuals 𝑅 as the
deviation of the measurement from the fit and the nonlinearity can be defined as

Nonlinearity = |max(𝑅)| + |min(𝑅)|
max(𝑆)

, (3.2)

the sum of the largest positive deviation and the largest negative deviation divided by the maximum
of the signal. Here, the exposure time has been increased enough to reach a maximum signal of

2Princeton Instruments PIXIS 1024BR, back-illuminated, deep depletion CCD.
3Semrock LL01-780-25, > 90% transmission at 780 nm, 3 nm typical FWHM bandwidth.
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Figure 3.2: Dependence of the average pixel count on the exposure time and deviations from a
linear least-squares fit. 吀�e sum of the largest positive deviation and the largest negative
deviation in relation to the maximum signal give a measure for the nonlinearity of the
CCD. (Data provided by Princeton Instruments.)

61080 counts, which is the full well capacity. With max(𝑅) = 85 and min(𝑅) = −129 we get a
nonlinearity of 0.35%. However, if the average number of counts per pixel is kept below 3 × 104,
if necessary by spreading the signal across many pixels with a higher magnification, the effective
nonlinearity reduces to 0.1%.

3.3 Trap lifetime and temperature

As we have seen in a simple consideration of the noise contribution due to atom loss, the detector
performance depends on the trap lifetime. A low pressure of less than 8 × 10−12 mbar in the
vacuum chamber ensures a low rate of collisions with background gas, which is one of the few
measures to increase the thermal lifetime. Other experiments, e. g. with metastable helium [80],
have shown that the lifetime is independent of the MOT parameters to within 20%. 吀�e second
loss mechanism is light-assisted collisions, depicted in Fig. 3.3(a), where two Rb atoms, both in the
S state, form a loosely bound molecule with large internuclear distance interacting through a van
der Waals potential 𝑉 (𝑟) = −𝐶6/𝑟6. In the presence of the laser cooling light, one of the atoms
is excited into the P state, while the other remains in the S state. 吀�e two atoms now interact
via an a琀�ractive dipole-dipole potential 𝑉 (𝑟) = −𝐶3/𝑟3 and start to accelerate towards each
other. 吀�e S + P state will eventually decay back into the S + S state and the energy gained in this
process is released as kinetic energy of the atoms. 吀�e average distance between two atoms in a
MOT is much larger than the distance at which the molecular potential has its minimum and the
atoms only probe the long range limit of the potential. 吀�e decay process is random, governed
by the lifetime of the excited state, therefore the time spent in the excited state, and thus the
amount of energy gained, has an exponential distribution. If the tail of this distribution is large
enough, which depends on the detuning of the excitation light, a considerable number of atoms
gain enough energy to be expelled from the trap.
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Figure 3.3: Light assisted collisions scheme and measurement. (a) In the presence of light, atoms
in the van der Waals potential S + S can be excited into the dipole-dipole potential
S+P (1). 吀�ey will start accelerating towards each other (2) and finally decay back into
the ground state (3). Depending on the time spent in the excited state, the acquired
energy Δ𝐸 can large enough for the atoms to leave the trap. (b) Measurement of the
atom number decaying in time. 吀�e full decay model describes both thermal loss and
loss due to light-assisted collisions. 吀�e purely exponential decay, here fixed to the
later half of the measurement, shows clear deviations for larger atom numbers.

Not only loss from the trap can change the atom number, but loading of atoms as well. If loading
happens at a rate 𝐿, the rate equation for the change in atom number 𝑁 is given by

d𝑁
d𝑡

= 𝐿 − 𝑁
𝜏

− 𝛽′∫
u�

𝑛2(𝒓, 𝑡) d3𝒓, (3.3)

where 𝜏 is the one-body loss rate and the rate of light-assisted collisions is given by the product of
the rate 𝛽′ and the volume integral over the squared atom density 𝑛(𝒓, 𝑡), since it is a two-body
effect [50]. In the low density limit the atomic distribution is 𝑛(𝒓, 𝑡) = 𝑛0(𝑡)𝑒−u�2/u�2 , where 𝜎 is
the waist of the Gaussian distribution. With a scaled rate 𝛽 = 𝛽′(2𝜋)−3/2𝜎−3 we can rewrite the
rate equation as

d𝑁
d𝑡

= 𝐿 − 𝑁
𝜏

− 𝛽𝑁2. (3.4)

If we neglect the loading and set 𝐿 = 0, Eqn. 3.4 is solved by

𝑁(𝑡) = 𝑁0
𝑒u�/u�(1 + 𝑁0𝛽𝜏) − 𝑁0𝛽𝜏

, (3.5)

with 𝑁0 = 𝑁(𝑡 = 0). If 𝑁0𝛽 ≪ 1/𝜏 , Eqn. 3.5 reduces to 𝑁(𝑡) = 𝑁0𝑒−u�/u� . Fig. 3.3 (b)
shows a typical decay curve, emphasising the difference between at fit using Eqn. 3.5 and a
purely exponential decay. We observe a trap lifetime of 𝜏 ≈ 160 s and a rate of light-assisted
collisions of 𝛽 ≈ 2 × 10−5 s−1. Hence, light-assisted collisions definitely become significant,
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3 Accurate detection of mesoscopic atom numbers

i. e. 𝑁0𝛽𝜏 ∼ 1, for 𝑁0 > 300. In the experiment we observe their influence already for 𝑁 ∼ 100.
吀�is is in accordance with previous experiments, stating that “under high-vacuum conditions
light-assisted collisions dominate the loss from the trap” [81]. In order to constrain this loss,
we have to lower the rate of light-assisted collisions, e. g. by increasing the MOT size. We
verify experimentally that the MOT size is independent of the atom number (Fig. 3.4(a)). With
a Gaussian waist 𝜎 = 37.5 µm of the atomic distribution, the two-body loss rate corresponds
to 𝛽′ ≈ 2 × 10−11 cm3 s−1, close to the theoretically predicted value of 1.7 × 10−11 cm3 s−1

for an intensity of 10mWcm−2 [82]. However, other experiments have measured significantly
lower values around 1 × 10−12 cm3 s−1 [83]. 吀�e least-square regression is not very sensitive to
variations of the fit parameters, e. g. decreasing 𝛽 and adjusting 𝜏 yields similar results. We will
later introduce an alternative method for extracting the decay rates from their contribution to the
signal noise.

Besides the trap lifetime, the other important parameter is the temperature, which should be
very low compared to the trap depth (typically on the order of 1K) in order to reduce the chance
of losing an atom during laser cooling. A small temperature usually results in a small MOT size.
At the same time, the size of the atomic cloud should be large to reduce the density dependent
rate of light-assisted collisions. 吀�is can be achieved by choosing a small magnetic field gradient.
Here, we measure the temperature by turning off the MOT beams and measuring the size of the
atomic cloud for varying times of free expansion. We check that we remain in a regime, where
the atom number does not change significantly. A linear fit of the MOT radius versus expansion
time yields a thermal velocity of 𝑣th = √2𝑘B𝑇 /𝑚 = 0.12ms−1 and thus a MOT temperature of
𝑇 = 75 µK. By increasing the laser detuning to 𝛿 ∼ −3Γ, lowering the laser intensity to 0.68𝐼sat
and turning off the magnetic field gradient shortly before releasing the atoms, we cool the atoms
in an optical molasses down to 𝑇 < 10 µK, corresponding to a thermal velocity of 𝑣th < 4 cm s−1.
We will show later how optical molasses can be beneficial for state-selective atom counting. For
now, let us note that we can measure the diffusion of the atoms in the light field by imaging the
cloud size for varying diffusion times 𝑡, as shown in Fig. 3.4(b). 吀�e area 𝐴 = 𝜋𝜎u�𝜎u�, where 𝜎u�
and 𝜎u� are the widths of the Gaussian density distributions in the imaging plane, increases with
time as 𝐴 = 2𝜋𝐷u�𝑡, where 𝐷u� is the spatial diffusion coefficient [84]. 𝐷u� can be related to the
momentum diffusion coefficient 𝐷u� introduced in Section 2.2 via 𝐷u� = 𝛼2𝐷u�, where 𝛼 is the
damping coefficient. For Doppler cooling the spatial diffusion coefficient is given by [67]

𝐷u� = Γ𝜆2

4𝜋2 ( 𝛿
Γ

)
2 𝐼sat

𝐼
, (3.6)

which for our experimental parameters takes the value 𝐷u� = 8 × 10−2 cm2 s−1. We measure
𝐷u� = 5.2 × 10−3 cm2 s−1, which is an order of magnitude smaller, likely due to polarisation
gradient cooling in the 𝜎+–𝜎− configuration4.

In principle, it is possible to extract the temperature of an atomic ensemble by observing the
fluorescence and determining the intensity correlation function 𝑔(2)(𝜏), which is related to the
Fourier transform of the velocity distribution [85], given by

𝑔(2)(𝜏) = 1 + exp (−𝑘B𝑇 𝑘2𝜏2

𝑚
) . (3.7)

4吀�e diffusion coefficient in the lin⟂lin configuration can be much larger.
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Figure 3.4: Atomic cloud size versus atom number in the MOT and optical molasses release time.
(a) 吀�e waist of the Gaussian atomic density distribution in the MOT does not depend
on the atom number. (b) A昀�er the release from the MOT, during molasses cooling,
the atoms start to diffuse, as shown in the insets. 吀�e area of the density distribution
increases linearly with the diffusion time.

吀�e characteristic time 𝜏0 is given by the inverse Doppler width 𝑘√𝑘B𝑇 /𝑚. For an ensemble
temperature of about 100 µK, 𝜏0 is on the order of 1 µs. 吀�is timescale is inaccessible with a CCD
camera, however, it should be feasible with a fast photo diode.

3.4 Signal processing

As mentioned before, we acquire multiple images in a single frame, by employing the frame
transfer mode of the CCD. 吀�e raw CCD images are divided up into individual stripes, shown
in Fig. 3.5, separated in time by the duration of exposure (the shi昀�ing time of a few µs can be
neglected) and the signal is extracted as the sum over all relevant pixels. We use an elliptical
region of interest around the signal, reflecting the shape of the atomic cloud, in order to reduce
the read-out noise from pixels with no information. At regular intervals, usually at the start
of each dataset, we acquire several background images, where the magnetic field gradient was
turned off long enough for all atoms to escape, and average over multiple realisations. In order to
correct for random light fluctuations we employ the following background subtraction method
(see Fig. 3.6). In addition to the first region of interest around the atoms, yielding the signal 𝑆1, we
draw a second region of interest of the same size in an empty region of the image and obtain the
background signal 𝐵1. Now we turn to the background image and sum over the same first region
of interest to obtain 𝑆0. 吀�e background image in the second image of interest results in 𝐵0. We
have now fixed a background calibration factor 𝑆0/𝐵0, which we can use to scale the atomic
signal 𝑆. If we assume that the light fluctuations affect both 𝑆1 and 𝐵1 in the same (linear) way,
then 𝐵1 = const. ⋅ 𝐵0 and 𝑆1 − 𝑆 = const. ⋅ 𝑆0. We can rewrite these conditions to eliminate
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3 Accurate detection of mesoscopic atom numbers

Figure 3.5: Example image of a single atom a昀�er applying the frame transfer multiple times before
the read-out.
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3.5 Histograms of mesoscopic atom numbers

Figure 3.6: Scheme of the background scaling. 吀�e fixed ratio 𝑆0/𝐵0 is determined from the
background image in the beginning of each sequence and used to scale the background
𝐵1 in the signal image. 吀�is method reduces homogenous long term dri昀�s on the signal
𝑆1.

the constant and obtain
𝑆 = 𝑆1 − 𝐵1

𝑆0
𝐵0

. (3.8)

In contrast to merely subtracting 𝑆0 from 𝑆1, this method adds some noise to the signal, because
of the additional stray light fluctuations that are captured with 𝐵0 and 𝐵1, however the long term
stability increases due to elimination of common dri昀�s. We measure a background signal level
that is smaller than that of three atoms.

3.5 Histograms of mesoscopic atom numbers

In order to analyse the detector performance across a wide range of atom numbers, we load the
MOT until we reach a large particle number and observe the decay curve as a function of time. We
repeat this measurement many times, in order to increase statistics. 吀�e uneven coverage of atom
numbers, shown in the histogram in Fig. 3.7 (a), reflects the starting conditions of the measurements
as well as the random nature of atom loss, where by change some atom number were detected more
o昀�en than others. Since on average each atom contributes the same amount to the total signal,
we observe discrete peaks, where the signal bunches at equidistant levels. We simultaneously
fit multiple Gaussian distributions to the histogram peaks to extract the number of counts per
atom, and thus measure the number of photons collected from each atom during the exposure
time, in this case 100ms. We obtain a single-atom count rate of 𝜂𝑅sc = 90310 counts/atom/s,
which does not show any dependence on the atom number to within 0.02% at 𝑁 = 250 (95%
confidence interval). Here we can already observe how the width of the distribution, which is a
measure of the noise level, increases with the atom number. At 𝑁 = 100, for example, we obtain
a standard deviation of 𝜎 = 0.14 atoms, while at 𝑁 = 230 it is 𝜎 = 0.27. 吀�e amount of expected
photon shot noise, calculated from the count rate, is 𝜎psn = 0.11 at 𝑁 = 100 and 𝜎psn = 0.16 at
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Figure 3.7: Overview of a typical measurement. (a) Frequency of occurrence versus calibrated atom
number. A closer look into the histogram shows discrete peaks at the corresponding
atom numbers. (b) Example signal traces for 10, 100 and 230 atoms. 吀�e insets show
the experimental image of a single atom and 100 atoms, respectively.

𝑁 = 230. 吀�e discrepancy must arise from additional fluorescence noise, e. g. long-term dri昀�s
or a modulation of the laser amplitude or frequency. Noise contributions from atom loss are not
reflected in the width of the distribution, but rather lead to an overall offset in the histogram, since
the moment of the decay during the exposure is random.

3.6 Variance analysis

In order to understand the limiting noise contributions for atom number detection and find the
optimal exposure time, we evaluate the two-sample atom variance

𝜎2
u� = 1

2
⟨(𝑆u�+1 − 𝑆u�)2⟩, (3.9)

where 𝑆u�+1 and 𝑆u� are consecutive measurements, each with an integration time 𝑡. 吀�is is
analogous to the Allan variance in frequency measurements. At short integration times, we expect
the major noise contribution to arise from photon shot noise 𝜎2

psn of the emi琀�ed fluorescence
and additional fluorescence noise 𝜎2

fn, due to frequency or intensity fluctuations of the excitation
light. Averaging the signal over longer integration times reduces these contributions to the noise.
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Figure 3.8: Atom variance as a function of the integration time. For short times, photon shot noise
and additional fluorescence noise dominate (dash-do琀�ed line), while for longer times,
the contribution due to atom loss increases (dashed line). 吀�e optimal detection time is
almost independent of the atom number, as shown for (a) 𝑁 = 150 and (b) 𝑁 = 1050.

However, for longer integrations times, the probability of atom loss due to one- and two-body
decay increases, introducing another noise contribution 𝜎2

loss. In general, the variance depends on
the integration time 𝑡, as well as on the atom number 𝑁 and reads

𝜎2
u�(𝑁, 𝑡) = 𝜎2

psn + 𝜎2
fn + 𝜎2

loss. (3.10)

We have already modelled photon shot noise by 𝜎2
psn = 𝑁(𝜂𝑅sc𝑡)−1 in the first part of Eqn. 3.1.

吀�e additional fluorescence noise can be described by 𝜎2
fn = (𝛼𝑁)2𝑡−1 with a frequency stability

parameter 𝛼 in units of
√
s. Each of the 𝑁 atoms contributes equally to the fluorescence, i. e. the

noise contribution is maximally correlated, hence the quadratic scaling in the variance. While
the frequency noise is correlated in atom number, it is, of course, random in time and thus scales
with 𝑡−1. Both photon shot noise and additional fluorescence noise average down with increasing
integration time, while the probability of atom loss, and thus 𝜎2

loss, increases with time. 吀�is is
shown in Fig. 3.8 from which we extract an optimal exposure time of 100ms, almost independent
of the atom number. 吀�e exact expression for 𝜎2

loss can be derived either from a heuristic approach
or from a master equation.

3.6.1 Heuristic approach

A simple approach to obtain an expression for the noise contribution due to atom loss is to calculate
the decay probability as a function of atom number and integration time. Let us first consider only
one-body loss, described by the rate equation

d𝑁
d𝑡

= −𝑁
𝜏

, (3.11)

which, for the initial condition 𝑁0 = 𝑁(𝑡 = 0), is solved by 𝑁(𝑡) = 𝑁0𝑒−u�/u� . 吀�e mean number
of lost atoms is 𝜆1 = 𝑁0 − 𝑁(𝑡) = 𝑁0(1 − 𝑒−u�/u�). For integration times much shorter than the
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3 Accurate detection of mesoscopic atom numbers

lifetime, 𝑡 ≪ 𝜏 , we obtain 𝜆1 = 𝑁0𝑡/𝜏 . 吀�e random loss process is Poisson distributed, such that
the probability of 𝑘1 loss events during the detection time 𝑡 is given by 𝑃(𝑘1|𝜆1) = 𝑒−u�1𝜆u�1

1 /𝑘1!.
Evaluating Eqn. 3.9 with this expression yields

𝜎2
u� = 1

2

∞
∑

u�1=0

𝑒−u�1𝜆u�1
1

𝑘1!
𝑘2

1

= 1
2

(𝜆1 + 𝜆2
1)

= 1
2

[𝑁0𝑡
𝜏

+ (𝑁0𝑡
𝜏

)
2
] . (3.12)

We now consider two-body loss described by the rate equation

d𝑁
d𝑡

= −𝛽𝑁2. (3.13)

For short integration times compared to the rate of light-assisted collisions, 𝛽𝑁𝑡 ≪ 1, we obtain
𝑁0−𝑁(𝑡) = 𝛽𝑁2

0 𝑡. 吀�is process is also Poisson distributed and the probability of losing 2𝑘2 atoms
during the detection time 𝑡 is 𝑃(𝑘2|𝜆2) = 𝑒−u�2𝜆u�2

2 /𝑘2!, with the mean number of two-body loss
events 𝜆2. Since ∑u�2

2𝑘2𝑃(𝑘2|𝜆2) = 2𝜆2 = 𝛽𝑁2
0 𝑡, we find 𝜆2 = 𝛽𝑁2

0 𝑡/2 and again evaluate
Eqn. 3.9 to obtain

𝜎2
u� = 1

2

∞
∑

u�2=0

𝑒−u�2𝜆u�2
2

𝑘2!
(2𝑘2)2

= 2(𝜆2 + 𝜆2
2)

= 𝛽𝑁2
0 𝑡 + 1

2
𝛽2𝑁4

0 𝑡2. (3.14)

In the experiment, both one- and two-body loss processes can occur simultaneously and in higher
orders, e. g. one light-assisted collision and two collisions with background gas during the exposure,
hence cross terms of 𝜆1 and 𝜆2 have to be considered. In general

𝜎2
u� = 1

2

∞
∑
u�=0

𝑃(𝑘)𝑘2, (3.15)

with a probability 𝑃(𝑘) of losing 𝑘 atoms during the exposure, including both loss mechanism.
吀�is sum includes the term in Eqs. 3.12 and 3.14, as well as the cross terms

𝜎2
u� = 1

2
𝑒−u�1−u�2

∞
∑
u�=0

𝑐u�𝑘2, (3.16)

with the first non-zero coefficient 𝑐3 = 𝜆1𝜆2. Up to this order, with the approximation that
𝜆1 + 𝜆2 ≪ 1, the entire loss contribution to the variance reads

𝜎2
loss = ( 𝑁

2𝜏
+ 𝛽𝑁2) 𝑡 + 1

2
(𝑁2

𝜏2 + 9𝛽𝑁3

2𝜏
+ 𝛽2𝑁4) 𝑡2. (3.17)
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3.6.2 Master equation approach

In an alternative approach, we will derive the total atom variance from a master equation and
relate it to the two-sample variance given in Eqn. 3.9. We consider the probability 𝑃(𝑁, 𝑡) of
having 𝑁 atoms in the trap at a given time 𝑡. 吀�e time evolution of this probability is given by the
master equation

𝜕
𝜕𝑡

𝑃 (𝑁, 𝑡) = ∑
u�′

𝑊(𝑁 ′, 𝑁)𝑃(𝑁 ′, 𝑡) − 𝑊(𝑁, 𝑁 ′)𝑃 (𝑁, 𝑡). (3.18)

吀�e first term describes an increase of the probability 𝑃(𝑁, 𝑡) when the atom number changes from
any 𝑁 ′ to 𝑁 with a weight 𝑊(𝑁 ′, 𝑁). 吀�e second term accounts for a change in atom number
from 𝑁 to any 𝑁 ′, weighted with 𝑊(𝑁, 𝑁 ′), which reduces the probability. 吀�e two processes
that change the atom number are one-body decay due to collisions with the background gas, which
happens at a rate 𝐾1, and light-assisted collisions, occurring with a rate 𝐾2. 吀�ree-body losses
can be neglected in this case, while loading events do not contribute significantly to the noise. 吀�e
master equation for one- and two-body decay reads

𝜕
𝜕𝑡

𝑃 (𝑁, 𝑡) = 𝐾1[(𝑁 + 1)𝑃(𝑁 + 1, 𝑡) − 𝑁𝑃(𝑁, 𝑡)]

+ 𝐾2
2

[(𝑁 + 2)(𝑁 + 1)𝑃(𝑁 + 2, 𝑡) − 𝑁(𝑁 − 1)𝑃(𝑁, 𝑡)], (3.19)

where 𝐾2 has to be halved, since by definition it accounts for the loss of only one atom, while in
the actual process two atoms are lost from the trap.5

We are primarily interested in the time evolution of the mean atom number and the atom
variance, thus we calculate the moments of the probability distribution and consider only the first
and second. 吀�e time evolution of the 𝑘-th moment is given by

𝜕
𝜕𝑡

✀��𝑁u�✀�� = 𝜕
𝜕𝑡

∑
u�

𝑁u�𝑃(𝑁, 𝑡)

= ∑
u�

𝑁u� 𝜕
𝜕𝑡

𝑃 (𝑁, 𝑡)

= ∑
u�

𝑃(𝑁, 𝑡)[𝐾1((𝑁 − 1)u�𝑁 − 𝑁u�+1)

+ 𝐾2
2

((𝑁 − 2)u�(𝑁 − 1)𝑁 − 𝑁u�+1(𝑁 − 1))]. (3.20)

5吀�e probability of a two-body decay scales with u�(u� − 1), according to the urn model, where u� balls are drawn
randomly without replacement, but considering the order, in which case the number of elements in the sample
space is |Ω| = u� ⋅ (u� − 1) ⋅ (u� − 2) ⋅ ⋯ = u�! /(u� − u�)!.
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3 Accurate detection of mesoscopic atom numbers

First we consider the mean of the atom number (𝑘 = 1)

𝜕
𝜕𝑡

⟨𝑁⟩ = ∑
u�

𝑃(𝑁, 𝑡)[𝐾1((𝑁 − 1)𝑁 − 𝑁2)

+ 𝐾2
2

((𝑁 − 2)(𝑁 − 1)𝑁 − 𝑁2(𝑁 − 1))]

= ∑
u�

𝑃(𝑁, 𝑡)[−𝐾1𝑁 + 𝐾2(−𝑁2 + 𝑁)]

= − 𝐾1 ⟨𝑁⟩ − 𝐾2 ✀��𝑁2✀�� + 𝐾2 ⟨𝑁⟩ . (3.21)

In order to obtain the variance, we need to consider the second moment (𝑘 = 2)

𝜕
𝜕𝑡

✀��𝑁2✀�� = ∑
u�

𝑃(𝑁, 𝑡)[𝐾1((𝑁 − 1)2𝑁 − 𝑁3)

+ 𝐾2
2

((𝑁 − 2)2(𝑁 − 1)𝑁 − 𝑁3(𝑁 − 1))]

= ∑
u�

𝑃(𝑁, 𝑡)[𝐾1𝑁 − 2𝐾1𝑁2 − 2𝐾2𝑁3 + 4𝐾2𝑁2 − 2𝐾2𝑁]

= 𝐾1 ⟨𝑁⟩ − 2𝐾1 ✀��𝑁2✀�� − 2𝐾2 ✀��𝑁3✀�� + 4𝐾2 ✀��𝑁2✀�� − 2𝐾2 ⟨𝑁⟩ . (3.22)

吀�e atom variance Var(𝑁) = ✀��𝑁2✀�� − ⟨𝑁⟩2 evolves in time as

𝜕
𝜕𝑡

Var(𝑁) = 𝜕
𝜕𝑡

(✀��𝑁2✀�� − ⟨𝑁⟩2) = 𝜕
𝜕𝑡

✀��𝑁2✀�� − 2 ⟨𝑁⟩ 𝜕
𝜕𝑡

⟨𝑁⟩

= 𝐾1 ⟨𝑁⟩ − 2𝐾1 ✀��𝑁2✀�� − 2𝐾2 ✀��𝑁3✀�� + 4𝐾2 ✀��𝑁2✀�� − 2𝐾2 ⟨𝑁⟩
+ 2𝐾1 ⟨𝑁⟩2 + 2𝐾2 ✀��𝑁2✀�� ⟨𝑁⟩ − 2𝐾2 ⟨𝑁⟩2 . (3.23)

We can see that the differential equation for the 𝑘-th moment depends on moments of higher order
𝑘 + 1. In order to obtain a set of closed differential equations, one can make a Gaussian ansatz.

If a Gaussian probability distribution is assumed initially, numerical calculations for later times
show that the probability distribution remains Gaussian. One can therefore assume that the
probability distribution is Gaussian at all times, thus the higher moments are known and can be
expressed in terms of mean value 𝜇 and variance 𝜎2. For a Gaussian probability distribution the
second and third moment are

✀��𝑁2✀�� = 𝜇2 + 𝜎2, (3.24)
✀��𝑁3✀�� = 𝜇3 + 3𝜇𝜎2. (3.25)

吀�is leads to the closed set of coupled differential equations

𝜕
𝜕𝑡

⟨𝑁⟩ = −𝐾1𝜇 − 𝐾2(𝜇2 − 𝜎2 − 𝜇) (3.26)

and
𝜕
𝜕𝑡

Var(𝑁) = 𝐾1(𝜇 − 2𝜎2) + 𝐾2(4𝜎2 − 4𝜇𝜎2 + 2𝜇2 − 2𝜇), (3.27)
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3.6 Variance analysis

which, in its entire form, can only be solved numerically. It is also interesting to consider the time
evolution of the second moment

𝜕
𝜕𝑡

✀��𝑁2✀�� = 𝐾1(𝜇 − 2𝜎2 − 2𝜇2) + 𝐾2(4𝜎2 − 6𝜇𝜎2 + 4𝜇2 − 2𝜇 − 2𝜇3). (3.28)

In the experiment the atom number ranges between 1 and 103 and we investigate single-particle
resolution, hence the atom variance is required to be smaller than unity. With this assumption,
𝜎2 ≪ 𝜇, Eqs. 3.26, 3.27 and 3.28 reduce to

𝜕
𝜕𝑡

⟨𝑁⟩ = −𝐾1𝜇 − 𝐾2(𝜇2 − 𝜇), (3.29)

𝜕
𝜕𝑡

Var(𝑁) = 𝐾1𝜇 + 𝐾2(2𝜇2 − 2𝜇) (3.30)

and
𝜕
𝜕𝑡

✀��𝑁2✀�� = 𝐾1(𝜇 − 2𝜇2) + 𝐾2(4𝜇2 − 2𝜇 − 2𝜇3), (3.31)

which are now decoupled. Moreover, one can find a solution to Eqn. 3.29 and use it to solve
Eqs. 3.30 and 3.31.

We can express the noise contribution from loss in terms of one-body lifetime 𝜏 = 1/𝐾1 and
the rate of light-assisted collisions 𝛽 = 𝐾2. Interpreting the mean of the Gaussian probability
distribution 𝜇 as the mean atom number ⟨𝑁⟩, we obtain

𝜕
𝜕𝑡

⟨𝑁⟩ = −⟨𝑁⟩
𝜏

− 𝛽′ (⟨𝑁⟩2 − ⟨𝑁⟩) (3.32)

and
𝜕
𝜕𝑡

Var(𝑁) = ⟨𝑁⟩
𝜏

+ 2𝛽′ (⟨𝑁⟩2 − ⟨𝑁⟩) , (3.33)

as well as

𝜕
𝜕𝑡

✀��𝑁2✀�� = ⟨𝑁⟩ − 2 ⟨𝑁⟩2

𝜏
+ 2𝛽′ (2 ⟨𝑁⟩2 − ⟨𝑁⟩ − ⟨𝑁⟩3)

= 𝜕
𝜕𝑡

Var(𝑁) − 2 (⟨𝑁⟩2

𝜏
+ 𝛽′ (⟨𝑁⟩3 − ⟨𝑁⟩2)) . (3.34)

If we assume ⟨𝑁⟩ ≪ ⟨𝑁⟩2 in Eqn. 3.32, which is a good approximation for large atom numbers,
the mean atom decay, with the initial atom number 𝑁0, is given by

⟨𝑁(𝑡)⟩ = 𝑁0
eu�/u�(1 + 𝑁0𝛽𝜏) − 𝑁0𝛽𝜏

= 𝑁0 − (𝑁0
𝜏

+ 𝛽𝑁2
0 ) 𝑡 + 𝒪(𝑡2), (3.35)

where higher orders in 𝑡 can be neglected, if 𝑡 ≪ 𝜏 . In order to analyse the variance for mul-
tiple realisations of the experiment, we select decay curves that begin at a fixed 𝑁0, such that
Var(𝑁)|u�=0 = 0. Hence, initially, ✀��𝑁2✀�� = ⟨𝑁⟩2 = 𝑁2

0 .
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3 Accurate detection of mesoscopic atom numbers

吀�e total two-sample variance is given by

1
2
Var(𝑆u�+1 − 𝑆u�) = 1

2
⟨(𝑆u�+1 − 𝑆u�)2⟩ − 1

2
⟨𝑆u�+1 − 𝑆u�⟩2

= 𝜎2
u� − 1

2
⟨𝑆u�+1 − 𝑆u�⟩2, (3.36)

where the first term is the definition of the two-sample variance from Eqn. 3.9 and the second term
represents the mean atom loss. From this we see the role of the Allan variance as a two-sample
second moment.

In order to deduce the noise contribution from loss in the total two-sample variance for a
detection time 𝑡 ≪ 𝜏 , we use

1
2
Var(𝑆u�+1 − 𝑆u�) = 1

2
Var(𝑁(𝑡) − 𝑁(0)) = 1

2
Var(𝑁(𝑡)) (3.37)

and solve Eqn. 3.33 with the condition that Var(𝑁)|u�=0 = 0. In the limit of large atom numbers
and short detection times we obtain

1
2
Var(𝑆u�+1 − 𝑆u�) = 𝑁

2𝜏
𝑡 + 𝛽𝑁2𝑡, (3.38)

which has the character of an atom shot noise, proportional to
√

𝑡 in the standard deviation
and intrinsic to the random nature of the loss processes, both obeying Poisson statistics. 吀�e
contribution from mean atom loss is obtained using Eqn. 3.35 as

1
2

⟨𝑆u�+1 − 𝑆u�⟩2 = 1
2

(𝑁0
𝜏

+ 𝛽𝑁2
0 )

2
𝑡2. (3.39)

In total the contributions to the two-sample variance are

𝜎2
loss = ( 𝑁

2𝜏
+ 𝛽𝑁2) 𝑡 + 1

2
(𝑁

𝜏
+ 𝛽𝑁2)

2
𝑡2. (3.40)

A Monte-Carlo simulation of the loss process is shown in Fig. 3.9 to illustrate the difference
to the result from the heuristic approach (Eqn. 3.17). Here, the loss parameters 𝜏 = 200 s and
𝛽 = 5 × 10−7 s−1 and a detection time of 100ms were chosen. 吀�e two approaches agree for
small atom numbers, where the cross-terms are not relevant. At larger atom numbers and for
higher rates for light-assisted collisions the deviation becomes apparent.

吀�e deterministic mean atom loss6 can be accounted for, thus the noise level is reduced to the
fundamental atom shot noise given in Eqn. 3.38. In the experiment, given a raw measurement 𝑁 of
the atom number, the mean atom loss correction is done by calculating 𝑁 ′ = 𝑁 +𝑁𝑡/𝜏 +𝛽𝑁2𝑡 as
the loss-compensated result. Conceptually, the contribution from mean atom loss is the difference
between considering the total variance and the Allan variance, which is the second moment, as
shown in Fig. 3.10. Generally, the optimal detection time is different for either case, however, here
the difference is not significant. 吀�e atom variance 𝜎2

u� is shown in Fig. 3.11 for an integration
time of 100ms both with and without correction of the mean loss. In the first case, the single-atom

6Mean atom loss is a continuous effect, as opposed to the discrete nature of the loss events leading to atom shot noise.

42



3.7 Fidelity of atom number detection
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Figure 3.9: Monto-Carlo simulation of the noise contribution due to atom loss (blue circles). 吀�e
master equation description (solid line) follows the data, while the heuristic result
(dashed line) deviates at large atom numbers. For higher rates of light-assisted collisions
the deviation becomes stronger.

resolution limit 𝜎2
u� = 1 is reached at 𝑁 = 1080, while in the second case the limit is 𝑁 = 1200.

We perform a simultaneous fit of the noise model, given in Eqn. 3.10, to all atom numbers and
all integration times with free parameters 𝛼, 𝜏 and 𝛽. From this we can quantify the different
noise contributions as a function of the atom number. Photon shot noise, which we have fixed
given the number of detected photons per atom, increases linearly with 𝑁 and contributes
only ∼ 10% at the single-atom resolution threshold. 吀�e fluorescence noise is quantified by
𝛼 = 1.9(1) × 10−4 s1/2, which would correspond to a frequency noise of the laser cooling light
on the order of 10 kHz averaged over the detection time, and increases quadratically with the atom
number, making up about half the total variance at 𝑁 = 1200. 吀�e loss parameters 𝜏 = 246(44) s
and 𝛽 = 3(3) × 10−7 s−1 enter into the atom shot noise, which is the second largest noise
contribution at high atom numbers.

3.7 Fidelity of atom number detection

We use the noise model and its parameters to calculate the detection fidelity 𝐹 for different
atom numbers. Variance and fidelity (or equivalently the error probability) give complementary
information. 吀�e variance quantifies how far away the measurement is from reality, which is
especially important for variances larger than unity, while the fidelity, given single-atom resolution,
states the level of confidence in the result. Given a certain atom number 𝑁0 at the beginning of
the detection, we define the fidelity 𝐹 as the probability that the measurement corresponds exactly
to 𝑁0. While photon shot noise and additional fluorescence noise lead to a Gaussian distribution
of the measurements, atom loss does not. 吀�e la琀�er follows the Poisson distribution and is highly
biased in the sense that loading events are negligible and the atom number can only decrease. In
order to take this non-Gaussian effect into account, we cannot simply rely on the atom variance,
but rather we have to estimate the fidelity using the obtained parameters 𝛼, 𝜏 and 𝛽 and perform a
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Figure 3.10: Measurement of the atom variance including (a) and excluding (b) the contribution
from mean atom loss.
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3.7 Fidelity of atom number detection
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Figure 3.11: Atom variance as a function of the atom number, measured with an integration time
of 100ms. (a) 吀�e individual noise contributions are shown as a function of the atom
number and discussed in the main text. 吀�e single-atom resolution limit 𝜎2

u� = 1
is reached at 𝑁 = 1080 (blue circles). 吀�is can be improved by correcting the raw
measurement for mean atom loss (red diamonds), reaching a maximum atom number
of 𝑁 = 1200. (b) A linear increase of 𝜎2

u� for small atom numbers transitions into a
quadratic increase for large atom numbers.

Monte-Carlo simulation of the detection, given an initial atom number 𝑁0. At each iteration step
𝑘 the simulation determines the atom number 𝑁u� and the corresponding CCD counts a昀�er a time
interval 𝛿𝑡 much shorter than the integration time of 𝑡 = 100ms. Atom number decay is simulated
by drawing from a convolution of Poisson distributions that quantify one- and two-body losses.
吀�e probability of losing a single atom due to a collision with background gas is 𝑃1 = 𝑁u�𝛿𝑡, while
loss due to light-assisted collisions occurs with a probability of 𝑃2 = 𝛽𝑁2

u�𝛿𝑡/2. From the number
of atoms 𝑁u� we obtain the number of CCD counts 𝑐u� in each time step by randomly drawing
from a Gaussian distribution with mean ⟨𝑐u�⟩ = 𝑁u�𝜂𝑅sc𝛿𝑡 and variance 𝜎2

u� = (𝜎2
psn + 𝜎2

fn)𝜂2𝑅2
sc.

吀�e total number of counts 𝐶 = ∑u� 𝑐u� yields the measured atom number 𝑁 = 𝐶/𝑡, which
is corrected for the mean atom loss to obtain 𝑁 ′ = 𝑁(1 + 𝑡/𝜏 + 𝛽𝑁𝑡) and rounded to the
nearest integer. 吀�is result is compared to the initial atom number 𝑁0. For atom numbers up
to 𝑁0 = 200 the error probability 1 − 𝐹 is dominated by one-body loss with the probability
𝑃loss ≃ 𝑁0𝑡/2𝜏 . Note that only a loss event occurring during the first half of the exposure will
lead to a measurement error, hence the factor of 2 in 𝑃loss. Beyond 𝑁0 = 200 the dominant noise
source is fluorescence noise, which is described by a Gaussian distribution

𝑓(𝑁) = 1√
2𝜋𝜎f

𝑒−(u�−u�0)2/2u�2
f , (3.41)

where𝜎2
f = 𝜎2

psn+𝜎2
fn. 吀�e probability of ameasurement lying outside the interval [𝑁0−1

2 , 𝑁0+1
2 ]

is
𝑃f = 1 − erf( 1√

8𝜎f
) . (3.42)
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Figure 3.12: Error probability for exact atom number detection. (a) 吀�e error probability 1 − 𝐹
is dominated by the probability of one-body decay (dash-do琀�ed line) for small atom
numbers. Above 102 atoms the probability of making an error due to fluorescence
noise (dashed line) becomes the dominant term. Both these contributions together
(solid line) excellently describe the simulated detection (blue circles). (b) 吀�e fidelity
𝐹 remains greater than 98% for atom numbers up to 100, where fluorescence noise is
negligible.

Both 𝑃loss and 𝑃f are plo琀�ed in Fig. 3.12 and show excellent agreement with the simulated data in
the appropriate regimes.
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4 State-selective atom counting

A昀�er having shown single-atom resolution for the total atom number in a mesoscopic sample with
up to 1200 particles, we now turn to the task of measuring the atom number of each individual state
of a two-component gas. 吀�ese states will be |𝐹 = 1⟩ and |𝐹 = 2⟩ of the hyperfine manifold of
the 87Rb ground state 2S1/2, shown in Fig. 4.1 (a), and the atom numbers 𝑁1 and 𝑁2, respectively.
First, we will present a sequential method, in which all atoms are released from the trap, the atoms
in state |𝐹 = 2⟩ are expelled from the trap using a resonant laser beam and, subsequently, the
atoms in |𝐹 = 1⟩ are re-trapped for fluorescence imaging. By determining the total atom number
𝑁 = 𝑁1 + 𝑁2 before a Ramsey sequence and measuring 𝑁1 a昀�er the sequence, we can deduce
the number of atoms 𝑁2 that were expelled from the trap.

We will then show a more refined method in which the individual atom numbers are detected
simultaneously in a novel hybrid trap. A blue-detuned focused light-sheet is superimposed on
the MOT to create a potential barrier between the two sites of the resulting double-well system.
Consider a spinor BEC with states |1⟩ = |𝐹 = 2, 𝑚u� = −1⟩ and |2⟩ = |𝐹 = 1, 𝑚u� = 1⟩. 吀�ese
two states can be used for quantum enhanced metrology in an SU(2) interferometer. At the end
of the Ramsey sequence, the difference between the atom number 𝑁1 in state |1⟩ and the atom
number 𝑁2 in state |2⟩ has to be determined. 吀�e two states can be spatially separated with a
Stern-Gerlach pulse and individually recaptured in the two sites of the split MOT. For this step
optical molasses cooling of the atoms can be beneficial, since the dense atomic cloud can be slowly
expanded, instead of loading it directly into the hybrid optical trap and risking fast atom loss
due to light-assisted collisions. Once the atoms are loaded into the split MOT, we again perform
fluorescence imaging, however, now we have to take into account particle exchange between the
sites and thus extend our noise model.

During laser cooling the atom spends a considerable time in the excited state, for which the
blue-detuned light-sheet is not repulsive, but a琀�ractive. In order to avoid this situation, the
light-sheet beam and the MOT beams are pulsed alternately on a timescale which is faster than
the particle movement but slower than the lifetime of the excited state. Averaging over many
pulsing cycles during the exposure time inevitably leads to a reduced number of emi琀�ed photons
per atom, thus increasing the photon shot noise.

4.1 Sequential detection using resonant laser pulses

As a first step, we measure the efficiency of releasing the atoms from the MOT and recapturing
them without the application of a push pulse. We turn off the trap light for several release times 𝑡
up to 4ms and measure a recapture efficiency of above 99.92(1)% for release times up to 2ms.
吀�e error probability scales with 𝑡3, which is consistent with isotropic thermal expansion. 吀�e
magnetic field gradient is kept on during the release time, since we do not expect it to significantly
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4 State-selective atom counting

influence the motion of the atoms. We then check the efficiency of pushing the |𝐹 = 2⟩ atoms out
of the recapture volume by applying a laser beam resonant with the |𝐹 = 2⟩ ⟷ |2P3/2, 𝐹 ′ = 3⟩
transition while the MOT beams are turned off. 吀�e pushing beam has a waist of 3mm and an
intensity of 4.4mW/cm2. 吀�e pulse is applied during two CCD exposures on the same image,
making use of the frame-transfer mode (see Fig. 4.1 (b)). Upon excitation the atoms in |𝐹 = 2⟩
receive multiple photon recoil momenta and we check that a pulse time of more than 100 µs is
enough for them to leave the recapture volume. Ideally, the |𝐹 = 1⟩ atoms are not affected by this
process, however, there is a small probability for off-resonant excitation at a detuning of 6.8GHz
between the |𝐹 = 2⟩ and |𝐹 = 1⟩ states. In order to reduce this effect to a minimum, the resonant
laser pulse time is not increased beyond 100 µs. We observe a change of the push efficiency of
about 1.5% when changing the polarisation of the laser beam between 𝜎- and 𝜋-polarisation.

In the steady state of magneto-optical trapping almost all atoms are cycling between the states
|2S1/2, 𝐹 = 2⟩ and |2P3/2, 𝐹 ′ = 3⟩, while the population of |𝐹 = 1⟩ is very small. In order to
choose a different population of the states as a starting condition for state-selective atom counting,
we perform optical pumping with a preparation beam resonant to the |𝐹 = 2⟩ ⟷ |𝐹 ′ = 1⟩
transition. 吀�is beam has a waist of 4.7 mm and an intensity of 18.5mW/cm2. 吀�e sequence for
obtaining the overall detection efficiency starts by turning off the MOT beams. We then optically
pump all the atoms into the |𝐹 = 1⟩ state and subsequently apply the push pulse. Ideally there
would be no atoms in the |𝐹 = 2⟩ state and off-resonant excitation of the |𝐹 = 1⟩ atoms is kept at a
minimum. Finally, we turn on the trapping beams, recapturing the atoms, and perform fluorescence
imaging, comparing the final atom number to the initial one. Here the error probability scales
with 𝑡3 + 𝑡. In addition to the thermal expansion, there is a force along the 𝑘-vector of the laser
beam resulting from off-resonant optical pumping, which leads to the linear increase with 𝑡. We
chose an optimal release time of 2.2ms, where the error probability for efficient pushing is equal
to the one for the entire sequence, including optical pumping. 吀�ere, as shown in Fig. 4.1 (c), we
obtain an average detection fidelity of 99.6(1)%, allowing us to state-selectively detect the atom
number in a sample with 250 atoms.

To understand the process of expelling the |𝐹 = 2⟩ atoms with radiation pressure, we consider
both an analytical model as well as Monte-Carlo simulations.

4.1.1 Analytical model

吀�e dependence of the push efficiency on the release time can be understood by first considering
the individual steps of the process. First the MOT beams are turned off, such that the atoms, with
their initial thermal distribution (𝑇 ∼ 80 µK), start spreading out. Immediately a昀�er the trapping
beams have been turned off, a laser pulse resonant with the |𝐹 = 2⟩ ⟷ |𝐹 ′ = 3⟩ transition is
applied to impart momentum on the atoms and push them out of the capture range, which is given
by the MOT beam size 𝑟0 = 1mm. A昀�er a release time 𝑡, the trapping light is turned on and the
number of recaptured atoms is measured.

吀�e initial thermal distribution has a width of 𝜎 = √𝑘B𝑇 /𝑚 = 0.0875m/s, which is much
smaller than the critical velocity 𝑣c = 𝑟0/𝑡 ∼ 1m/s, therefore the thermal distribution can be
neglected for this process. Instead, the velocity distribution 𝑓(𝑣) a昀�er a release time 𝑡 is given by
the number of sca琀�ered photons during the push pulse times the recoil velocity 𝑣rec = ℎ/𝑚𝜆 =
5.9mm/s. When theMOT is released it is assumed that all atoms are in |𝐹 = 2⟩, equally distributed
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4.1 Sequential detection using resonant laser pulses
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Figure 4.1: Efficiency of state-selective detection via radiation pressure. (a) Level scheme of the
D2 transition in 87Rb. During the release time, atoms in |𝐹 = 2⟩ are pushed out of
the recapture volume by a laser beam resonant with respect to the |𝐹 ′ = 3⟩ state. An
arbitrary population imbalance can be prepared by optical pumping via the |𝐹 ′ = 1⟩
state. (b) Example measurement of the pushing efficiency, comparing initial and
final atom number. 吀�e push pulse is applied between exposure 6 and 7, denoted
by the dashed line. (c) 吀�e measured recapture efficiency without additional pulses
(green diamonds) is consistent with thermal isotropic expansion (green line). 吀�e error
probability for expelling |𝐹 = 2⟩ atoms (blue squares) is described by an analysis of the
depumping rate from |𝐹 = 2⟩ to |𝐹 = 1⟩, taking into account imperfect polarisation
of the pushing beam (blue line). 吀�e overall error probability for preparing atoms
in |𝐹 = 1⟩ (red circles) includes contributions from thermal expansion, as well as
off-resonant optical pumping (red line).

among the 𝑚u� sub-levels. It is beneficial to use circular polarised light in order to eventually reach
the cycling transition |𝐹 = 2, 𝑚u� = 2⟩ ⟷ |𝐹 = 3, 𝑚u� = 3⟩. 吀�e probability to excite an atom
into the |𝐹 ′ = 2⟩ state, instead of the |𝐹 ′ = 3⟩ state, is given by Ω2

0/2Ω2
eff, where Ω0 = Γ√𝑠0/2

is the Rabi frequency with 𝑠0 = 2.6, corresponding to an intensity of 𝐼 = 4.4mWcm−2, and
Ωeff = √Ω2

0 + Δ2 is the effective Rabi frequency with a detuning of Δ = 43.95 Γ. 吀�e factor
of 2 comes from time averaging of the Rabi flopping over the pulse time. By summing over the
corresponding Clebsch-Gordan coefficients, quantifying the strength of the transitions from each
ground state sub-level to each excited state sub-level, one obtains a branching ratio of 1:1 for the
transitions |𝐹 ′ = 2⟩ → |𝐹 = 1⟩ and |𝐹 ′ = 2⟩ → |𝐹 = 2⟩. 吀�us the probability of a subsequent
decay to |𝐹 = 1⟩, where the atom becomes dark for the push pulse, is 1/2 and the total decay rate
is given by

𝑅D = 𝜀1
2

Ω2
0

2Ω2
eff

𝑅sc = 𝜀 Ω2
0

4Ω2
eff

Γ
2

, (4.1)

where 𝜀 < 1 accounts for the fact that the decay rate is reduced, once the cycling transition is
reached. If the atom reaches the |𝐹 = 1⟩ state a昀�er the first excitation, the velocity of the atom
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Figure 4.2: Velocity distribution a昀�er pushing obtained from the simulation number of sca琀�ered
photons. (a) Most of the atoms will sca琀�er the maximum amount of photons given
the pulse length (shown here for 100 µs, 200 µs and 400 µs), resulting in a peak of the
velocity distribution 𝑓(𝑣) at the highest possible velocity. Below that there is a plateau
of almost equaly distributed velocities. (b) A closer look at small values of 𝑓(𝑣) reveals
the exponential decay of the plateau (solid lines), which we can assume to be essentially
flat for small velocities. 吀�e contribution at these small velocities depends on 𝜀.

increases only by 𝑣rec along the direction of the push beam. We then have 𝑓(0)𝑣rec = 𝑅D/𝑅sc. 吀�e
probability for larger numbers of sca琀�ering processes, i. e. higher velocity gain, drops exponentially,
as one would expect for a Poisson process (many repetitions of an event with small probability).
吀�e maximum number of sca琀�ered photons 𝑛max = 𝜏pulseΓ/2 depends on the pulse duration
𝜏pulse and leads to a sharp cut-off of the velocity distribution at 𝑣max = 𝑛max𝑣rec. In general, the
pulse duration will not change 𝑓(𝑣) for small velocities (𝑣c ≪ 𝑣max), where we can assume the
distribution to be flat. A simulation of the number of sca琀�ered photons 𝑛p yielding the velocity
distribution 𝑓(𝑣) is shown in Fig. 4.2. Given the initial flat distribution over all magnetic sub-levels,
we simulate their redistribution taking into account the appropriate branching ratios. Without
loss of generality we chose 𝜎+-polarisation for the pushing beam. Once the cycling transition is
reached, the probability to decay into the dark state |𝐹 = 1⟩ is dramatically reduced. However,
due to imperfect polarisation there is a small probability of performing a 𝜋- or 𝜎−-transition. It
turns out that a probability of 2% of exciting the wrong state (either by 𝜋- or 𝜎−-transition) is
able to describe our measured error probabilities.

吀�e probability of recapturing an atom as a function of the critical velocity is given by

𝑃(𝑣c) = ∫
u�c

0
𝑓(𝑣) d𝑣 = 𝑓0𝑣c = 𝑓0𝑟0

𝑡
≡ 𝑡0

𝑡
. (4.2)

吀�e probability to decay a昀�er the first excitation is 𝑓0𝑣rec. Likewise, since the probability distribu-
tion is flat, it is the same probability 𝑅D/𝑅sc to decay a昀�er any number of excitations. 吀�is leads
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to

𝑓0 = 𝑅D
𝑅sc𝑣rec

= 𝜀 Ω2
0

4Ω2
eff

1
𝑣rec

, (4.3)

which can be used to obtain

𝑡0 = 𝜀 Ω2
0

4Ω2
eff

𝑟0
𝑣rec

. (4.4)

In our case 𝑡0/𝜀 = 2.9 × 10−5 s. From the non-linear regression fit, shown in Fig. 4.1 (c), we
obtain 𝑡0 = (5.14 ± 2.86) × 10−6 s. A resulting 𝜀 = 0.2(1) means that the cycling transition
allows for about five times more sca琀�ered photons before a decay to the dark state.

4.1.2 Monte-Carlo simulation

In order to check the validity of the analytical model, the error probability for resonantly pushing
the |𝐹 = 2⟩ atoms out of the recapture volume can be obtained from a Monte-Carlo simulation.
吀�e sca琀�ering of photons at a rate 𝑅sc results in a radiation force on the atoms of 𝐹rad = ℏ𝑘𝑅sc and
thus an acceleration 𝑎0 = 𝑅scℎ/𝑚𝜆 = 𝑣rec𝑅sc. We simulate one atom at a time, averaging over
many realisations in the end. First we draw, for each spatial dimension 𝑖 ∈ {𝑥, 𝑦, 𝑧}, a random
thermal velocity 𝑣u�

0 from a Gaussian distribution 𝑓(𝑣u�) = √𝑚/2𝜋𝑘B𝑇 exp (−𝑚𝑣2
u� /2𝑘B𝑇 ) and

random initial positions 𝑥0, 𝑦0 and 𝑧0 from a Gaussian density distribution with a width of
35 µm. 吀�e pushing time is given by 𝜏pulse = 𝑛p𝜏 , with the number of sca琀�ered photons 𝑛p and
the atomic lifetime 𝜏 = 26 ns. A constant acceleration over this time, here chosen along the
𝑥-direction, results in a final velocity of 𝑣u�

1 = 𝑎0𝜏pulse. A random walk of the atom due to heating
during the sca琀�ering can be simulated by drawing 𝑥d, 𝑦d and 𝑧d from a Gaussian distribution with
𝜎d = 𝑣rec√𝑅sc𝜏

3/2
pulse/3 [86]. 吀�e classical trajectories are then given by

𝑥(𝑡) = 𝑥0 + 𝑥d + 𝑣u�
0 𝑡 + 𝑣u�

1 𝑡 + 1
2

𝑎0𝜏2
pulse (4.5)

𝑦(𝑡) = 𝑦0 + 𝑦d + 𝑣u�
0𝑡 (4.6)

𝑧(𝑡) = 𝑧0 + 𝑧d + 𝑣u�
0𝑡. (4.7)

We calculate 𝑟(𝑡) = √𝑥2 + 𝑦2 + 𝑧2 for varying release times 𝑡 and compare it to a MOT capture
radius of 𝑟0 = 1mm, given by the size of the repumping beam. 吀�e results are shown in Fig. 4.3.
We reach excellent agreement between the simulation and the measurement and we are able to
confirm the analytical model previously obtained. In particular we see that indeed the initial
position of the atoms, as well as their thermal velocity and heating during the sca琀�ering can be
neglected and the problem reduces to one dimension.

We have shown the capability of state-selective atom counting in samples with up to 250 atoms
for the sequential method. 吀�is relies on the measurement of the total atom number before the
experimental sequence, from which the number of expelled atoms is deduced. 吀�e detection can
be significantly improved by simultaneously detecting the number of atoms in each state at the
end of the experiment.
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Figure 4.3: Monto-Carlo simulation of the error probability for varying release times. 吀�e simula-
tion explains the measurement and confirms the analytical model of a scaling ∝ 𝑡−1.

4.2 New imaging system

吀�e simultaneous state-selective detection of atom numbers in a split MOT, depicted in Fig. 4.4,
requires a different imaging system than the detection of the total atom number. State-independent
detection in a regular MOT favours a small magnification, possibly imaging the entire fluorescence
onto a single CCD pixel or equivalently using an avalanche photo diode to generate the signal.
吀�e split MOT configuration requires a good optical resolution in order to reduce blurring of the
two atomic densities and suppress signal overlap. A larger magnification reduces the effect of
misalignment and mechanical instability when choosing a static region of interest.

4.2.1 Magnification

We exchange the secondary lens with a focal length of 𝑓 = 100mm from the previous imaging
system with an 𝑓 = 250mm lens and use a gold foil, illuminated with collimated light from
the back, as a test object to characterise the new imaging system. A 4mm glas plate is placed
between the gold foil and the objective lens to simulate the glas cell wall that is present in the
actual experimental setup. 吀�e gold foil has a square pa琀�ern of holes with a spacing of 𝑠 = 20 µm.
Each hole has a diameter of 650 nm, so we can treat it essentially as a point-like light source. 吀�e
CCD image, shown in Fig. 4.5 (a), reveals the expected regular pa琀�ern. From a fit to multiple
Gauss functions we obtain a mean distance of the peaks of Δ𝑦 = 6.01(8) pixels on the CCD image
(Fig. 4.5 (b)). For this measurement a CCD camera1 with a pixel size of 𝑑 = 17.2 µm was used.
吀�is results in a magnification of 𝑀 = 𝑑Δ𝑦/𝑠 = 5.17(7), in good agreement with the simple
estimate of focal length ratios 𝑀 ∼ 250mm/50mm = 5.

1AVT Guppy F-044B NIR, using binned ’F7M2_Mono8_376x288’ mode.
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4.2 New imaging system

Figure 4.4: Scheme of the hybrid optical trap. (a) A blue-detuned focused light-sheet is superim-
posed with the harmonic MOT potential, resulting in a dissipative double-well system.
(b) Example image of the atomic density in the split MOT. 吀�e line profile below, ob-
tained by summing over the pixel columns, shows the separation of the density peaks
in real space.

4.2.2 Depth of field

When an object is captured out of focus, its image is blurred. Due to the finite spatial extent of the
atomic distribution, its image can be blurred and some of the signal lost, even when the focus is
set correctly to the center of the cloud. 吀�is effect is quantified by the depth of field, which tells us
how far an atom can be out of focus, before reaching an unacceptable blurring.

In order to obtain the depth of field, we measure the waist of the Gaussian signal distribution in
image space for different distances of the objective lens from the test object, shown in Fig. 4.6 (a).
We find the focus, i. e. the minimal waist, at a position of +5 µm. 吀�e depth of field is obtained by
finding the position at which the waist has increased by a factor of

√
2, in this case at +33 µm.

吀�is yields a depth of field DOF ≈ 2(33 µm − 5 µm) = 56 µm.
吀�e objective lens has a diameter of 𝐷 = 23 µm and an effective focal length of 𝑓 = 50mm,

resulting in an 𝑓-number of 𝑓/𝐷 = 2.17. 吀�e circle of confusion 𝑐, a measure for the acceptable
blurring in image space, can be assumed as the pixel size. When the object distance is close to the
focal length, the depth of field can be approximated by [87]

DOF = 2𝑓(𝑀 + 1)/𝑀
(𝑓𝑀)/(𝑁𝑐) − (𝑁𝑐)/(𝑓𝑀)

≈ 2𝑐 𝑓
𝐷

𝑀 + 1
𝑀2 = 17 µm. (4.8)

吀�e discrepancy between the calculation and the measurement can be explained by the limited
resolution of the CCD chip, given by the pixel size, which makes the blurring harder to detect.

4.2.3 Resolution

吀�e resolution of an imaging system is connected to its point-spread function (PSF), which is the
system response to a point source. 吀�e resulting intensity is obtained by convoluting the object
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Figure 4.5: Measurement of the imaging magnification. (a) CCD image of the test object, a gold
foiled with regularly spaced holes, which act as point-like light sources. (b) 吀�e
magnification is deduced from a fit to the signal distribution using multiple Gauss
functions.

plane field with the PSF. It can be shown that the intensity in the focus of the image plane is
described by an Airy function

𝐼(𝑥) = 𝐼0 (2𝐽1(𝑥)
𝑥

)
2

, (4.9)

where 𝐼0 is the maximum intensity at the center, 𝐽1 is the Bessel function of the first kind of order
one and 𝑥 = 𝜋𝑞/𝜆𝑁 with 𝑞 being the radial distance from the optical axis [88]. 吀�e 𝑓-number
𝑁 = (2NA)−1 can be substituted for the numerical aperture NA and we obtain 𝑥 = 2𝜋𝑞NA/𝜆.
吀�e best achievable resolution, i. e. the minimum distance between two distinguishable points, is
given by the Rayleigh criterion as the first zero of 𝐽1(𝑥), which is at 𝑥 = 3.83. 吀�is corresponds
to a dark ring at a radial distance of 𝑞 = 1.22𝜆𝑁 = 0.61𝜆/NA, defined as the resolution Δ𝑟. We
calculate Δ𝑟 = 2.1 µm for the new imaging system.

In order to experimentally obtain the resolution, we average over the images of all 16 holes
shown in Fig. 4.5 (a), where the objective was focused onto the center of the atomic cloud and
obtain the number of CCD counts distributed across the 𝑦-direction. We fit the Airy function in
Eqn. 4.9 to the intensity profile and obtain a resolution in image space of Δ𝑟 = 22 µm. 吀�e results
are shown in Fig. 4.6 (b). 吀�is corresponds to a resolution in object space of Δ𝑟/𝑀 = 4.3 µm. It is
not surprising that the measured value is larger than the optimal resolution, since the theoretical
limit assumes no aberrations.

4.3 Realisation of the light-sheet barrier

吀�e purpose of the light-sheet is to split the MOT into a double-well potential. We set the
wavelength close to the D1 transition between 2S1/2 and 2P1/2 at 749.979 nm and chose a blue
detuning of a few tens of GHz. For a limited laser power we can achieve a higher potential barrier
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Figure 4.6: Measurement of depth of field and resolution. (a) 吀�e waist in image space for varying
positions of the objective in object space is used to determine the depth of field. (b) A fit
of the Airy function to the measured CCD counts reveals the resolution in image space.
We see that a Gaussian distribution is a very good approximation of the Airy function.

height with by tuning the frequency close to resonance. Since we employ a narrowband optical
filter at 780 nm, as described in Section 3.2, we chose the D1 transition for the light-sheet in order to
avoid stray light on the detected images. 吀�e light is generated by a Coherent Ti:Sa MBR laser with
a maximum output power of 1.7 W, given our available pump power of 9.2W. A昀�er acousto-optic
modulation and fibre coupling of the light, as well as shaping the beam profile, we end up with a
maximum of 400mW at the position of the atoms. 吀�e Stark shi昀� which causes the repulsion of
the atoms from the intensity maximum of the barrier detunes the atomic states, rendering laser
cooling inefficient. 吀�erefore we have to alternately switch between light-sheet barrier and MOT
beams. 吀�e pulsing is done with an acousto-optic modulator at a pulsing frequency of 125 kHz,
a time scale much faster than the motion of the atoms in the trap, yet much slower than the
lifetime of the excited state, such that laser cooling is still efficient during the period in which the
MOT beams are turned on. Since the laser intensity inside the AOM is rather high, we observe
considerable heating of the crystal manifested in a temporal efficiency change, such that we cannot
choose pulsing frequencies below 5 kHz and it is best to stay well above.

In the following we will discuss in detail the creation of the light-sheet by shaping a spherical
Gaussian laser beam into an elliptical beam with a large aspect ratio, as well as the calibration of
the potential barrier height and the calculation of the trap frequencies.

4.3.1 Optical system

Let us first consider a spherical Gaussian laser beam, emi琀�ed from an optical fibre with a numerical
aperture of NA = 0.12, corresponding to the opening angle 𝜃 of the divergent beam. 吀�e intensity
distribution of a spherical Gaussian beam as a function of the radial distance 𝑟 to the optical axis
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Figure 4.7: Spot size of the focused light-sheet without use of the cylindrical lens pair. An imperfect
collimation leads to a tilt of the profile, which can be modelled as described in the main
text.

and the position 𝑧 along the optical axis is

𝐼(𝑟, 𝑧) = 𝐼0 ( 𝑤0
𝑤(𝑧)

)
2

𝑒−2u�2/u�2(u�), (4.10)

where 𝐼0 = 𝐼(0, 0) is the maximum intensity and 𝑤(𝑧) = 𝑤0√1 + (𝑧/𝑧R)2 is the spot size
with 𝑤0 = 𝑤(𝑧 = 0) being the minimal radial extent, i. e. the waist [88]. 吀�e Rayleigh range
𝑧R = 𝜋𝑤2

0/𝜆 depends on the wavelength, which for the characterisation of the optical system was
𝜆 = 780 nm. We collimate the divergent beam2 using an achromatic doublet with a focal length of
𝑓0 = 50mm and measure a waist of 𝑤0 = 5.98mm. 吀�is corresponds to a waist at the fibre end
of 𝑤′ = 𝜆𝑓0/𝜋𝑤0 = 2.1 µm or equivalently an opening angle of 𝜃 ≃ 𝜆/𝜋𝑤′ = 0.12, confirming
the numerical aperture stated in the fibre data sheet.

Next, we focus the Gaussian beam using an achromatic doublet with a focal length of 𝑓1 =
100mm, expecting a waist of 𝜆𝑓1/𝜋𝑤0 = 4.2 µm. A razor blade measurement of the spot size at
different axial positions, shown in Fig. 4.7, reveals a tilt of the profile, possibly due to imperfect
collimation, which can be modelled by

𝑤(𝑧) = 𝑤1√1 + ( 𝑧
𝑧R

)
2

+ 𝑎𝑧. (4.11)

We find 𝑎 = 1.5(3) × 10−2 and a waist of 𝑤1 = 6.1(4) µm.
In order to achieve an elliptically shaped beam we use a pair of cylindrical lenses, which alter

only one dimension of the radial beam profile. 吀�e pair, which consist of a plano-convex lens
with focal length 𝑓2 = 200mm and a plano-concave lens with a focal length of −𝑓2, is placed in
between the collimating lens with focal length 𝑓0 and the focusing lens with focal length 𝑓1, as

2We check the collimation using a Melles Griot shear plate.
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Figure 4.8: Scheme of the light-sheet optical system. 吀�e fibre output is collimated to a waist
𝑤0 and slightly focused in one transversal dimension (dashed red lines) by a pair of
cylindrical lenses with focal lengths 𝑓2 and −𝑓2, separated by a distance 𝑑. A昀�er free
propagation over a distance 𝑙, both transversal dimensions are focused by an aspherical
doublet with focal length 𝑓1, resulting in a shi昀� of the waist �̃�2 towards the focusing
lens. At the position of the atoms (dashed black line) we obtain an elliptical beam with
a large aspect ratio between the spot sizes 𝑤1 and 𝑤2.

shown in Fig. 4.8. 吀�e two cylindrical lenses are separated by a distance 𝑑 and placed at a distance
𝑙 from the spherical focusing lens. In this configuration the pair of cylindrical lenses introduces a
slight focusing of the beam along one radial dimension, such that, a昀�er passing the spherical lens,
the focus in that dimension is shi昀�ed with respect to the focus of the unperturbed dimension. 吀�is
leads to an increased spot size 𝑤2 at a distance of 𝑓1 from the spherical lens, i. e. at its focus. We
will show that 𝑤2 can be adjusted over a large range by varying 𝑑, while it is independent of the
distance 𝑙, rendering the configuration versatile, yet stable.

A Gaussian beam can be described by the complex beam parameter 𝑞(𝑧) = 𝑧 + 𝑖𝑧R or its inverse
form

1
𝑞(𝑧)

= 1
𝑅(𝑧)

− 𝑖𝜆
𝜋𝑤2(𝑧)

(4.12)

with the radius of curvature 𝑅(𝑧) = 𝑧(1 + (𝑧R/𝑧)2). 吀�e Rayleigh length is given by 𝑧R = Im(𝑞)
and the distance from the waist by 𝑠 = − Re(𝑞). Changes to an initial beam parameter 𝑞1,
e. g. through propagation in free space or focusing with a thin lens, resulting in a final beam
parameter 𝑞2, can be expressed with help of a ray transfer matrix

(𝑞2
1 ) = 𝑘 (𝐴 𝐵

𝐶 𝐷) (𝑞1
1 ) , (4.13)

where 𝑘 has to be chosen such, that the final vector is correctly normalised [88]. Equivalently the
new beam parameter can be expressed as

𝑞2 = 𝐴𝑞1 + 𝐵
𝐶𝑞1 + 𝐷

. (4.14)

吀�e ray transfer matrix of a propagation in free space over a distance 𝑑 is given by

(1 𝑑
0 1) , (4.15)
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whereas the focusing with a thin lens with focal length 𝑓 is described by

( 1 0
−1/𝑓 1) . (4.16)

We begin our analysis of the beam a昀�er its collimation using the 𝑓0 spherical lens. 吀�e radius of
curvature can be assumed infinite and we are le昀� with an initial beam parameter 𝑞0 = 𝑖𝜋𝑤2

0/𝜆.
Let us first consider the optical system without the pair of cylindrical lenses. 吀�e beam undergoes
free propagation, which at a large waist of 𝑤0 does not significantly change the beam parameter,
until it reaches the spherical lens, where it is focused. We are interested in the beam parameter 𝑞1
at a distance 𝑓1 from the focusing lens, where it is given by

(𝑞1
1 ) = 𝑘 (1 𝑓1

0 1 ) ( 1 0
−1/𝑓1 1) (𝑞0

1 ) = 𝑘 ( 𝑓1
1 − 𝑞0/𝑓1

) . (4.17)

Normalisation is given by 𝑘 = (1−𝑞0/𝑓1)−1 and we obtain 𝑞1 = 𝑓1(1−𝑞0/𝑓1)−1. 吀�e Rayleigh
range in this case is

𝑧R,1 = Im(𝑞1) = 𝑓2
1 𝜋𝑤2

0𝜆
𝜋2𝑤4

0 + 𝑓2
1 𝜆2 ≃ 𝑓2

1 𝜆
𝜋𝑤2

0
= 69 µm, (4.18)

from which we calculate a waist of 𝑤1 = √𝑧R,1𝜆/𝜋 = 𝑓1𝜆/𝜋𝑤0 = 4.2 µm, in accordance with
our previous theoretical expectation.

Now we introduce the cylindrical lens pair and consider 𝑞2, again at the position 𝑓1 from the
spherical focusing lens, where it is given by

(𝑞2
1 ) = 𝑘 (1 𝑓1

0 1 ) ( 1 0
−1/𝑓1 1) (1 𝑙

0 1) ( 1 0
1/𝑓2 1) (1 𝑑

0 1) ( 1 0
−1/𝑓2 1) (𝑞0

1 ) . (4.19)

Using the correct normalisation we obtain

𝑞2 = 𝑓2
1 (𝑓2

2 + 𝑑(𝑓2 − 𝑞0))
𝑓2

2 (𝑓1 − 𝑙 − 𝑞0) − 𝑑(𝑓2 − 𝑓1 + 𝑙)(𝑓2 − 𝑞0)
(4.20)

and a Rayleigh range of

𝑧R,2 = Im(𝑞2) ≃ 𝑓4
2 𝑓2

1 𝜆
(𝑓2

2 − 𝑑(𝑓2 − 𝑓1 + 𝑙))2𝜋𝑤2
0

, (4.21)

which in the limit of 𝑑 → 0 reduces to the result in Eqn. 4.18. For a finite distance 𝑑 the Rayleigh
range is increased and thus also the waist �̃�2. At the same time, the focus, i. e. the axial position
of the waist, is shi昀�ed by

𝑠 = − Re(𝑞2) ≃ − 𝑓2
1 𝑑

𝑓2
2 − 𝑑(𝑓2 − 𝑓1 + 𝑙)

, (4.22)
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Figure 4.9: Calculations of the expected light-sheet spot sizes. (a) Overview of the vertical and
horizontal spot sizes inside the glass cell for parameters 𝑑 = 30mm and 𝑙 = 40mm.
吀�e focus of the horizontal dimension �̃�2 is shi昀�ed towards the focusing lens, resulting
in a large spot size 𝑤2 at the position of the vertical focus 𝑤1. (b) 吀�e red shaded area
illustrates the region occupied by the atoms, over which the horizontal beam spot size
changes be less than 1%. (c) Changing the position of the cylindrical lens pair 𝑙, results
in a different shi昀� of the focus, however, the spot size at the position of the atoms is
unaffected.

hence we have to consider the spot size at a distance 𝑓1 from the focusing lens

𝑤2 = �̃�2√1 + ( 𝑠
𝑧R,2

)
2

= √𝜆
𝜋

(𝑧R,2 + 𝑠2

𝑧R,2
) ≡ √𝜆

𝜋
|𝑞2(𝑠)|2

Im(𝑞2(𝑠))

= 𝑓1
𝜋𝑤0

√𝑑2𝜋2𝑤4
0 + 𝑓2

2 (𝑑 + 𝑓2)2𝜆2

𝑓4
2

≃ 𝑑𝑓1
𝑓2

2
𝑤0, (4.23)

which is independent of the distance 𝑙 and can be linearly tuned by varying 𝑑. Fig. 4.9 shows
calculations of the beam profile around the focal length 𝑓1 in a region which corresponds to the
size of the glass cell and a smaller region on the order of the atom cloud size. Since we image
the atoms horizontally, we will chose the vertical axis as the one with the small waist 𝑤1, while
horizontally the beam will have a spot size of 𝑤2 at the position of the atoms. Note that the
uncoated glass cell wall with a thickness of 4mm shi昀�s both focal points by 1.3mm, but leaves
the spot sizes 𝑤1 and 𝑤2 unchanged.

Experimentally we realise the optical system as follows. 吀�e optical elements, such as fibre
out-coupler and lenses, are mounted onto a 吀�orlabs cage system, shown in Fig. 4.10(a), which
ensures a fixed optical axis. We use rotation mounts to adjust the tilt of the two cylindrical
lenses3 and a high-precision zoom housing4 for the final adjustment of the spherical focusing lens

3吀�orlabs LJ1653RM-B (u� = 200mm) and LK1069RM-B (u� = −200mm).
4吀�orlabs SM1ZM, non-rotating, 4mm travel.
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Figure 4.10: Experimental realisation of the light-sheet. (a) A cage system is used to co-axially
mount the optical elements. (b) Measurement of the spot sizes confirm that 𝑤2 can
be linearly tuned by varying the distance 𝑑 between the cylindrical lenses. Due to
the limited resolution of the imaging, given in this case by a pixel size of 17.2 µm,
a precise measurement of the spot size 𝑤1 is not possible, however, we can give an
upper bound for the change. (c) Varying the position 𝑙 of the cylindrical lens pair
leaves both 𝑤2 and 𝑤1 unaffected.

position. We use a CCD camera to adjust the tilt of the light-sheet and measure the beam profile,
from which we extract both vertical and horizontal spot sizes for different distances between
the cylindrical lenses (Fig. 4.10(b)) and different positions of the cylindrical lens pair along the
optical axis (Fig. 4.10(c)). 吀�is particular setup allows us to set the distance 𝑑 between 12mm
and a maximum of 109mm. 吀�e resulting range of horizontal spot sizes from 140 µm to 810 µm,
corresponds to a variable aspect ratio of the light-sheet between 23:1 and 140:1. Limited laser
power favours a small waist in order to increase the intensity, while a larger waist reduces the
probability that the atoms travel to regions of the light-sheet where the intensity is significantly
reduced compared to 𝐼0. With this in mind, we chose a horizontal waist of 𝑤2 = 400 µm as the
final configuration.
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4.3 Realisation of the light-sheet barrier

4.3.2 Calibration of the potential barrier height

吀�e precise determination of the atom number in each site of the split MOT requires a large
potential barrier that suppresses particle exchange. Here we will calculate the potential barrier
height for our experimental laser parameters. 吀�e intensity profile of the elliptical Gaussian laser
beam is given by

𝐼(𝑥, 𝑦, 𝑧) = 𝐼0
𝑤1

𝑤1(𝑧)
𝑤2

𝑤2(𝑧)
exp ( −2𝑥𝑦

𝑤1(𝑧)𝑤2(𝑧)
) , (4.24)

where 𝐼0 = 𝐼(0, 0, 0) = 2𝑃/(𝜋𝑤1𝑤2) is the intensity at the center of the beam with power 𝑃
and 𝑤u�(𝑧) = 𝑤u�√1 + (𝑧/𝑧R,u�)2 with the Rayleigh ranges 𝑧R,u� = 𝜋𝑤2

u� /𝜆. 吀�e D1 line has a
wavelength of 𝜆 = 795 nm and a natural linewidth Γ = 2𝜋 × 5.7 MHz. 吀�e waists are 𝑤1 = 6 µm
and 𝑤2 = 400 µm, as described above. Assuming 𝜋-polarisation, the saturation intensity for the
D1 line is 𝐼sat = 44.86W/m2. 吀�e corresponding Rabi frequency is

Ω = Γ√ 𝐼
2𝐼sat

, (4.25)

and the potential barrier height, given by the resulting Stark shi昀�, can be expressed as

Δ𝑉 = ℏΩ2

4Δ
= ℏ

4Δ
Γ2

𝐼sat
𝑃

𝜋𝑤1𝑤2
, (4.26)

where Δ is the light sheet detuning. For the state-selective detection of atom numbers we use
a detuning of Δ = 2𝜋 × 13GHz and we can reach mean laser powers of up to 200mW5. With
these parameters we expect a barrier height of up to 18mK. We will later see that the observed
potential barrier heights are lower than expected from Eqn. 4.26, albeit still much larger than the
MOT temperature of ∼ 80 µK. Sca琀�ering from the light-sheet can happen at a maximum rate of
𝑅sc = ΓΔ𝑉 /ℏΔ ≈ 2𝜋 × 0.2MHz, although usually the rate is much lower, since the atoms are
repelled from the position of highest intensity. In any case, the sca琀�ering rate is considerably
smaller than the sca琀�ering rate from the MOT light, which is close to Γ/2.

4.3.3 Calculation of the trapping frequencies

Superimposing the light-sheet onto the MOT results in a double-well with two potential minima
and a local maximum at the centre. We will now calculate the trapping frequencies of the system
and compare them to the trapping frequency of the harmonic potential of the MOT. 吀�e MOT is
characterised by the detuning 𝛿 = −Γ, the saturation intensity 𝑠0 = 𝐼/𝐼sat = 7 and the magnetic
field gradient 𝐵′ = 10G/cm. A laser wavelength of 𝜆 = 780 nm corresponds to a wavenumber of
𝑘 = 2𝜋/𝜆 = 8 × 106 m−1. 吀�e MOT spring constant is given by

𝜅 = 𝑚𝜔2 = 8𝑘𝜇B𝐵′𝑠0(−𝛿/Γ)
(1 + (2𝛿/Γ)2)2 = 1.7 × 10−17 Nm−1, (4.27)

5We recall that the light-sheet is pulsed, resulting in an average laser power of half the maximum value that we would
reach in a continuous mode.

61



4 State-selective atom counting

where 𝑚 is the 87Rb mass and 𝜇B is the Bohr magneton [89]. 吀�is gives a natural MOT trapping
frequency of 𝜔 = 2𝜋 × 1.7 kHz. 吀�e damping coefficient follows as

𝛾 = ℏ𝑘
𝜇B𝐵′ 𝜔2 = ℏ𝑘

𝜇B𝐵′
𝜅
𝑚

= 𝛼
𝑚

= 2𝜋 × 17 kHz, (4.28)

with the damping constant 𝛼 obeying

𝑭molasses = 𝑚d𝒗
d𝑡

= −𝛼𝒗 → 𝒗(𝑡) = 𝒗0𝑒−u�u�. (4.29)

吀�e MOT potential is given by 𝑉MOT(𝑥) = 𝑚𝜔2𝑥2/2 and the light sheet potential by 𝑉LS(𝑥) =
Δ𝑉 exp(−2𝑥2/𝑤2

1) with a beam waist of 𝑤1 = 6 µm and the potential barrier height Δ𝑉 . 吀�e
extreme values of the total potential 𝑉 = 𝑉MOT + 𝑉LS are obtained from

𝑉 ′(𝑥) = 𝑚𝜔2𝑥 + Δ𝑉 exp (−2𝑥2

𝑤2
1

) (− 4𝑥
𝑤2

1
) = 0 (4.30)

and given by the position of the barrier 𝑥b = 0 and the two potential minima

±𝑥m = ±𝑤1√1
2

log (4Δ𝑉
𝜅𝑤2

1
). (4.31)

吀�e trapping frequencies are calculated from

𝑉 ″(𝑥) = 𝑚𝜔2 + Δ𝑉 exp (−2𝑥2

𝑤2
1

) {16𝑥2

𝑤4
1

− 4
𝑤2

1
} . (4.32)

吀�e (anti-)trapping frequency at the position of the barrier is given by

𝜔b = √|𝑉 ″(𝑥b)|
𝑚

= 𝜔√∣1 − 4Δ𝑉
𝜅𝑤2

1
∣ (4.33)

and the trapping frequency at the potential minima by

𝜔0 = √𝑉 ″(𝑥m)
𝑚

= 𝜔√2 log (4Δ𝑉
𝜅𝑤2

1
). (4.34)

For Δ𝑉 → 0, the natural trapping frequency 𝜔 is retrieved at the center of the trap 𝑥b = 0, while
for Δ𝑉 ≤ 𝜅𝑤2

1/4 = 𝑘B × 0.5 µK there no longer is a trapping frequency at 𝑥m. Calculations of
the trapping frequencies for a range of barrier heights are shown in Fig. 4.11.

4.4 Covariance analysis

In order to investigate the limits of simultaneous state-selective atom counting, we turn to a noise
analysis similar to the one in Chapter 3, but now extended to our novel hybrid trap. We have
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Figure 4.11: 吀�e trapping frequency 𝜔0 (blue solid line) and the (anti-)trapping frequency 𝜔b
(red solid line) both increase as a function of the barrier height Δ𝑉 , whereas the
unperturbed MOT trapping frequency 𝜔 (black solid line) and the damping constant
𝛾 (black dashed line) are not influenced. While 𝜔0 < 𝛾 at all times, 𝜔b becomes
comparable to 𝛾 at large barrier heights.

seen before, that loss out of the trap can be a major limitation for single-particle resolved atom
number detection. We consider the number of particles 𝑁1 and 𝑁2 in site 1 and 2, respectively,
and quantify the rates of loss due to collisions with the background gas by the lifetimes 𝜏1 and
𝜏2. Loss due to light-assisted collisions is described by the rates 𝛽1 and 𝛽2. Additionally, atoms
can hop from one site to the other, either by thermal activation, denoted as 𝜏12 and 𝜏21, or by
gaining enough energy in the process of a light-assisted collision (𝛽12 and 𝛽21). All the processes
are illustrated in Fig. 4.12. 吀�e change in the atom numbers 𝑁1 and 𝑁2 can be described by

(
̇𝑁1
̇𝑁2
) = (−(𝜏−1

1 + 𝜏−1
12 ) 𝜏−1

21
𝜏−1

12 −(𝜏−1
2 + 𝜏−1

21 )) (𝑁1
𝑁2

)

+ (−(𝛽1 + 𝛽12) 𝛽21
𝛽12 −(𝛽2 + 𝛽21)) (𝑁2

1
𝑁2

2
)

≡ 𝑅 (𝑁1
𝑁2

) + 𝐵 (𝑁2
1

𝑁2
2

) , (4.35)

where matrices 𝑅 and 𝐵 account for one- and two-body dynamics, respectively. 吀�is leads to an
extension of the noise model, which we have discussed in Section 3.6. 吀�e total variances in site 1
and 2 can be expressed as

𝜎2
1 = 𝑁1

𝜂𝑅sc
𝑡−1 + (𝛼𝑁1)2𝑡−1 + 𝑁1

2𝜏1
𝑡 + 𝑁1

2𝜏12
𝑡 + 𝑁2

2𝜏21
𝑡

+ 𝛽1𝑁2
1 𝑡 + 𝛽12𝑁2

1 𝑡 + 𝛽21𝑁2
2 𝑡 (4.36)
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Figure 4.12: Scheme of the dynamics in the hybrid trap. In addition to loss via background sca琀�er-
ing and light-assisted collisions in each site, there is particle exchange between the
sites, induced either by thermal activation or collisional activation.

and

𝜎2
2 = 𝑁2

𝜂𝑅sc
𝑡−1 + (𝛼𝑁2)2𝑡−1 + 𝑁2

2𝜏2
𝑡 + 𝑁2

2𝜏21
𝑡 + 𝑁1

2𝜏12
𝑡

+ 𝛽2𝑁2
2 𝑡 + 𝛽21𝑁2

2 𝑡 + 𝛽12𝑁2
1 𝑡, (4.37)

where we have assumed that the photon shot noise parameter 𝜂𝑅sc and the fluorescence noise
parameter 𝛼 are independent of the site. We see that the variance in one site depends on the atom
number in the adjacent one. In order to simplify the model and extract the relevant experimental
parameters, we consider the case in which 𝑁1 ≈ 𝑁2 and obtain for i = 1,2

𝜎2
u� = 𝑁u�

𝜂𝑅sc
𝑡−1 + (𝛼𝑁u�)2𝑡−1 + 𝑁u�

2 ̃𝜏u�
𝑡 + ̃𝛽u�𝑁2

u� 𝑡, (4.38)

with ̃𝜏−1
u� = 𝜏−1

u� + 𝜏−1
12 + 𝜏−1

21 and ̃𝛽u� = 𝛽u� + 𝛽12 + 𝛽21. Due to increased background signal
with the new imaging system, we have to include a noise term 𝛾𝑡−1 into our model, which was
previously insignificant. 吀�is term, independent of the atom number, quantifies noise due stray
light, which averages down with increasing integration time. We fix 𝜂𝑅sc = 58 496 s−1 and fit
the resulting noise model

𝜎2
u� = 𝑁u�

𝜂𝑅sc
𝑡−1 + 𝛾𝑡−1 + (𝛼𝑁u�)2𝑡−1 + 𝑁u�

2 ̃𝜏u�
𝑡 + ̃𝛽u�𝑁2

u� 𝑡 (4.39)

to the experimentally obtained two-sample variance Var(𝑆u�+1 − 𝑆u�)/2, shown in Fig. 4.13(a), for
a range of four different integration times and ten different mean atom numbers. Figure 4.13(b)
shows a representation of this simultaneous fit for a fixed atom number of 450 and different
integration times. We find an optimal integration time between 80ms and 120ms, coinciding with
the value of 100ms from the total atom number measurement in Section 3.6. In Fig. 4.13(c) we plot
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Figure 4.13: Variance analysis with extended noise model. (a) Entire measurement of the total
variance in each site. (b) 吀�e variance, shown here for about 450 atoms in each site,
reveals a minimum for an optimal integration time between 80ms and 120ms. 吀�e
solid lines are representations of simultaneous fits to four different integration times
and and a range of ten different atom numbers. (c) For an integration time of 120ms,
the variance reaches the single-particle resolution limit 𝜎2 = 1 at 470 atoms in each
site. Precisely measuring the atom number difference 𝑁1 − 𝑁2 might be naively
expected up to a variance of 𝜎2 = 1/2, as described in the main text.
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Table 4.1: Fit parameters for the different noise models.

Noise model 𝛾 [s] 𝛼 [s1/2] ̃𝜏 [s] ̃𝛽 [s−1]

𝜎2
1 4.6(7) × 10−3 3.6(3) × 10−4 120(52) 1.4(7) × 10−5

𝜎2
2 7.6(12) × 10−3 4.1(4) × 10−4 110(67) 1.1(10) × 10−5

𝜎2
+ 1.2(2) × 10−2 2.6(2) × 10−4 120(59) 5(30) × 10−7

𝜎2
− 1.2(2) × 10−2 2.9(3) × 10−4 100(51) 1.2(5) × 10−5

the variance as a function of the atom number for a fixed integration time of 120ms in order to find
the single-particle resolution limit 𝜎2 = 1. Since the atom numbers 𝑁1 and 𝑁2 were kept equal
in the experiment, the noise is similar in both sites and we find a limit of single-particle resolved
detection of up to 470 atoms in each site. We might naively expect a single-atom resolution limit
for measuring the atom number difference of 𝜎2

1 + 𝜎2
2 = 1, which in our case is reached for 300

atoms in each site. However, we will see that this is not the full expression for the variance of a
difference measurement.

We turn to the analysis of the total atom number 𝑁+ = 𝑁1+𝑁2 and the atom number difference
𝑁− = 𝑁1 − 𝑁2, shown in Figure 4.14, for which the noise model reads

𝜎2
+,− =

𝑁+
𝜂𝑅sc

𝑡−1 + 𝛾+𝑡−1 + (𝛼+𝑁+)2𝑡−1 +
𝑁+

2 ̃𝜏+,−
𝑡 + ̃𝛽+,−𝑁2

+𝑡, (4.40)

where ̃𝜏+ and ̃𝛽+ are equivalent to the one- and two-body decay parameters introduced in Sec-
tion 3.3. Table 4.1 shows the noise parameters obtained from the different noise models. Comparing
the results for 𝜎2

1 and 𝜎2
2 we find that, within the error of the measurement, 𝛼 is indeed inde-

pendent of the site, as expected. 吀�e same holds for the one-body parameter ̃𝜏 and the two-body
parameter ̃𝛽.

For 𝜎2
+ the fluorescence noise parameter 𝛼+ is slightly smaller, in agreement with the measure-

ment in Section 3.6. 吀�e one-body parameter ̃𝜏 , here corresponding to the lifetime of the trap,
is reduced compared to the earlier measurement, and coincides with the one-body parameter
in 𝜎2

1,2. From this we deduce that the potential barrier height of Δ𝑉 /𝑘B = 1.4mK is large
enough, such that thermal hopping between the two sites of the double-well is negligible, and
the one-body limitation is solely given by the loss from the trap. 吀�e situation is different for
dynamics due to light-assisted collisions. From 𝜎2

+ we obtain a two-body parameter, comparable
to earlier measurements, which is orders of magnitude smaller than the ̃𝛽 parameter in 𝜎2

1 and 𝜎2
2 ,

where the noise is dominated by collisionally activated hopping. With the given barrier height
we are in a regime in which thermal hopping between the sites is strongly suppressed, however,
light-assisted collisions, due to their longer-ranged exponential energy distribution still contribute
significantly.

A measurement of the atom number difference 𝑁1 − 𝑁2 has a variance of 𝜎2
− and the fit

parameters, shown in Table 4.1, enforce the interpretation that the noise is dominated by particle
exchange due to light-assisted collisions. We find a single-particle resolution limit of 𝜎2

− = 1 for a
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Figure 4.14: Variance analysis of the total atom number and the atom number difference. (a) We
find different optimal integration times for measuring the sum and the difference
atom number, shown here for a mean atom number of 500. (b) For an integration
time of 120ms, optimised for measuring the atom number difference, we find the
single-particle resolution limit at 500 atoms for measuring 𝑁− (green solid line) and
close to 800 atoms for measuring 𝑁+ (black solid line). In between lies the sum of the
individual variances (blue dashed line).

total atom number of 500. 吀�is is worse than the 600 atoms, naively estimated from the condition
𝜎2

1 + 𝜎2
2 = 1, i. e. 𝜎2 = 1/2, with 𝜎2

1 ≈ 𝜎2
2 . 吀�e reason for this will be discussed in the following.

We consider the expression

𝜎2
1 + 𝜎2

2 = 𝑁1 + 𝑁2
𝜂𝑅sc

𝑡−1 + 2𝛾𝑡−1 + 𝛼2(𝑁2
1 + 𝑁2

2 )𝑡−1

+ 𝑁1 + 𝑁2
2𝜏

𝑡 + 𝑁1 + 𝑁2
𝜏ex

𝑡 + 𝛽(𝑁2
1 + 𝑁2

2 )𝑡 + 2𝛽ex(𝑁2
1 + 𝑁2

2 )𝑡, (4.41)

with decay parameters 𝜏 ≡ 𝜏1 ≈ 𝜏2 and 𝛽 ≡ 𝛽1 ≈ 𝛽2, as well as exchange parameters
𝜏ex ≡ 𝜏12 ≈ 𝜏21 and 𝛽ex ≡ 𝛽12 ≈ 𝛽21, and compare it to the sum variance

𝜎2
+ = 𝑁1 + 𝑁2

𝜂𝑅sc
𝑡−1 + 𝛾+𝑡−1 + 𝛼2

+(𝑁1 + 𝑁2)2𝑡−1

+ 𝑁1 + 𝑁2
2𝜏

𝑡 + 𝛽(𝑁1 + 𝑁2)2𝑡. (4.42)

First of all, we equate 𝛾+ = 2𝛾, in accordance with the fit parameters in Table 4.1. Since we
consider similar atom numbers 𝑁1 ≈ 𝑁2, we can set (𝑁1 + 𝑁2)2 ≈ 2(𝑁2

1 + 𝑁2
2 ). 吀�is results

in
√

2𝛼+ = 𝛼, also evident from the obtained fit parameters. Overall we find

𝜎2
+ = 𝜎2

1 + 𝜎2
2 + 2Cov(𝑁1, 𝑁2) (4.43)

with the atom covariance

Cov(𝑁1, 𝑁2) ≡ −1
2

(𝑁1 + 𝑁2
𝜏ex

+ 𝛽ex(𝑁1 + 𝑁2)2) 𝑡. (4.44)
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4 State-selective atom counting

Analogously, we set
𝜎2

− = 𝜎2
1 + 𝜎2

2 − 2Cov(𝑁1, 𝑁2) (4.45)

and now it becomes clear, why the variance of the difference measurement is larger than the
sum of the two individual variances. Likewise the variance for the sum measurement is reduced,
since it is independent of particle exchange between the sites. Both trends can be observed in
the measurements shown in Fig. 4.14. We can express the atom covariance as Cov(𝑁1, 𝑁2) =
(𝜎2

+ − 𝜎2
−)/4 and use Eqn. 4.44 to extract the particle exchange rates from the measurement of the

sum and difference variances, as will be explained in the following chapter.
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5 Dynamics in a dissipative double-well

In the previous chapter we have established that the dynamics in the MOT, in particular the particle
exchange between two sites of a double-well configuration, are governed by thermal activation
and light-assisted collisions. In this chapter we will introduce basic aspects of reaction-rate
theory, resulting in a description of the hopping rate as a function of the potential barrier height
and temperature of the system. We will then discuss several techniques to measure the particle
exchange rate, depending on the activation mechanism and particle number. For large atom
numbers, we can create a strong imbalance, i. e. all atoms in one site of the double-well, and observe
the initial population transfer to the empty site. For small atom numbers, which we can easily
resolve at a single-particle level, there are twomethods of extracting the hopping rate. One involves
the observation of anti-correlated atom number changes, e. g. (𝑁1, 𝑁2) → (𝑁1 + 1, 𝑁2 − 1),
which are interpreted as hopping events. 吀�e other method relies on measuring the fluorescence
noise from which the hopping rate can also be extracted. Combining these methods, our rate
measurement range spans five orders of magnitude. We will describe the measured particle
exchange rates with a multi-tailed atomic velocity distribution, caused by the different dynamics
in the system. Finally, the effect of alternately pulsing between MOT and light sheet potential on
the hopping rates are discussed.

5.1 Reaction-rate theory

Let us consider a chemical reaction with an activation energy 𝐸a. It can be modelled by a potential,
similar to the one depicted in Fig. 5.1(a) with a potential barrier of height 𝐸a. Once the activation
energy is overcome, the reactant transforms into the product. 吀�e beginnings of reaction-rate
theory in physical chemistry date back to 1889, when Svante Arrhenius presented an empirical
temperature dependence of the reaction rate 𝑟 given by the Arrhenius equation

𝑟 = 𝐴𝑒−u�a/u�Bu� , (5.1)

where 𝐴 is a constant rate pre-factor and 𝑇 the temperature of the system [90]. Taking the natural
logarithm, Eqn. 5.1 can be rewri琀�en as

log(𝑟) = −𝐸a
𝑘B

𝑇 −1 + log(𝐴). (5.2)

Representing the measurement in an Arrhenius plot, i. e. plo琀�ing log(𝑟) against the inverse tem-
perature 𝑇 −1, results in a straight line, from which we can determine 𝐸a as the slope and 𝐴 as
the offset. A modified Arrhenius equation reads

𝑟 = 𝐴 ( 𝑇
𝑇0

)
u�

𝑒−u�a/u�Bu� , (5.3)
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5 Dynamics in a dissipative double-well

Figure 5.1: Typical potentials in reaction rate theory. (a) In chemical reactions the transition from
reactant to product has to overcome an activation energy 𝐸a. (b) Typical double-well
potential in which one can study the particle hopping rate 𝑟 between the sites, sep-
arated by a potential barrier of height Δ𝑉 . 吀�e atoms, having a temperature 𝑇 and
experiencing a frictional constant 𝛾, are located mainly at the potential minima, where
the trapping frequency is 𝜔0. 吀�e (anti-)trapping frequency at the peak of the barrier
is 𝜔b.

where 𝑇0 is a temperature scale and the exponent 𝑛, taking into account a (slow) variation of the
rate pre-factor with the temperature, typically takes values −1 < 𝑛 < 1.

More than 45 years later, a refined understanding of the activation energy and the pre-factor of
the reaction rate was given in the transition state theory (TST), developed by Henry Eyring, as
well as Meredith Gwynne Evans and Michael Polanyi, in which one can express the reaction rate
as

𝑟 = 𝑘B𝑇
ℎ

𝑒−㥀u�/u�Bu� , (5.4)

where ℎ is Planck’s constant and Δ𝐺 the Gibbs free energy [91]. At first it looks like a linear
dependence of the pre-factor on the temperature, however, the Gibbs free energy itself depends on
𝑇 . Eqn. 5.4 can be rewri琀�en as an Arrhenius equation with 𝑛 < 1. Two conditions in TST are on
the one hand thermodynamic equilibrium at all times and on the other hand, that once a particle
has crossed the activation barrier, the reaction is accomplished.

In 1940, Hendrik Anthony Kramers extended TST to a system with moderate-to-strong fric-
tion [92], leading to a description of overcoming a reaction barrier for a thermal sample with
Brownian motion. Let us consider a one-dimensional double-well potential 𝑉 (𝑥), like the one
shown in Fig. 5.1(b), with reaction coordinate 𝑥 and a barrier height of Δ𝑉 . 吀�e system is in thermal
equilibrium with temperature T and exerts a linear friction force −𝛾𝑚du�

du� , where 𝛾 is the friction
constant and 𝑚 the particle mass. Brownian motion, in our case the random walk due to photon
sca琀�ering, is modelled by Gaussian random fluctuations 𝑓(𝑡) with zero mean, i. e. ⟨𝑓(𝑡)⟩ = 0. 吀�e
average can be taken over many observations of the same particle or simultaneously over a number
of particles, given that their interaction can be neglected. 吀�e fluctuations 𝑓(𝑡) have a strong
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5.1 Reaction-rate theory

temporal variation and obey the fluctuation-dissipation relation ⟨𝑓(𝑡)𝑓(𝑡′)⟩ = 2𝑚𝛾𝑘B𝑇 𝛿(𝑡 − 𝑡′).
吀�e 𝛿-distribution resembles the Markov property of instantaneous dissipation, meaning that each
photon sca琀�ering event is instantaneous and that the sca琀�ering events are uncorrelated [93]. 吀�is
leads to a Newton equation of motion in form of the Langevin equation

𝑚d2𝑥
d𝑡2 = −d𝑉 (𝑥)

d𝑥
− 𝛾𝑚d𝑥

d𝑡
+ 𝑓(𝑡). (5.5)

Kramers considered the time evolution of the probability density 𝑝(𝑥, ̇𝑥, 𝑡), expressed in a Fokker-
Planck equation, and calculated the flux over the barrier to find a description of the reaction rate
pre-factor in the moderate-to-strong friction regime [48]. 吀�e Kramers rate reads

𝑟K = 1
𝜔b

(√𝛾2

4
+ 𝜔2

b − 𝛾
2

) 𝜔0
2𝜋

𝑒−㥀u� /u�Bu� , (5.6)

where 𝜔0 is the trapping frequency in the potential minima and 𝜔b is the (anti-)trapping frequency
at the position of the potential barrier. In the Smoluchowski limit of strong (over-damped) friction,
i. e. 𝛾 ≫ 𝜔b, the reaction rate reduces to

𝑟K = 𝜔b
𝛾

𝜔0
2𝜋

𝑒−㥀u� /u�Bu� . (5.7)

In the strong friction limit, one can consider a random walk for the reaction coordinate, in
which the path may cross the barrier, but return to the initial site, contradicting the second
TST condition. In this regime, one speaks of a spatial-diffusion-controlled rate as opposed to
the energy-diffusion-controlled rate in the low friction limit. 吀�e Kramers rate can be seen as an
extension of the TST result 𝑟TST = u�0

2u� exp(−Δ𝑉 /𝑘B𝑇 ) with a correction factor 𝜅 ≡ 𝑟K/𝑟TST =
𝜔b/𝛾. Calculations of reaction rate constants always include the activation energy as a lower
bound. Kramers correction of the constant lowers the rate, such that the increased effective
activation energy is closer to the true value.

吀�ere are limitations to the concept of a simple activation energy, when the microscopic details
of the reactant, in particular interaction between the particles, are involved. Under near-collisional
conditions, molecular reaction dynamics dominate the system. Collision theory, proposed by Max
Trautz in 1916 and William Lewis in 1918, states that only a fraction of the occurring collisions
lead to enough energy of the reactant to overcome the activation energy [94]. Increasing the
density of the sample leads to a higher number of trials and therefore more successful collisions.
吀�e reaction rate can be expressed as

𝑟CT = 𝑍𝜌𝑒−u�a/u�Bu� , (5.8)

where the collision frequency 𝑍 = 𝑛𝜎𝑣 depends on the molecular density 𝑛, the reaction cross
section 𝜎 and the mean particle velocity 𝑣. 吀�e steric factor 𝜌 is the ratio of successful collisions
to the total number of collisions.

In Section 4.3 we have seen that the trapping frequencies 𝜔0 and 𝜔b both depend on the potential
barrier height Δ𝑉 . Figure 5.2(a) shows a comparison of the reaction rate results from TST and the
Kramers expression in the strong and moderate-to-strong friction regimes for different barrier
heights. Comparing the inverse Arrhenius factor 𝑘B𝑇 /Δ𝑉 for a MOT temperature of 80 µK to
the friction strength 𝛾/𝜔b in our system, as shown in Fig. 5.2(b), we see that we are indeed in the
spatial-diffusion-controlled rate regime at moderate-to-strong friction.
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Figure 5.2: Reaction rate comparison and validity of Kramers’ description. (a) 吀�e Kramers cor-
rection to the reaction rate coefficient leads to a reduced rate compared to the TST
result. All three expressions show a similar behaviour in the exponential tail (inset).
(b) 吀�e solid line shows the prevailing regime for a system temperature of 80 µK. 吀�e
arrow indicates increasing barrier heights. For large enough Δ𝑉 the friction strength
becomes smaller than unity, however due to the low temperature we are still in the
moderate-to-strong friction regime, where the Kramers rate description is valid.

5.2 Rate measurement

We investigate several methods of rate measurement, depending on the underlying reaction process
and the atom number regime. In order to simplify the analysis, we assume the particle exchange
rates to be symmetric and define the exchange parameters 𝜏ex ≡ 𝜏12 ≈ 𝜏21 and 𝛽ex ≡ 𝛽12 ≈ 𝛽21.
Likewise, we define the decay parameters 𝜏 ≡ 𝜏1 ≈ 𝜏2 and 𝛽 ≡ 𝛽1 ≈ 𝛽2. 吀�e atom number
dynamics are then given by

̇𝑁1 = −𝑁1
𝜏

− 𝑁1
𝜏ex

+ 𝑁2
𝜏ex

− 𝛽𝑁2
1 − 𝛽ex𝑁2

1 + 𝛽ex𝑁2
2 (5.9)

and
̇𝑁2 = −𝑁2

𝜏
− 𝑁2

𝜏ex
+ 𝑁1

𝜏ex
− 𝛽𝑁2

2 − 𝛽ex𝑁2
2 + 𝛽ex𝑁2

1 , (5.10)

as well as
̇𝑁+ = ̇𝑁1 + ̇𝑁2 = −𝑁1 + 𝑁2

𝜏
− 𝛽(𝑁2

1 + 𝑁2
2 ). (5.11)

5.2.1 Initial imbalance

In order to measure the rate of hopping due to light-assisted collisions, we initially set an atom
number imbalance 𝑁1 ≫ 𝑁2 by switching off the light-sheet, displacing the MOT with a vertical
magnetic offset field, turning the light-sheet back on and reverting the MOT displacement. 吀�e
last step defines 𝑡 = 0, at which all atoms (typically a few thousand) are in site 1 and none in site 2.
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Figure 5.3: Measurement of the collisional hopping rate. (a) A large initial atom imbalance equili-
brates over time. We analyse the rate of atom number increase in the initially scarcely
populated site. 吀�e measurement indicated by the arrow consists in fact of 8 time steps,
from which we extract the slope (inset). (b) 吀�e collisional hopping parameter 𝛽ex
reaches a value on the order of 10−5 at large barrier heights, where it does not depend
on the atom number.

We observe the time evolution of the individual atom numbers, exemplarily shown in Fig. 5.3(a),
which, for 𝑁1 ≫ 𝑁2 and hence 𝑁2

1 ≫ 𝑁2
2 , is given by ̇𝑁1 = −(𝛽 + 𝛽ex)𝑁2

1 and ̇𝑁2 = 𝛽ex𝑁2
1 .

Taking an image right a昀�er the atomic imbalance has been created, we can extract

𝛽ex = 1
𝑁2

1

Δ𝑁2
Δ𝑡

, (5.12)

where Δ𝑁2 is the atom number increase in site 2 between two exposures and Δ𝑡 is the integration
time. Here 𝑁1 is the mean atom number in site 1 during Δ𝑡. We repeat the measurement for an
initial imbalance towards site 2, i. e. 𝑁2 ≫ 𝑁1 and 𝑁2

2 ≫ 𝑁2
1 , and extract 𝛽ex from the atom

number increase in site 1, given by ̇𝑁1 = 𝛽ex𝑁2
2 .

吀�e collisional hopping parameter 𝛽ex is shown in Figure 5.3(b) as a function of the potential
barrier height Δ𝑉 for two mean total atom numbers. At large barrier heights it reaches a value
of about 2.5 × 10−5, independent of the atom number.1 吀�is value is close to the fit parameter
describing particle exchange due to light-assisted collisions in the noise model presented in
Section 4.4. For smaller barrier heights we observe an exponential dependence of 𝛽ex on Δ𝑉 , as
well as an atom number dependence. 吀�is indicates that the underlying exchange mechanism
must be something else than two-body collisions.

1For some measurements at the lower atom number the error bar is larger than the value, and thus the lower bound
cannot be displayed on a logarithmic scale. For the larger atom number this it not the case.
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Figure 5.4: Extraction of the exchange rate from the number of Poisson distributed hopping
events. (a) A step finding algorithm is employed to trace the atom numbers 𝑁1 (blue)
and 𝑁2 (red) and detect hopping events, i. e. anti-correlated atom number changes.
(b) 吀�e normalised occurrences of the number of hopping events in a given time
interval (histogram) obey the Poisson distribution (circles). (c) 吀�e mean of the Poisson
distribution increases linearly with the length of the time interval in which the hopping
events are counted.

5.2.2 Step detection

For very small atoms numbers we can neglect the influence of light-assisted collisions, which
is confirmed in the data by the lack of two-atom hopping events, and consider the exchange
dynamics as a one-body effect. We employ a step finding algorithm to trace the atomic signal and
extract the exact atom numbers 𝑁1 and 𝑁2 in each frame. 吀�e algorithm is based on an adaptive
maximum-likelihood analysis of the fluorescence signal, given initial estimates of the experimental
parameters, including lifetime and the number of counts per atom. As time progresses, the
Bayesian algorithm finds new estimates of these parameters and is thereby able to give the best
estimate for the atom number at each point in time. An example of this is shown in Fig. 5.4(a). If
we neglect decay events, by post-selecting for ̇𝑁+ = 0, the dynamics are governed by

̇𝑁1 = −𝑁1 − 𝑁2
𝜏ex

(5.13)
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Figure 5.5: Few particle hopping rate for different potential barrier heights. (a) Example signal
traces of 𝑁1 (blue) and 𝑁2 (red) for increasing barrier heights from top to bo琀�om.
(b) Hopping rate for a mean atom number of 3.7 and two different exposure times. 吀�e
long exposure time is favourable for low rates, because it reduces the contribution of
fluorescence noise. For small barrier heights, the long exposure time averages of many
hopping events and underestimates the exchange rate. Here the shorter exposure time
leads to a rate that is closer to the expected exponential dependence at a temperature
of 80 µK (dashed line).

and
̇𝑁2 = −𝑁2 − 𝑁1

𝜏ex
. (5.14)

We see that ̇𝑁1 = − ̇𝑁2 and while the rate equation is an average property of the system, the same
equation holds for individual hopping events, which we count as an anti-correlated atom number
change from one exposure to the next, all in one frame-transferred image. We do not include atom
number changes between two images, since we do not have information about the atom numbers
during the read-out process. Figure 5.4(b) shows an example measurement of the normalised
occurrence of the number of hopping events 𝑘 in a time interval of 2 s at a barrier height of 0.6mK.
Here the exposure time was 100ms. 吀�e data is well described by a Poisson distribution 𝑃(𝑘; 𝜆),
from which we can extract the mean number of hopping events 𝜆 = ⟨𝑁⟩𝑇 /𝜏ex. Increasing the
observation time interval 𝑇 , we find a linear increase of 𝜆, as shown in Fig. 5.4(c). With a mean
atom number of ⟨𝑁⟩ = 5.51, the extracted mean slope of 𝜆/𝑇 = 0.1305(64) s−1 corresponds to
a hopping rate of 𝑟 ≡ 𝜏−1

ex = 𝜆/⟨𝑁⟩𝑇 = 0.0237(12) s−1.
We measure the few particle hopping rate for different potential barrier heights Δ𝑉 . An

example measurement, shown in Fig. 5.5(a), illustrates the basic feature, that the hopping rate
goes down with increasing barrier height. From Eqn. 5.6 we would expect that the hopping
rate decreases exponentially with the barrier height, at least for large Δ𝑉 , where the change of
the trapping frequencies is negligible. We can confirm this behaviour up to a barrier height of
0.8mK, however, there is an experimental feature that needs to be addressed. For high rates a
long exposure time is beneficial, since both fluorescence noise and photon shot noise are averaged
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Figure 5.6: Hopping rate extraction from noise contribution. (a) Comparison of the two methods
for extracting the few particle hopping rate. 吀�e method relying on the covariance
analysis of the atom signal (black circles) agrees in all characteristic features with the
results obtained via the step finding algorithm (grey circles), both for an exposure time
of 200ms (open circles) and 500ms (filled circles). (b) 吀�e hopping rate shows a linear
increase with large atom numbers, indicating collisional particle exchange, while the
behaviour for small atoms numbers is consistent with thermal hopping.

down. In this regime we use an integration time of 500ms. If the hopping dynamics (at low
barrier heights) are too fast however, multiple hopping events occur during one long exposure
time and the hopping rate is underestimated. Hence we measure the higher rates with a shorter
exposure time of 200ms as well and obtain a result which is closer to the Kramers rate expectation,
as shown in Figure 5.5(b). At large potential barrier heights we observe a deviation from the
expected exponential decrease of the hopping rate. At this point our resolution is limited by the
total detection time, i. e. the experimentally available duration integrated over all exposures, not
including the read-out time. We achieve a detection time of 𝑡det = 3430 s for each datapoint and
thus a resolution of ∼ 𝑡−1

det = 3 × 10−4 s−1, corresponding to one hopping event in about one
hour. 吀�e effect of the hopping rate levelling off at ∼ 10−3 s−1, apparently not explained by a
limited detection time, will be discussed later in this chapter.

5.2.3 Noise contribution

As we have seen from Eqn. 4.44 derived in the previous chapter, we can express the covariance
between atom numbers 𝑁1 and 𝑁2 in terms of the one- and two-body exchange parameters 𝜏ex
and 𝛽ex. At the same time, the covariance depends on the sum and difference variances 𝜎2

+ and
𝜎2

−, respectively. For very small atom numbers we can again neglect collisional hopping and the
covariance reduces to

Cov(𝑁1, 𝑁2) = −𝑁1 + 𝑁2
2𝜏ex

𝑡 = −
𝑁+
2𝜏ex

𝑡 (5.15)
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and we can rewrite the hopping rate as

𝑟 ≡ 1
𝜏ex

=
𝜎2

− − 𝜎2
+

2⟨𝑁⟩𝑡
, (5.16)

where ⟨𝑁⟩ is the mean total atom number during the measurement. We have previously seen
that 𝜎2

− ≥ 𝜎2
+, so 𝑟 ≥ 0 is ensured. Eqn. 5.16 allows us to extract the hopping rate from the

measurement of the signal variance, given our noise model. In Figure 5.6(a) we compare the results
from such a measurement with the rate obtained via the step finding algorithm. 吀�e agreement
extends to all characteristic features, such as the levelling off at higher potential barrier heights
and the underestimation of high hopping rates.

In Section 4.4 we have analysed the difference and sum variances as a function of the atom
number. If we extract from those measurements the hopping rate using Eqn. 5.16, we expect a
constant thermal particle exchange rate for small atom numbers. For large atom numbers, however,
the measurement shows a linear increase with the total particle number, as shown in Fig. 5.6(b),
which indicates a density dependent effect, namely collisional hopping between the sites. Here
the potential barrier height was Δ𝑉 /𝑘B = 1.4mK.

5.3 Heavy-tailed velocity distribution

We have measured the hopping rate between the two sites of the double-well potential in different
atom number regimes as a function of the barrier height and will now introduce a rate model, in
an a琀�empt to explain the observed features. As a simple criterion for a hopping event we require
that the kinetic energy of a particle 𝐸kin = 𝑚𝑣2/2 is equal to the potential barrier height Δ𝑉 (or
higher). From this we obtain a critical velocity 𝑣c = √2Δ𝑉 /𝑚. 吀�e hopping rate, expressed as
the probability 𝑃 of having a thermal velocity larger than 𝑣c over a time period 𝑡, then reads

𝑟 = 𝑃
𝑡

= 1
𝑡

∫
∞

u�c

𝑓(𝑣) d𝑣, (5.17)

where 𝑓(𝑣) is the velocity distribution. Let us consider the Maxwell-Boltzmann distribution for
the one-dimensional velocity 𝑣 of a thermal atomic sample

𝒯(𝑣) = √
𝑚

2𝜋𝑘B𝑇
exp (− 𝑚𝑣2

2𝑘B𝑇
) , (5.18)

where 𝑚 is the atomic mass. Since the particle exchange between the sites happens along one
direction, we have already used a one-dimensional description of the potential and we will restrict
ourselves to the Maxwell-Boltzmann distribution for a single component of the velocity vector.
Evaluating Eqn. 5.17 with 𝒯(𝑣) as the velocity distribution leads to the exponential decrease of
the hopping rate as a function of the barrier height, in accordance with Arrhenius’ law, shown
in Fig. 5.7 for a MOT temperature of 𝑇 = 80 µK, where 𝑡−1, the intercept for Δ𝑉 → 0, is a free
parameter and turns out to be 160(20) s−1. 吀�is corresponds to 𝑡 = 6ms, which is on the same
order as the time an atom needs to move through the MOT without light-sheet.
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Figure 5.7: Heavy-tailed velocity distribution describing the hopping rates in various regimes.
(a) In addition to the thermal distribution (dash-do琀�ed line) we include an exponential
energy distribution to account for light-assisted collisions at different atom numbers
(dashed lines). 吀�e remaining one-body effects can be modelled by substituting the
thermal distribution for the Lévy velocity distribution ℒu� (solid lines). (b) 吀�e steep
exponential decrease of the hopping rate at low barrier heights is well described by a
thermal velocity distribution (dash-do琀�ed line). At large barrier heights, the inclusion
of light-assisted collisions explains the measured rates for large atom numbers (dashed
lines), while small atom numbers require the inclusion of a non-Gaussian velocity
distribution (solid lines). 吀�e shaded area indicates the uncertainty in the exponent 𝛼.

In Section 3.3 we have established that the energy gained by the process of light-assisted
collisions is exponentially distributed, which can be modelled by 𝒞(𝐸) = 𝐸−1

0 exp(−𝐸/𝐸0) with
an energy scale 𝐸0 depending on the detuning of the light that excites the atoms into the S + P
molecular potential. With this we can describe the deviation of the hopping rate from the thermal
description at large barrier heights. An energy scale of 𝐸0/ℎ = 60MHz describes the weak, but
significant dependence of the hopping rate due to light-assisted collisions on the potential barrier
height, shown in Fig. 5.7(b), for mean atom numbers of 2500 and 320. We compare this to simulated
values of 𝐸0/ℎ ∼ 30 − 50MHz for 85Rb [95]. 吀�e exact value is not crucial, since the hopping
rate in this regime is dominated by the tail of the exponential energy distribution, which is similar
for all these values of 𝐸0. In order to compare this energy scale to the thermal distribution, we
can express 𝐸0 as an effective temperature via 𝑘B

̃𝑇 = 𝐸0 and with 𝐸 = 1
2𝑚𝑣2 obtain a velocity

distribution for the light-assisted collisions

𝒞(𝑣) = √
𝑚

2𝜋𝑘B
̃𝑇
exp (− 𝑚𝑣2

2𝑘B
̃𝑇
) (5.19)

with ̃𝑇 = 3mK. 吀�e combined velocity distribution 𝑓(𝑣) = (1 − 𝜀𝑁)𝒯(𝑣) + 𝜀𝑁𝒞(𝑣), with
an occupation of the high energy mode of 𝜀 = 1.2(1) × 10−7, describes the hopping rate mea-
surements for large atom numbers 𝑁 over the entire range of barrier heights. However, we

78



5.3 Heavy-tailed velocity distribution

measure an increased hopping rate for small atom numbers at large barrier heights, which is not
described by collisional activation. Instead we shall generalise the thermal velocity distribution to
a family of stable distributions, including heavy-tailed distributions for which the tail does not
decrease exponentially, but according to a power law. As a consequence, these non-Gaussian
distributions generally do not have a finite variance. Heavy-tailed momentum distributions are
used to describe anomalous diffusion – sometimes called Lévy flight – in systems, typically out of
thermal equilibrium, which exhibit rare but large fluctuations [96–100].

Any probability distribution can be expressed as the Fourier transform of a characteristic function
𝜑(𝑡), given by

𝑓(𝑥) = 1
2𝜋

∫
∞

−∞
𝜑(𝑡)𝑒−u�u�u� d𝑡. (5.20)

A distribution is called Lévy alpha-stable if the characteristic function can be wri琀�en as [101]

𝜑(𝑡) = exp [𝑖𝑡𝜇 − |𝑐𝑡|u�(1 − 𝑖𝛽sgn(𝑡)Φ)] , (5.21)

where sgn(𝑡) is the sign of 𝑡 and Φ = tan(𝜋𝛼/2) for 𝛼 ≠ 1. For a skewness parameter 𝛽 = 0, we
obtain a symmetric alpha-stable distribution. We further set the shi昀� parameter 𝜇 = 0 and obtain
the Lévy velocity distribution

ℒu�(𝑣) = 1
2𝜋

∫
∞

−∞
exp (−𝑖𝑣𝑡 − |𝑐𝑡|u�) d𝑡, (5.22)

where the scale parameter 𝑐 ∈ (0, ∞) measures the width of the distribution and 𝛼 ∈ (0, 2]
determines the asymptotic behaviour. In fact, ℒu�(𝑣) ∼ 1/|𝑣|u�+1 for 𝛼 < 2 [102]. For 𝛼 = 2 the
Lévy stable distribution reduces to the normal distribution, i. e. ℒ2(𝑣) ≡ 𝒯(𝑣), with a variance
𝜎2 = 2𝑐2. From this we identify 𝑐 = √𝑘B𝑇 /2𝑚 and the parameter 𝑡 has the dimension of an
inverse velocity.

Using the combined velocity distribution 𝑓(𝑣) = (1 − 𝜀𝑁)ℒu�(𝑣) + 𝜀𝑁𝒞(𝑣), we can finally
describe all hopping rate measurements in the different regimes across four orders of magnitude,
including for small atom numbers at large barrier heights, as shown in Fig. 5.7(b). We obtain
a stability parameter 𝛼 = 1.999 90(5), which is only distinguishable from 2 due to the high
measurement resolution of our detector.

We would also like to mention another velocity distribution, which has been used to describe
anomalous transport in optical la琀�ices [102, 103]. As a member of the family of Tsallis distributions,
the so-called q-Gaussian is the q-analogue of the normal distribution and is given by [104]

𝒫u�(𝑣) = 𝑍−1
u� [1 − ̃𝛽(1 − 𝑞)𝑣2]

1/(1−u�)
, (5.23)

with normalisation parameter 𝑍u�, scale parameter ̃𝛽 = 𝑚/2𝑘B𝑇 and 1 < 𝑞 < 3. For 𝑞 → 1 the
generalised q-Gaussian 𝒫u�(𝑣) recovers the original normal distribution 𝒯(𝑣). 吀�e asymptotic
behaviour is given by 𝒫u�(𝑣) ∼ 1/𝑣2/(u�−1) for 𝑞 ≠ 1 [103]. In an optical la琀�ice, the index 𝑞 can
be related to the potential depth Δ𝑉 via 𝑞 = 1 + 44𝐸r/Δ𝑉 , where 𝐸r is the recoil energy [102],
hence 𝑞 → 1 for large potential barrier heights. However, from our measurements we expect
instead a Gaussian behaviour (𝑞 ∼ 1) at low barrier heights and non-Gaussian diffusion (𝑞 > 1)
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5 Dynamics in a dissipative double-well
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Figure 5.8: Measured hopping rates for varying pulsing of the light-sheet. (a) A longer pulse length
𝜏 , equal for both the light-sheet and the MOT light, leads to an increased hopping
rate, measured via the step finding algorithm, as well as extracted from the covariance
analysis. We plot 𝑟 ∝ 𝜏2 as a guide to the eye (blue line). We find an optimal pulse
length of about 10 µs, while for shorter pulse lengths the hopping rate increases again.
(b) Changing the pulse length of one component, while keeping the other one fixed,
we find a minimal hopping rate for a MOT duty cycle around 60%.

at large barrier heights. Consequently, applying 𝒫u�(𝑣) as a velocity distribution does not fit our
measured hopping rates for any constant index 𝑞 or one that decreases with increasing barrier
height.

Note that quantum tunnelling through the potential barrier would require the de Broglie
wavelength 𝜆dB = ℎ/𝑝 to be comparable to the width of the barrier [105], say ∼ 10−5 m. 吀�e
particle momentum 𝑝 ∼ √𝑚𝑘B𝑇 leads to an associated wavelength 𝜆dB ∼ 10−8 m for a MOT
temperature of 80 µK, thus tunnelling as a particle exchange mechanism between the sites can be
neglected.

5.4 Effects of light-sheet pulsing and finite spatial extent

Our approach of generating a dissipative double-well potential intrinsically relies on the alternate
pulsing between the potential barrier and the trapping light. For all measurements so far, we have
used equal pulse lengths of 𝜏 = 4 µs for the light-sheet and for the MOT, where we understand 𝜏 to
be the time interval during which one of the light sources is on. Here we investigate the effect of the
light-sheet pulsing on the hopping rate. For this we choose a barrier height of Δ𝑉 /𝑘B = 0.9mK.
First we vary the pulse length in an equal manner for both light-sheet and MOT light, shown in
Fig. 5.8(a), to find a quadratic increase of the hopping rate for 𝜏 ≳ 20ms. Below an optimal pulse
length of about 10 µs, where the hopping rate is minimal, we observe an increase of the rate.

We also vary the MOT duty cycle, by keeping the MOT pulse length 𝜏MOT at 4 µs and changing
the light-sheet pulse length 𝜏LS between 6 µs and 16 µs or keeping 𝜏LS = 4 µs and changing 𝜏MOT
from 6 µs to 16 µs. Figure 5.8(b) shows an optimal duty cycle of about 60%. If the light-sheet
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Figure 5.9: (a) MOT size ⟨𝑥2⟩ as a function of the MOT duty cycle. We measure the width of the
Gaussian atomic density distribution and interpret the increased size as a higher tem-
perature, as long as 𝑘B𝑇 = 𝜅⟨𝑥2⟩ holds. (b) 吀�e finite spatial extent of the light-sheet
results in a reduced effective barrier height, which increases the hopping rate. 吀�e
magnitude of the effect is shown for different ratios 𝜎/𝑤2.

duration is reduced too much, the atoms see a lower average barrier height which increases the
probability of crossing the barrier. If, on the other hand, the MOT light period is too short, laser
cooling is not efficient and the ho琀�er atoms have again a higher probability of crossing the barrier.
We see indications for the la琀�er effect in the increased MOT size ⟨𝑥2⟩ for short MOT duty cycles2,
which indicates a higher temperature, given 𝑇 = 𝜅⟨𝑥2⟩/𝑘B (see Fig. 5.9(a)).

We have chosen the waist 𝑤2 of the light-sheet to be much larger than the waist 𝜎 of the atomic
density distribution in order to prevent atoms from passing around the potential barrier. However,
since the spatial extent of the light-sheet is finite, there is a certain probability, that an atom will
travel far enough from the center of the MOT, where it experiences a reduced barrier height. We
have calculated analytically how the smaller effective barrier influences the hopping rate by taking
into account the full three-dimensional Gaussian profile of the light-sheet with spot sizes 𝑤1 and
𝑤2, as well as the Rayleigh length 𝑧R along the 𝑘-vector. Figure 5.9(b) shows calculations for
different ratios 𝜎/𝑤2. For an infinitely small MOT we recover the simple exponential decay of the
hopping rate with the barrier height, given by Arrhenius’ law. In reality, the ratio is about 10%, in
which case we observe a small increase of the hopping rate. Much bigger MOT sizes would be
required in order to see a strong increase of the hopping rate, which may be able to explain the
levelling off for small atom numbers at large barrier height, as described in the previous section.
Even then, however, the effect would also be visible at smaller barrier heights, which we do not
see in our measurements.

2For this measurement the light-sheet was turned off.
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6 Stochastic resonance

吀�e term stochastic resonance describes the signal-to-noise optimisation of a non-linear system’s
response by introducing additional noise. 吀�e requirements for this to occur are an activation
barrier or threshold, a weak periodic input and a noise source intrinsic to the system. A dissipative
double-well potential is a paradigm example of such a system. 吀�e potential barrier acts as the
threshold for atoms hopping from one site to the other, while control over the temperature allows
one to change the thermal noise level. Hence, by applying a weak periodic modulation to the
potential, we expect the emergence of a stochastic resonance, where the response signal is the
density distribution of the atoms.

We consider a heavily damped particle in a dissipative symmetric double-well potential 𝑉 (𝑥).
In Section 5.1 we have seen that in the strong-friction regime the Kramers rate of hopping between
the two sites of the potential is given by

𝑟K = 𝜔0𝜔b
2𝜋𝛾

exp (− Δ𝑉
𝑘B𝑇

) , (6.1)

which depends exponentially on the temperature 𝑇 . A weak periodic modulation with frequency
Ω results in an asymmetric tilt of the potential, illustrated in Fig. 6.1. We assume the modulation
to be too weak to introduce hopping, however, by varying the temperature, the noise-induced
hopping rate 𝑟K can be synchronised with it, meaning that the average waiting time 𝑇K = 𝑟−1

K
between two hopping events is comparable to half the driving period 𝑇Ω = 2𝜋/Ω. 吀�is leads to
the time-scale matching condition 2𝑇K = 𝑇Ω or equivalently Ω = 𝜋𝑟K.

If we denote the periodic driving of the system as 𝐴(𝑡) = 𝐴0 cos (Ω𝑡), the Brownian motion of
the particle is described by

𝑚 ̈𝑥 = −𝛾𝑚 ̇𝑥 − 𝑉 ′(𝑥) + 𝑚𝐴0 cos(Ω𝑡) + √2𝑚𝛾𝑘B𝑇 𝜉(𝑡), (6.2)

where 𝜉(𝑡) denotes zero-mean, Gaussian white noise with the property ⟨𝜉(𝑡)𝜉(𝑡′)⟩ = 𝛿(𝑡 − 𝑡′)
(compare to 𝑓(𝑡) in Eqn. 5.5). If the driving is absent (𝐴0 = 0), the particle will experience a random
motion with ⟨𝑥(𝑡)⟩0 = 0 and a statistical variance ⟨𝑥2⟩0 which depends on the temperature. A
periodic driving breaks the reflection symmetry of the system and ⟨𝑥(𝑡)⟩ does no longer vanish.
We can reduce the information in 𝑥(𝑡) to merely being either in site 1 (le昀�) or in site 2 (right) of
the double-well. 吀�is leads to a two-state model based on a master equation for the probabilities
𝑛1 and 𝑛2 of being in either site, with the normalisation 𝑛1 + 𝑛2 = 1. 吀�e master equation,
proposed by McNamara and Wiesenfeld [106], reads

�̇�1(𝑡) = −𝑇12(𝑡)𝑛1 + 𝑇21(𝑡)𝑛2, (6.3)
�̇�2(𝑡) = −𝑇21(𝑡)𝑛2 + 𝑇12(𝑡)𝑛1, (6.4)
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6 Stochastic resonance

Figure 6.1: Periodic driving of the double-well potential. 吀�e atoms are equally populating both
sites of the potential at 𝑡 = 0. A periodic modulation with frequency Ω of the potential
leads to an increased probability of hopping from le昀� to right a昀�er a time 𝑡 = 𝑇Ω/4
and vice versa at 𝑡 = 3𝑇Ω/4. 吀�e temperature 𝑇 of the atoms can be used to tune the
hopping rate 𝑟, matching it to the driving frequency in order to observe the stochastic
resonance effect.

with the Arrhenius type periodic transition rates

𝑇12(𝑡) = 𝑟K exp [𝐴0𝑥0
𝑘B𝑇

cos (Ω𝑡)] , (6.5)

𝑇21(𝑡) = 𝑟K exp [−𝐴0𝑥0
𝑘B𝑇

cos (Ω𝑡)] , (6.6)

where ±𝑥0 are the positions of the potential minima, with ⟨𝑥2⟩0 = 𝑥2
0 in the two-state approxi-

mation [107].
Choosing initial conditions 𝑥0 = 𝑥(𝑡0), one can take the average over many noise realisations

for 𝑥(𝑡) to obtain ⟨𝑥(𝑡)|𝑥0, 𝑡0⟩. In the asymptotic limit 𝑡0 → −∞ this expression is independent
of the initial conditions and becomes a periodic function ⟨𝑥(𝑡)⟩as = ⟨𝑥(𝑡 + 𝑇Ω)⟩as. For small
amplitudes, 𝐴0𝑥0 ≪ 𝑘B𝑇 , the system response can be expressed as ⟨𝑥(𝑡)⟩as = ̄𝑥 cos(Ω𝑡 − 𝜙)
with amplitude

̄𝑥(𝑇 ) = 𝐴0⟨𝑥2⟩0
𝑘B𝑇

2𝑟K

√4𝑟2
K + Ω2

(6.7)

and phase lag

𝜙(𝑇 ) = arctan ( Ω
2𝑟K

) . (6.8)

For small temperatures, the amplitude ̄𝑥 rises with 𝑇 , due to the exponential increase of the
hopping rate 𝑟K. For large temperatures, the 𝑇 −1 dependence of the amplitude dominates, which
leads to a decreasing ̄𝑥 with the noise intensity. In between, at the optimal noise level, we have
a maximum of ̄𝑥, i. e. the stochastic resonance effect. 吀�e phase lag transitions from 𝜋/2 at low
noise intensity to 0 at high noise intensity and reaches a value of 𝜙 = 1, when the time-scale
matching condition Ω = 𝜋𝑟K is fulfilled [52, 106, 108].
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6.1 Tuning the hopping rate via temperature control

In this chapter we will discuss a scheme of temperature control, that relies on periodically
switching the detuning of the laser cooling light. We will obtain the power spectral density of the
system response and extract from it the linear response amplitude and phase, demonstrating the
stochastic resonance of the signal-to-noise ratio. Furthermore, the spectrum reveals the non-linear
character of the system. Finally, we investigate the effect of stochastic resonance for collisional
dynamics, where the hopping rate tuning is not given by a change in the temperature, but by a
modulation of the atomic density.

6.1 Tuning the hopping rate via temperature control

Magneto-optically trapped atoms exhibit complicated dynamics, due to the random sca琀�ering
events during the position dependent laser cooling. Nevertheless, we can pretend that the atoms
are in thermal equilibrium and a琀�ribute a temperature to the ensemble. 吀�e velocity distribution
can be approximated by a Maxwell-Boltzmann probability density function (PDF)

𝑓(𝑣) = √( 𝑚
2𝜋𝑘B𝑇

)
3

4𝜋𝑣2 exp (− 𝑚𝑣2

2𝑘B𝑇
) , (6.9)

where the temperature 𝑇 depends on the detuning of the laser cooling light. In the Doppler cooling
limit a detuning of 𝛿 = −Γ/2 yields the lowest temperature of 𝑇D ∼ 150 µK. Due to the effect
of polarisation gradient cooling we expect a detuning further into the red to result in a lower
temperature, thus we choose 𝛿 = −Γ. It is possible to increase the temperature by switching to
a blue detuning of +Γ, thereby heating the sample, for a short amount of time 𝜏b compared to
the period of red detuning 𝜏r. 吀�e total period is 𝜏b + 𝜏r, a昀�er which the process is repeated, as
illustrated in the inset of Fig. 6.2. We choose a total period of 100 µs, corresponding to a switching
frequency of 10 kHz, and find a maximum of the duty cycle 𝐷 = 𝜏b/(𝜏b + 𝜏r) of about 25% above
which the MOT becomes unstable. We observe a considerable increase in the size of the atomic
density distribution, which indicates a higher temperature.

吀�e temperature can be measured by a release and recapture method, in which an initial number
of atoms 𝑁0 is prepared and the laser beams are turned off at 𝑡 = 0. Each atom1 undergoes free
propagation with the thermal velocity it had at the instant of release. We vary the release time 𝑡r
before the trapping laser is turned on again and determine the final number 𝑁 of recaptured atoms.
Assuming a fixed recapture radius 𝑟c, the release time can be translated into a corresponding
thermal velocity 𝑣 = 𝑟c/𝑡r. 吀�e ratio 𝑁/𝑁0 as a function of the velocity 𝑣 yields the cumulative
distribution function (CDF) of the Maxwell-Boltzmann distribution

𝐹(𝑣) = erf( 𝑣√
2𝑎

) − √ 2
𝜋

𝑣
𝑎

exp (− 𝑣2

2𝑎2 ) (6.10)

with parameter 𝑎 = √𝑘B𝑇 /𝑚. An example measurement for a duty cycle of 18% is shown in
Fig. 6.2(a). 吀�e so昀�ening of the measured CDF compared to the theoretical expectation could be
due to spatial variations in the capture volume. 吀�e CDF fit yields a most probable velocity of
𝑣p =

√
2𝑎 ∼ 0.2m/s, corresponding to a temperature of 𝑇 ∼ 200 µK.

1We prepare an initial atom number of about 2000 instead of repeating the experiment many times for a single atom.
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Figure 6.2: Temperature measurement and control. (a) 吀�e ratio of final and initial atom numbers
𝑁/𝑁0 in a release and recapture experiment for varying release times yields the CDF
of the Maxwell-Boltzmann velocity distribution (blue solid line), shown here for a duty
cycle of 18%. 吀�e derivative corresponds to the PDF, plo琀�ed here as an illustration
with arbitrary amplitude (black dashed line). (b) 吀�e temperature of the ensemble can
be controlled via the duty cycle of blue detuning, as illustrated in the inset. 吀�e model
(solid line) predicts a divergence of the temperature at about 27% (dashed line).

Increasing the duty cycle of blue detuning we observe an increase of the temperature, as shown
in Fig. 6.2(b), and we model the dependence by considering the cooling and heating rates during
the process. While the light is red detuned, the cooling rate is given by Eqn. 2.26. During the
period of blue detuning there is heating with the same magnitude 𝛼𝑣2

u�. 吀�e heating rate due to
isotropic emission of photons, given by Eqn. 2.27, is present the entire time. 吀�is adds up to a total
balance of

𝐷u�

𝑚
− (1 − 𝐷)𝛼𝑣2

u� + 𝐷𝛼𝑣2
u� = 0, (6.11)

with 𝐷 ∈ [0, 1]. Using the relation 𝑣2
u� = 𝑘B𝑇 /𝑚 we obtain

𝑇 =
𝐷u�

𝛼𝑘B(1 − 2𝐷)
. (6.12)

For 𝐷 → 0, this expression reduces to the Doppler temperature given in Eqn. 2.30. Furthermore,
there is a pole at 𝐷 = 0.5, where the temperature diverges. It is evident, that no stable condition
can be achieved, if the blue detuned heating period is longer than the cooling time, i. e. the duty
cycle surpasses 50%. Since we additionally have polarisation gradient cooling in our system, we
modify Eqn. 6.12 and fit 𝑇 (𝐷) = 𝑇0(1 − 𝜉𝐷)−1 to our measurement of the temperature. Here
the fit parameter 𝑇0 represents the lowest possible temperature for 𝐷 = 0, while 𝜉 quantifies
how strong the temperature depends on the duty cycle. In this case the temperature diverges
at 𝐷 = 𝜉−1. Choosing a recapture radius of 𝑟c = 3.3mm yields a minimum temperature of
𝑇0 = 76(4) µK, in accordance with earlier temperature measurement (see Section 3.3), and a
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Figure 6.3: Hopping rate dependence on the temperature. (a) 吀�e hopping rate increases as a
function of the temperature according to the Arrhenius equation. (b) 吀�e same mea-
surement represented as an Arrhenius plot of the natural logarithm of the hopping rate
versus the inverse temperature shows the expected linear dependence.

calibration parameter 𝜉 = 3.6(1). 吀�e la琀�er is independent on 𝑟c and leads to a cut-off at a duty
cycle of about 27%.

We can now measure the hopping rate for different duty cycles and analyse the dependence of
the rate on the calibrated temperature. We choose a potential barrier height of Δ𝑉 /𝑘B = 0.64mK
and use the initial imbalance method for extracting the hopping rate (see Section 5.2)2. Fi琀�ing the
Arrhenius equation 𝑟 = 𝐴 exp(𝐸a/𝑘B𝑇 ), as shown in Fig. 6.3, sets a constraint on the activation
energy 𝐸a, which should correspond to the potential barrier height Δ𝑉 . In order to satisfy this
condition, we have to change our temperature calibration by se琀�ing 𝑇0 = 100 µK. 吀�is yields a fit
parameter 𝐸a/𝑘B = 0.61(6)mK. 吀�is calibration method does not depend on the knowledge of the
MOT recapture radius 𝑟c, which is difficult to obtain, however, it assumes a correct calibration of
the potential barrier height. Here the pre-factor is 𝐴 = 51(8) s−1, independent of the value chosen
for 𝑇0, which is smaller than in earlier measurements, possibly due to the different detuning of
the MOT light.

6.2 Non-uniform power spectral density

Having established control over the hopping rate via adjusting the temperature of the atoms, we
now turn to the modulation of the potential as a weak input signal. We periodically modulate the
magnetic offset field perpendicular to the light-sheet with a driving frequency of Ω = 2𝜋 ⋅ 0.2Hz,
leading to a harmonic oscillation of the offset ̃𝑥 = 𝜉0 cos(Ω𝑡), which changes the static potential

2For the measurements in this chapter, the light-sheet detuning was changed to 㥀 = 2u� × 9GHz, resulting in a
different potential barrier height calibration.
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Figure 6.4: Example traces of the atom number imbalance 𝑧 for increasing temperatures. 吀�e driv-
ing frequency of 0.2Hz can be clearly seen in the traces with improved signal-to-noise
ratio.

𝑉 (𝑥) = 𝑚𝜔2𝑥2/2 + 𝑉LS(𝑥) into the time-dependent potential

̃𝑉 (𝑥, 𝑡) = 1
2

𝑚𝜔2(𝑥 − ̃𝑥)2 + 𝑉LS(𝑥)

= 𝑉 (𝑥) + 1
2

𝑚𝜔2 ̃𝑥2 − 𝑚𝜔2𝑥 ̃𝑥. (6.13)

Taking the negative spatial derivative of this potential, we obtain

− ̃𝑉 ′(𝑥, 𝑡) = −𝑉 ′(𝑥) + 𝑚𝜔2𝜉0 cos(Ω𝑡), (6.14)

which we can compare to Eqn. 6.2 and identify 𝐴0 ≡ 𝜔2𝜉0, i. e. an increasing amplitude of the
magnetic offset field oscillation leads to a linear increase in the parameter 𝐴0.

吀�e system response can be observed in the normalised atom number difference, which we
define as the imbalance 𝑧 = (𝑁1 − 𝑁2)/(𝑁1 + 𝑁2). Figure 6.4 intuitively shows the stochastic
resonance effect in a series of example signal traces, in which the amplitude of the output signal
first increases and then decreases as a function of the temperature.

For a quantitative analysis of the stochastic resonance, we calculate the power spectral density
(PSD) of the measured signal. In fact, slight variations of the CCD read-out time lead to irregularly
spaced time samples 𝑡u� for the discrete imbalances 𝑧u�, hence we perform a non-uniform discrete
Fourier transform

̃𝑧u� =
u�/2−1

∑
u�=−u�/2

𝑧u�𝑒−u�2u�u�u�u�u� , (6.15)

where 𝑁 is the total number of samples. Note that the frequency samples 𝜈u� = 𝑘/𝑁 are uniformly
distributed. Since the signal is real valued, the PSD is an even function and we consider only
positive frequencies. 吀�e non-uniform power spectral density is given by

𝑃u� = ⟨𝑡u�⟩
𝑁

| ̃𝑧u�|2, (6.16)
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Figure 6.5: Amplitude extraction from the power spectral density. (a) An example of a non-uniform
PSD, shown here for a temperature of 𝑇 = 190 µK, exhibits a strong peak at the driving
frequency. (b)吀�e amplitude of the periodic response, calculated from the peak strength
in the non-uniform PSD, reveals the stochastic resonance behaviour as a function of
temperature. Different driving amplitudes 𝜉0 with a ratio of 1:2:3 lead to the extracted
amplitudes 𝐴0𝑥0/Δ𝑉 stated in the legend. 吀�e barrier height for this measurement
was Δ𝑉 /𝑘B = 0.64mK.

where ⟨𝑡u�⟩ = 𝑁−1 ∑u� 𝑡u� is the mean sampling time. Fig. 6.5(a) shows an example of such a
non-linear PSD at a temperature of 190 µK and a driving amplitude of 𝐴0𝑥0/Δ𝑉 = 0.6. A distinct
peak at the driving frequency represents the linear response of the system.

6.3 Linear response amplitude and phase

吀�e amplitude of the linear response ̄𝑥(𝑇 ) can be related to the integrated power 𝑝1 in the peak
of the power spectral density at the driving frequency 𝜈0 = Ω/2𝜋 via 2𝑝1 = 𝜋 ̄𝑥2(𝑇 ) [51, 109].
We integrate the non-linear PSD 𝑃(𝜈) in a narrow window of Δ𝜈 = 0.02Hz about the driving
frequency 𝜈0 and subtract the background power spectral density 𝑃N to obtain

𝑝1 = ∫
u�0+㥀u�

u�0−㥀u�
𝑃(𝜈) − 𝑃N d𝜈. (6.17)

吀�e extracted linear response amplitude ̄𝑥(𝑇 ), shown in Fig. 6.5(b) for a potential barrier height of
Δ𝑉 /𝑘B = 0.64mK, first increases upon adding thermal noise, then decreases again a昀�er reaching
a maximum at a temperature of about 200 µK. We repeat the experiment for twice and three times
the driving amplitude and see an indication that the linear response amplitude increases linearly
with the driving amplitude, i. e. ̄𝑥(𝑇 ) ∝ 𝐴0. Here we chose a temperature calibration parameter
𝑇0 = 80 µK, in order for the fit parameter Δ𝑉 entering the Kramer’s rate 𝑟K in Eqn. 6.7 to comply
with the given potential barrier height.
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Figure 6.6: Measurement of the linear response phase. (a) A cosine fit to both the imbalance 𝑧
(blue dots) and input signal 𝐵u� (red dots) reveals a phase lag close to 𝜋/2 at 𝑇 = 80 µK,
i. e. below the stochastic resonance. (b) At 𝑇 = 190 µK, above the resonance, the phase
lag is consistent with zero. (c) A fit to the linear response phase measurement (blue
circles) shows good agreement in the experimentally accessible temperature regime.
吀�e linear response amplitude (red squares) reveals the resonance to be close to a
temperature of 𝑇 = 110 µK, for Δ𝑉 /𝑘B = 0.64mK and 𝐴0𝑥0/Δ𝑉 = 1.5.

吀�e stochastic resonance effect can be interpreted as tuning the noise level in order to obtain a
maximum of the signal-to-noise ratio [110–114], which can be defined as

SNR = 2 [ lim
㥀u�→0

∫
Ω+㥀u�

Ω−㥀u�
𝑃(𝜔) d𝜔] /𝑃N(Ω). (6.18)

吀�e factor of 2 in this definition reflects the symmetry property 𝑃(𝜔) = 𝑃(−𝜔). In leading order
the signal-to-noise ratio can be expressed as

SNR = 𝜋 (𝐴0𝑥0
𝑘B𝑇

)
2

𝑟K, (6.19)

which does not depend on the driving frequency Ω [106, 112, 115, 116]. Like the linear response
amplitude, the signal-to-noise ratio exhibits a maximum as a function of the system temperature.
Although the optimal noise levels in both cases are similar, they do not necessarily coincide.

吀�e phase of the linear response can be obtained in two ways. We record the signal 𝐵u� from a
function generator, which controls the current for the magnetic offset field modulation, as the
input signal to the atomic system, here with an average atom number of about one hundred.
First we fit a cosine to multiple oscillations of each the imbalance 𝑧 and the input signal 𝐵u�, as
shown in Fig. 6.6(a-b), to obtain the phase difference. Alternatively, we can compute the phase lag
as the phase angle difference of the non-uniform Fourier transform of both input and response
signal. Both phase extraction methods yield the same result, the la琀�er being shown in Fig. 6.6(c).
While the phase lag 𝜙 is zero for temperatures above the resonance, as predicted from Eqn. 6.8,
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6.4 Non-linear response

it approaches 𝜋/2 below the resonance3. Since the coldest temperature we can achieve is the
intrinsic MOT temperature, we cannot reach the limit of 𝜙 = 𝜋/2 in this experiment.

6.4 Non-linear response

A typical consequence of having a non-linear system, like the threshold realised by the potential
barrier, are higher harmonics of the driving frequency, manifested in higher order frequency
components in the power spectral density. In particular, for a periodically driven symmetric
system, odd higher frequencies 𝜔u� = (2𝑛 + 1)Ω are expected. 吀�is can be understood by
considering the expansion of an ideal square wave

𝑆(𝑡) = 4
𝜋

(sin(Ω𝑡) + 1
3

sin(3Ω𝑡) + 1
5

sin(5Ω) + … ) , (6.20)

with an infinite number of odd higher harmonics. Taking the expansion only up to the first higher
order (𝑛 = 1), leads to slight rectification of the linear response (𝑛 = 0), which is exactly what the
threshold behaviour of the potential barrier induces. If for some reason, however, the system is to
some extent asymmetric, also even higher harmonics can be expected. Note that higher harmonics
in the PSD do not correspond to actual hopping timescales, since there is no periodic particle
exchange on a timescale faster than 𝑟 = Ω/𝜋. 吀�ere can be a slower timescale, when the particle
hop skips one driving period, however, these events do not lead to peaks in the PSD, because of
statistical averaging.

吀�e peak strength of the frequency components in the PSD is known to decay with 𝐴2u�
0 [107].

Hence, in an a琀�empt to measure non-linear effects in our system, we increase the driving amplitude
up to 𝐴0𝑥0/Δ𝑉 = 4.5, for a constant potential barrier height of Δ𝑉 /𝑘B = 0.64mK and a
temperature of 𝑇 = 190 µK, where the stochastic resonance yields the best signal-to-noise ratio.
First, we confirm that the the linear response amplitude ̄𝑥 scales linearly with 𝐴0 over a wide range
of driving amplitudes, as shown in Fig. 6.7(a). Calculating the peak strength 𝑝3 by integrating
the non-uniform PSD in a narrow frequency window about 3𝜈0, analogous to Eqn. 6.17, we
observe an increase beyond a driving amplitude of 𝐴0𝑥0/Δ𝑉 ∼ 3. However, we perform the
same measurement without the light-sheet barrier and also see an increasing peak strength 𝑝3
for large driving amplitudes (see Fig. 6.7(b)). 吀�is artefact can be explained with a saturation of
the imbalance 𝑧. For example, if all atoms are located in the 𝑁1 region of interest, the imbalance
analysis will yield 𝑧 = 1, even though the atomic cloud might still perform a harmonic motion.
吀�is technical issue leads to a rectification of the output signal, which shows up in the power
spectral density. In order to avoid this effect, we calculate the centroid of the atomic density
distribution and investigate its non-linear PSD. 吀�e centroid 𝑐 is obtained by summing the pixel
values 𝐼u�u� inside both regions of interest along the direction 𝑥 of the light-sheet separation in
order to obtain the sum profile 𝐼u� = ∑u� 𝐼u�u�. 吀�e centroid is the weighted average along the
perpendicular direction 𝑦 given by

𝑐 =
∑u� 𝑦 ⋅ 𝐼u�

∑u� 𝐼u�
. (6.21)

3A time lag between the CCD trigger and the time stamp registered by the experimental control leads to a phase offset
of u�0 = −0.06(1), which we correct for.
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Figure 6.7: Indications of non-linear scaling. (a) 吀�e linear response amplitude ̄𝑥, obtained from
the peak strength 𝑝1 at the driving frequency 𝜈0, increases linearly with the driving
amplitude 𝐴0, as predicted by Eqn. 6.7. (b) For the imbalance analysis, the integrated
peak strength at 3𝜈0 shows an increase at large driving amplitudes (blue circles),
however this artefact is also present, when the barrier is absent (red squares). (c) For a
driving amplitude of 𝐴0𝑥0/Δ𝑉 = 4.5, the non-uniform PSD of the centroid analysis
reveals higher frequency components at 2𝜈0 and 3𝜈0 (blue line), which are not detected
when the light-sheet is switched off (red line). (d) For the centroid analysis, we observe
a slight increase of the peak strength 𝑝3 above 𝐴0𝑥0/Δ𝑉 ∼ 3 (blue circles), which is
not detected without the barrier (red squares). Note that the peak strength in general
is much greater than for the imbalance evaluation method.
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6.5 Implications of intra-well motion

Figure 6.7(c) shows the non-uniform PSD of the centroid analysis. When the light-sheet is turned
on, we observe a distinct peak at 3𝜈0, indicating a non-linear behaviour of our system. 吀�is peak
vanishes when the potential barrier is absent, which indicates that it is not arising from a technical
issue of the analysis method. We also observe a peak at 2𝜈0, an indication of asymmetry in the
system, which can be explained by slightly different hopping rates 𝑟12 and 𝑟21 between sites
1 and 2, possibly due to different well depths. 吀�e peak strength 𝑝3 for the centroid analysis
increases as a function of the driving amplitude 𝐴0, as shown in Fig. 6.7(d). At the largest driving
amplitude the peak strength measured without the light-sheet is at least an order of magnitude
smaller and consistent with the background noise level. However, concerning the peak strength 𝑝3
with the potential barrier present, due to its apparently sudden increase above a driving amplitude
of 𝐴0𝑥0/Δ𝑉 ∼ 3 and the large measurement sca琀�er even at lower amplitudes, one has to be
careful with the interpretation of the non-linear response being intrinsic to the system.

6.5 Implications of intra-well motion

For small driving amplitudes 𝐴0𝑥0/Δ𝑉 , the behaviour of both amplitude and phase of the linear
system response at small noise intensities, i. e. low temperatures 𝑇 , are qualitatively altered due
to intra-well dynamics [117, 118]. In a regime where inter-well dynamics dominate, the phase
lag 𝜙 reaches a limit of 𝜋/2 for 𝑇 → 0, according to Eqn. 6.8. For small driving amplitudes, or
equivalently large barrier heights, intra-well dynamics become relevant and the linear response
phase is described by

𝜙 = arctan ( Ω
𝜔0

⋅ 2𝜔2
0𝑟K + Ω2𝐷

4𝜔0𝑟2
K + Ω2𝐷

) , (6.22)

where the trapping frequency 𝜔0 at the minima of the double-well potential describes the intra-well
relaxation rate and 𝐷 ∝ 𝑇 is the noise intensity [119]. For large temperatures, i. e. 𝑇 → ∞, we
recover Eqn. 6.8. In the limit of small temperatures, however, Eqn. 6.22 reduces to

𝜙 = arctan ( Ω
𝜔0

) . (6.23)

Since in our experiment 𝜔0 ≫ Ω, the phase lag approaches zero in the limit of small noise
intensities. For noise intensities in between there is a maximum of the linear response phase,
however, the peak is not a fundamental feature of the stochastic resonance effect, but merely
originates from a competition between intra- and inter-well dynamics [119–121]. Fig. 6.8(a) shows
a measurement of the phase lag for a barrier height of Δ𝑉 /𝑘B = 1.3mK, corresponding to a
driving amplitude of 𝐴0𝑥0/Δ𝑉 = 0.75. 吀�e linear response amplitude reveals a shi昀� of the
stochastic resonance to a temperature of about 200 µK, compared to the 100 µK in a previous
measurement for half the potential barrier height. 吀�e suppression of the inter-well motion due
to the increased barrier height shi昀�s the turnover of the phase lag to an accessible temperature
regime, such that we can confirm that 𝜙 → 0 for 𝑇 → 0.

We turn our interest to the implications of the intra-well dynamics on the linear response
amplitude. 吀�e spectral amplification 𝜂 = [ ̄𝑥(𝑇 )/𝐴0]2 is given by

𝜂 = 𝐷−2 [ 4𝑟2
K

4𝑟2
K + Ω2 + 𝑔2𝜔2

0
𝜔2

0 + Ω2 + 4𝑔𝜔0𝑟K(2𝜔0𝑟K + Ω2)
(4𝑟2

K + Ω2)(𝜔2
0 + Ω2)

] , (6.24)
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Figure 6.8: Impact of intra-well dynamics on the linear system response amplitude and phase.
(a) For a barrier height of Δ𝑉 /𝑘B = 1.3mK, the phase lag approaches zero at low
temperatures, which is well described by taking into account intra-well dynamics (blue
solid line). Neglecting this effect leads to a completely different behaviour (blue dashed
line). (b) For large barrier heights, the values being stated in the legend, we observe
deviations from the simple linear response theory given by Eqn. 6.7 (dashed lines). 吀�e
data is correctly described by including intra-well dynamics (solid lines).

where the weight 𝑔 = 𝐷/𝜔0 for 𝐷 → 0 [51, 122]. We can neglect the last term in the sum of
Eqn. 6.24 and use the simplified expression to obtain the linear response amplitude

̄𝑥(𝑇 ) = 𝐴0⟨𝑥2⟩0
𝑘B𝑇

√ 4𝑟2
K

4𝑟2
K + Ω2 +

𝑔2𝜔2
0

𝜔2
0 + Ω2 . (6.25)

For large temperatures, this takes the form of Eqn. 6.7. On the other hand, for 𝑇 → 0, the linear
response amplitude reduces to

̄𝑥(𝑇 ) ∝ 𝐴0⟨𝑥2⟩0

√𝜔2
0 + Ω2

, (6.26)

which is a finite constant, independent of the temperature. Experimentally, we set the barrier
heights Δ𝑉1/𝑘B = 0.64mK, Δ𝑉2/𝑘B = 1.3mK and Δ𝑉3/𝑘B = 1.9mK, and measure the linear
response amplitude, as shown in Fig. 6.8(b). For increased barrier heights, or equivalently smaller
driving amplitudes 𝐴0𝑥0/Δ𝑉 , we observe the effect of intra-well dynamics. While the measured
amplitude can be well described using Eqn. 6.7 for large temperatures, we see a clear deviation
at low temperatures for the large barrier heights Δ𝑉2 and Δ𝑉3. Using Eqn. 6.25 to fit the data,
correctly describes the behaviour in the limit of small noise intensities.

Intra-well dynamics alter the behaviour of the signal-to-noise ratio as well [119], which is then
given by

SNR = 𝜋 (𝐴0𝑥0
𝑘B𝑇

)
2

⋅ 𝜔2
0𝑟2

K + Ω2𝐷2

𝜔2
0𝑟K + Ω2𝐷

. (6.27)
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Figure 6.9: Impact of intra-well dynamics on the signal-to-noise ratio. (a) Due to the stochastic
resonance effect, the linear response signal increases faster than the noise as a function
of the temperature. While for small temperatures the signal tends to a constant value,
the noise decreases monotonically, as shown in the inset, ultimately leading to a
divergence of the signal-to-noise ratio. (b) We observe the divergence of the SNR at low
temperatures due to intra-well motion (solid lines), measured for the different potential
barrier heights stated in the legend. Simply applying Eqn. 6.19 does not match our
observations (dashed lines).

For large noise intensities, i. e. 𝑇 → ∞, we recover Eqn. 6.19, for which the signal-to-noise ratio
exhibits a maximum at the optimal noise intensity and would vanish for small temperatures.
However, if we consider the limit of 𝑇 → 0, Eqn. 6.27 yields

SNR = 𝜋 (𝐴0𝑥0
𝑘B𝑇

)
2

𝐷, (6.28)

which diverges for small temperatures. We measure the linear response signal and noise indi-
vidually, as shown in Fig. 6.9(a) for a potential barrier height of Δ𝑉 /𝑘B = 1.9mK, and find that
the signal increases faster than the noise as a function of the temperature, due to the stochastic
resonance effect. In the limit 𝑇 → 0, the signal tends to a constant value due to intra-well motion,
as we have seen earlier in the case of the linear response amplitude, while the noise is expected to
decrease monotonically to zero. Experimentally, the noise levels off at a finite value, which may
be explained by the limited resolution of the PSD, due to a restricted measurement time. As a
consequence, we cannot use some of the data for slow temperatures and large barrier heights. Still
we observe clearly the divergence of the signal-to-noise ratio for 𝑇 → 0, as described by Eqn. 6.27.
Figure 6.9(b) shows the SNR for different potential barrier heights and how strongly it is affected
by intra-well motion.
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7 Conclusion

We have experimentally and theoretically investigated the limits of atom number detection with
single-particle resolution in mesoscopic samples via fluorescence imaging. Following first observa-
tions of discrete equidistant peaks in the fluorescence histogram, we have developed a noise model
which incorporates all relevant contributions in the form of photon shot noise, fluorescence noise
and noise due to atom loss. 吀�e later can be derived from a master equation approach and shows
how the detector performance depends on the lifetime 𝜏 of the magneto-optical trap and the rate
of light-assisted collisions 𝛽. 吀�e noise model explains the scaling of the signal variance with the
number of atoms in the ensemble. As reported in [56], we find for an optimal exposure time of
100ms a single-particle resolution limit of 1080 atoms. 吀�is limit can be improved by correcting
the signal for mean atoms loss, which is described by the parameters 𝜏 and 𝛽, increasing the
maximum atom number for which single-particle resolution is achieved to 1200. As a result, the
measurement fidelity for determining the exact particle number with this detector is larger than
98% for atom numbers up to 100.

吀�e scheme can be extended to a state-selective atom number detection by using radiation
pressure to remove particles in one of the two internal hyperfine states. By measuring the total
atom number before the experiment, in the end it is sufficient to know the population of only
one state. With this technique we reach the single-particle resolution limit for 250 atoms and the
state-selective single-atom measurement fidelity is 99.6%. Simultaneous state-selective detection
can be achieved by spli琀�ing the MOT with a focused blue-detuned light-sheet posing a potential
barrier between two sites in which the atom number is measured individually. While we have not
shown the Stern-Gerlach spli琀�ing and recapturing sequence, we investigated in detail the particle
detection in two spatially separated potential wells. In addition to loss from the trap, here we have
to take into account particle exchange between the sites, both thermal and due to light-assisted
collisions. 吀�is effect is an important source of noise in the detector performance. With a potential
barrier height limited only by the available laser power, we reach the single-particle resolution
limit for detecting the atom number difference at a total of 500 atoms in the ensemble. Due to the
high energy scale of light-assisted collisions, increasing the barrier height does not lower the rate
of collisional particle exchange as much as it does for the thermal hopping rate. 吀�e collisional
hopping rate might rather be reduced, and thus the detector performance improved, by decreasing
the atomic density or increasing the laser detuning.

We have analysed the dynamics in the dissipative double-well potential by varying the potential
barrier height and using reaction-rate theory to describe the observed effects. While for sufficiently
low barrier heights the rate scales according to Arrhenius’ law, at large barrier heights, where
thermal dynamics are frozen out, collisional dynamics dominate the particle exchange between
the two sites. For single atoms and large barrier heights we observe an additional effect which
renders the hopping rate much larger than would be expected from thermal exchange. 吀�is can be
explained by the inclusion of a heavy-tailed velocity distribution, arising from laser cooling effects
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beyond the polarisation gradient cooling theory (Lévy flights). Single-atom resolution allows the
measurement of very rare events, down to one in 104 seconds, spanning in total a measurement
range of five orders of magnitude.

Finally, we have introduced and demonstrated the stochastic resonance effect in a driven
dissipative double-well. We achieve good temperature control by switching to blue detuning of
the laser cooling light, effectively heating the atomic sample for a short period of time during the
cooling cycle. 吀�e temperature change directly carries forward to a variation of the hopping rate
as described by Arrhenius’ law. In matching the hopping rate to the frequency of an external drive,
the signal-to-noise ratio of the weak linear response signal can be improved. We have shown the
correct scaling of the linear response amplitude with the driving amplitude and measured the linear
response phase lag. 吀�ere are indications for a non-linearity system response, as would be expected
from the threshold behaviour of the light-sheet. Furthermore, we observe the implications of
intra-well motion, which alters the behaviour of both linear response amplitude and phase in the
limit of small temperatures.

In summary, the magneto-optical trap is not only ideal for detecting mesoscopic atom numbers
with single-particle resolution, but extended to a dissipative double-well potential it gives insights
in reaction rates, important for many chemical systems, and effects such as the stochastic resonance,
which can be found in a multitude of areas, including biology and medical science.

Outlook

Having presented a detector with single-atom resolution for samples with more than one thousand
particles, the focus is now on generating interesting quantum states with mesoscopic occupation.
In the future, fluorescence imaging is to be combined with the production of Bose-Einstein
condensates, where the spatial separation and subsequent retrapping of the individual hyperfine
states is a challenge by itself. Such a system allows the creation of highly-entangled states via
spin-changing collisions, leading to the ultimate limit of ma琀�er wave interferometry.

Another route is the investigation of multidimensional transport in controlled dissipative
systems, which is difficult to calculate theoretically, but experimentally accessible as an extension
of the one-dimensional double-well system presented in this thesis to a hybrid optical la琀�ice.
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List of constants

吀�e following table lists the constants and their abbreviations relevant for this thesis.

Natural constants [123] symbol value

Planck constant ℎ 6.626 069 57(29) × 10−34 J s
Reduced Planck constant ℏ ℎ/2𝜋
Speed of light 𝑐 299 792 458ms−1

Magnetic constant 𝜇0 4𝜋 × 10−7 NA−2

Electric constant 𝜀0 (𝜇0𝑐2)−1 = 8.854 187 817 … × 10−12 Fm−1

Bohr magneton 𝜇B 9.274 009 68(20) × 10−24 J T−1

Bohr radius 𝑎0 5.291 772 109 2(17) × 10−11 m
Boltzmann constant 𝑘B 1.380 648 8(13) × 10−23 J K−1

Rubidium 87 properties [124]

Atomic number 𝑍 37
Atomic mass 𝑚 1.443 160 648(72) × 10−25 kg
Melting point 𝑇M 39.30℃
Nuclear spin 𝐼 3/2
Rubidium 87 D1 line properties [124]

Transition frequency 𝜔0 2𝜋 ⋅ 377.107 463 380(11)THz
Wavelength 𝜆 794.978 851 156(23) nm
Lifetime 𝜏 27.679(27) ns
Natural linewidth Γ 2𝜋 ⋅ 5.7500(56)MHz
Recoil velocity 𝑣r 5.7754mms−1

Rubidium 87 D2 line properties [124]

Transition frequency 𝜔0 2𝜋 ⋅ 384.230 484 468 5(62)THz
Wavelength 𝜆 780.241 209 686(13) nm
Lifetime 𝜏 26.2348(77) ns
Natural linewidth Γ 2𝜋 ⋅ 6.0666(18)MHz
Recoil velocity 𝑣r 5.8845mms−1
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