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Zusammenfassung
Diese Doktorarbeit zeigt die Untersucheng der Zweikörperstreueigenschaften kalter Atome in
Natrium und Lithium-Natrium-Mischungen und deren Effekt auf die Vielkörperdynamik. Da
beide Atomsorten Alkalimetalle sind, kann der gemeinsame Drehimpuls der beiden ungepaarten
Elektronen entweder null oder eins sein. Dies bietet zwei verschiedene Streukanäle.

Die Kopplung von gebundenen Molekülzuständen in diesen Streukanälen mit den freien
Atomasymptoten führt zum reichen Feld der Physik der Feshbach-Resonanzen, wobei die
Wechselwirkung zwischen den Teilchen kontrolliert werden kann als einfach einzustellender,
experimenteller Parameter. Wir haben das Feshbach-Spektrum in der bosonischen ⁷LiNa-
Mischung untersucht und konnten Vorhersagen bestätigen, die auf den Messungen im ⁶LiNa-
System basierten, mit einer Verschiebung des vorhergesagten Spektrums um etwa 50G. Ebenso
wurden die Möglichkeiten der Einstellung der Wechselwirkungen mittels Feshbach-Resonanzen
untersucht.

Der Unterschied in den Streulängen der elektronischen Potentiale verursacht auch eine Kop-
plung der atomaren Streukanäle, was zu einem Spin-Austausch zwischen den Atomen führen
kann. In dieser Arbeit wurden Spin-Austauschprozesse untersucht mittels kohärenter Oszilla-
tionen in einem thermischen Gas und einem Bose-Einstein-Kondensat aus Natrium, ebenso wie
die Entwicklung dieses Spinorgases zu seinem Grundzustand. Vorbereitende Untersuchungen
der heteronuklearen Spin-Austauschprozesse werden ebenso gezeigt, sowohl in der bosonischen
⁷LiNa-Mischung als auch in der fermionisch-bosonischen Mischung ⁶LiNa.

Abstract
This thesis presents the investigation of the two-body scattering properties of cold atoms in
sodium and lithium-sodium mixtures and their effects on the many body dynamics. Since both
species are alkali atoms, the combined spin of both unpaired electrons can be either zero or one,
providing two different scattering channels.

The coupling of bound molecular states in these channels with the free atoms asymptote
gives rise to the rich field of Feshbach resonance physics, where the interaction between the
particles can be controlled as an easily accessible experimental parameter. We have investigated
the Feshbach spectrum in the bosonic ⁷LiNa mixture and could confirm predictions based on
⁶LiNa measurements, with a shift of the predicted spectrum by about 50G. Also, the prospects
of interaction tuning via Feshbach resonances were examined.

The difference of the scattering lengths of the electronic potentials also causes a coupling
of atomic collisional channels, which can enable a spin exchange between the atoms. In this
thesis, spin exchange processes have been studied in coherent oscillations in a thermal gas and
a Bose-Einstein condensate of sodium, as well as the evolution of this spinor gas into its ground
state. Preliminary studies of the heteronuclear spin exchange process in both the bosonic ⁷LiNa
and in the fermionic-bosonic mixture ⁶LiNa are presented as well.
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1 Introduction

Many advances in the comprehension of physics were achieved by isolating some smaller parts
of a complex problem and investigating these simpler parts. To extend the knowledge, more
and more parts of the full system can be considered, finally enabling a deeper understanding of
the whole system.

The history of the development of ultracold quantum gases as tools to understand basic
quantum mechanics and complex many-body states follows this way. From the first production
of Bose-Einstein condensates in cold dilute gases [2, 21, 12, 32], these systems offered highly
controllable systems that are well isolated from external influences by magnetic or optical
trapping [37], and can be manipulated by a wide range of tools.

For a single atomic species without internal degrees of freedom, possible ways to influence
the atoms and to model certain physical systems are the application of external fields, especially
optical lattices, which allows the study of a quantum system in periodic potentials with a wide
variety of different physical processes. [10, 55, 68, 36]

Besides the influence of external potentials, the second famous tool for ultracold quantum
gases is the application of homogeneous magnetic fields to exploit the possibility of magnetically
tuneable Feshbach resonances. This allows to change the interaction of the atoms over a wide
range, from weakly to strongly interacting regimes, and even allows to invert the sign of the
interaction. In the strongly interacting regime, universal physics can be observed and studied in
a well controlled enviroment. [82, 57, 54] In the ultracold fermionic systems, the use of Feshbach
resonances allowed the formation of molecules, observation of the BEC-BCS crossover, and a
wide variety of experiments in the universally interacting regime. [49, 113, 114, 115]

These rich fields of physics could be accessed with only one atomic species without internal
degrees of freedom, or in the case of Fermions, two interacting states. But a wide variety of
new physical effects could be studied in mixtures of different species, and the exploitation of
internal degrees of freedom, namely the spin projection along the quantization axis.

In a state-independent optical trap, bosonic atoms can be described as spinor gases, where the
spin degree of freedom opens a wide area for both fundamental physics as well as application-
driven techniques. [99, 9, 38, 94] Coherent spin dynamics were not only observed in Bose-
Einstein condensates, but also in a thermal bosonic gas [77] and even in an ultracold, degenerate
fermionic gas. [58] The advent of atomic species besides the alkali atoms also allowed the
observation of spin exchange in a fermionic system between different electronic orbitals. [15]

Extending the ultracold sample to a mixture of different atomic species is nowadays a common
and very active subfield of cold quantum gases with many recent advances. One main focus in
these systems lies on the production of ultracold fermionic or bosonic polar molecules [45, 16,
43, 76], as the strong polar interaction adds another valuable tool for implementation of further
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1 Introduction

physical systems. The second focus for mixtures is the physics of impurities, i. e. the combination
of a (homogeneous or non-homogeneous) background which influences the properties of a
single particle. [90, 56, 109, 17, 83] A very useful tool in this case are species-dependend
potentials [61] which allow a confinement for the impurity while leaving the background mostly
homogeneous.

Quite recently, also coherent spin exchange between two heterenuclear species was observed,
combining several of the tools mentioned above. [62]

To extend this large toolbox even further, this thesis investigates the interactions in the
lithium-sodium system in two ways: The first is the study of the ⁷lithium-sodium Feshbach
spectrum, which was predicted based on ⁶Li-Na Feshbach data. [92] For this, the interspecies
Feshbach spectrum is measured, and the possibilities of interaction tuning using both homo-
and heteronuclear Feshbach resonances is studied.

The second part of this thesis studies the spin dynamics of sodium and lithium-sodium
mixtures. In the case of Bose-condensed sodium, the formation of spin domains could be
observed as the system evolves into its equilibrium state. The initial dynamics show coherent
spin oscillations – a key ingredient for future experiments in the heteronuclear systems. For
the heteronuclear case, clear spin exchange processes could be observed in the Bose-Bose as
well as in the Fermi-Bose mixture.

Contents of this Thesis
The presented thesis contains three main parts. After a short chapter about basic atomic physics,
which is needed for the understanding of the following chapters, the first main part describes
the apparatus used for all experiments in this thesis.

Chapter 3 focuses on the implementation and improvement of important experimental tools,
namely a magnetic field stabilization and a versatile frequency source. The magnetic field
control covers a wide range from 5mG up to 1200G, with an active stabilization for fields below
1G. The magnetic field is an important parameter to study and control atomic interactions and
the full range of fields is applied and used in the later parts of this thesis.

The frequency control tool allows the coupling of all hyperfine states of the sodium and
lithium atoms at all accessible magnetic fields, providing both fixed frequencies for coherent state
superpositions as well as frequency sweeps for field calibrations and coherent state transfers.

In chapter 4, the Feshbach spectrum of the bosonic ⁷Li-²³Na mixture is investigated. Experi-
mental loss features are used as input for the development of an asymptotic bound state model.
This model can cdescribe the 𝑠-wave spectrum and confirm the predictions based on earlier
Feshbach studies in the Fermi-Bose ⁶Li²³Na system. [92]

The second half of this chapter concentrates on the possibilities of interaction tuning via
Feshbach resonances with respect to possible impurity physics. Both intra- and interspecies
Feshbach resonances are investigated with respect to the corresponding lifetime and possible
experiments.

The third main part in chapter 5 presents studies of spinor dynamics in both homo- and
heteronuclear systems. After a theoretical introduction about the underlying physics and
the close connection to the Feshbach spectroscopy, a numeric simulation of spin dynamics
is presented which can reproduce the analytic results and is useful for the understanding of
multimode dynamics.
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After the analytic and numeric theory, experimental results for different settings are presented,
ranging from the relaxation of an antiferromagnetic spinor gas towards its ground state in a
gradient-dominated field setting, over coherent oscillations in both condensed and thermal
samples, to heteronuclear spin exchange processes.

The Outlook gives perspectives for future experiments which can use the tools and insights
gained from this thesis, with respect to different scenarios of impurity physics in confined
geometries.
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2 Preliminaries – About Atoms and
Interactions

The experiments presented in this thesis deal with the manipulation and investigation of
ultracold atoms at phase space densities where the quantum many body properties dominate
their behaviour. Therefore, a good understanding of the single atom properties is needed as
well as their interaction with each other, the effects of quantum statistics, and the interaction
with external fields.

Since these effects are only tools used for investigating further physics, we will only summa-
rize and concentrate on the most important results without a rigorous and detailed derivation
here.

2.1 Hyerfine Structure of Alkali Atoms

Our model quantum system for this thesis consists of the three lightest stable alkali atoms,
namely ⁶lithium, ⁷lithium and ²³sodium. All three of these are well-studied work horses in
atomic physics and have been used in a wide variety of experiments in ultracold quantum gases,
in single-species setups as well as in mixtures. The mixture of ⁷Li-²³Na presented here, however,
is realized for the first time up to our knowledge.

Atomic bosons differ from fundamental bosons (like gluons, photons etc.) in that they cannot
be created and annihilated. This is because they are compound bosons, consisting of a number
of fermions, for which particle conservation is valid. Unless the inner structure of a compound
boson can be revealed, it acts like a boson to the outer world; in our case, the interparticle
distance typically is so large that the bosonic atoms behave according to the Bose-Einstein
statistics discussed below.

The composing particles of the atoms are the protons and neutrons in the nucleus and the
electrons in the atom’s shell. For neutral atoms, the number of eletrons and protons is always
the same, therefore the difference between bosonic and fermionic behaviour is solely given by
the number of neutrons in the nucleus – the one neutron difference between ⁶Li and ⁷Li has
tremendous effects on the many particle behaviour!

In the experiments discussed below, several internal degrees of freedom of the atoms are
manipulated: The energetic state of the electron, which can be excited by visible light, and the
projection of the nuclear and electronic spin along the quantization axis.

Both bosonic species ⁷Li and ²³Na have a total nuclear spin of 𝐼 = 3/2, and for ⁶Li, 𝐼 = 1.
The total electronic spin is equal to 𝑆 = 1/2, since only the outermost electron has to be taken
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2 Preliminaries – About Atoms and Interactions

into account; the closed inner shells (𝑠 for Li and 𝑠 and 𝑝 for Na) can be neglected and the atom
treated as hydrogen-like.

For most of the time, the atoms in our experiments will be in their electronic ground state,
so that the electron’s orbital angular momentum will always be 𝐿 = 0. The total angular
momentum of the atom can then be expressed by 𝐹 = 𝐼 + 𝑆, and the coupling of the spins will
lead to the hyperfine splitting, which is proportional to the product of I ⋅ S. Expressed with the
total angular momentum quantum number, one gets

I ⋅ S = 1/2(𝐹(𝐹 + 1) − 𝐼(𝐼 + 1) − 𝑆(𝑆 + 1)). (2.1)

The nuclear and electronic spin can be coupled in parallel or antiparallel direction, leading to
𝐹± = 𝐼 ± 𝑆; for Na and ⁷Li the two states are 𝐹 = 2 and 𝐹 = 1, for ⁶Li 𝐹 = 3/2 and 𝐹 = 1/2.
The splitting between these states is given by the hyperfine constant

Δ𝐸ℎu� = (𝐼 + 1/2) 𝐴ℎu�, (2.2)

the values for the three species used in our experiments are:

⁶Li: Δ𝐸ℎu� = 228MHz; ⁷Li: Δ𝐸ℎu� = 804MHz; ²³Na: Δ𝐸ℎu� = 1772MHz. (2.3)

Each hyperfine manifold with total spin 𝐹 has 2𝐹 −1 Zeeman substates which are degenerate
at zero magnetic field but split at finite fields. This will be discussed in detail below.

2.2 Quantum Statistics

There are two fundamentally different classes of particles: Bosons, particles with a spin of an
integer multiple of the planck constant (i. e. 0,1,2,…) , and fermions, which have a half-integer
multiple (1/2,3/2,…). For high temperatures and low densities, both kind of particles can be
described approximately with the Boltzmann distribution which gives the mean occupation
number of energy states 𝜀u� depending on the temperature 𝑇 of the system:

𝑓0(𝜀u�) = 1
exp((𝜀u� − 𝜇)/𝑘𝑇 )

, (2.4)

where the parameter 𝜇 is the chemical potential which ensures particle conservation. This is
the classical description of a gas without taking into account the quantum statistics.

For lower temperatures and higher densities, however, the quantum statistics start to play a
crucial role, and very different behaviour for bosons and fermions arises, which will be discussed
in the following subsections.

2.2.1 Bose Einstein Condensates

The distribution for the bosonic occupation of single particle states follows the Bose statistic[51,
78]

𝑓0(𝜀u�) = 1
𝑒(u�u�−u�)/u�u� − 1

(2.5)
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2.3 Interaction with Electromagnetic Fields

For a given number of particles in a trapping potential, the critical temperature 𝑇u� is given by the
maximum temperature, where a macroscopic occupation of the ground state arises, also called
the onset of condensation. In the case of a three-dimensional harmonic trap, which is realised
in most cold quantum gas experiments, with the mean trapping frequency �̄� = 3

√𝜔u� ⋅ 𝜔u� ⋅ 𝜔u�,
the transition temperature is given by

𝑇u� ≈ 4.5 ( �̄�/2𝜋
100Hz

) 𝑁−1/3nK, (2.6)

which is roughly around 1 μK for a typical experiment with sodium atoms in our setup.
The number of atoms in the condensed phase is called the condensate fraction and can

experimentally be used to determine the temperature of the atoms:

𝑁0 = 𝑁 (1 − ( 𝑇
𝑇u�

)
3
) (2.7)

In order to derive the temperature from the condensate fraction, the momentum spread of the
atoms after release from the trap is monitored. In that case, the condensed part has a much
lower momentum, which can clearly be distinguished from the thermal expansion. However, if
the condensate fraction is so high that no thermal atoms can be detected, or, vice versa, the
condensate is too small, this number is not usefull anymore. For intermediate regimes, however,
it is a good experimental indicator.

2.2.2 Fermi Gases

The Fermi function which governs the distribution of energy states for a Fermi gas is given by

𝑓 = 1
𝑒(u�−u�)/u�u� + 1

(2.8)

The chemical potential 𝜇 is related to the Fermi temperature 𝑇u� and given by

𝜇 = 𝑘𝑇u� = (6𝑁)1/3ℏ�̄� (2.9)

This will be of importance for the understanding of some of the observed spin dynamics later
on in the Fermi-Bose mixture.

2.3 Interaction with Electromagnetic Fields

While the nature of quantum fields always leads to an interaction between a charged particle
and the quantum vacuum, giving rise to the self energy. However, here we will concentrate on
a semiclassical description of a quantized atom and a classical field, which is a valid description
for large occupation numbers.

Three different cases of external fields will be discussed that have very different applications
in our experiments:

1. Static magnetic fields
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2 Preliminaries – About Atoms and Interactions

2. Light fields that couple to electric dipole moments
3. Microwave or radio frequency radiation which couples to magnetic dipole moments
The interaction with static magnetic fields is also used for trapping the atoms as well as

inducing Feshbach resonances and an important paramer for the spin dynamics.
The interaction with light is exploited to initially capture the atoms using resonant light,

confine them in a far off resonant dipole trap, and image them as the final read out.
Finally, the coupling to magnetic dipole moments is used in evaporative cooling, state prepa-

ration and coherent coupling of atomic states.

2.3.1 Atoms in External Magnetic Fields

One of the main tools to manipulate ultracold atoms are magnetic fields. In the scope of this
thesis, three different aspects of magnetic field interaction are used:

• Trapping (and cooling) of atoms in inhomogeneous magnetic fields

• Shifting of molecular levels into resonance with atomic levels in homogeneous fields

• Controlling the interaction detuning in spinor physics

Although the nature of these applications are quite different, they all base on the energy
dependence of the charged particles and interaction of spins in a magnetic field.

Since the atoms are neutral particles, one has to take a closer look at the constituents to
understand the effect of the external field. We will restrict the discussion to the type of atoms
deployed in our experiments, which are alcali atoms with a simple electronic structure, and also
concentrate on the electronic ground state, as an analytic expression can be found for this case.

With only one valence electron, the electronic spin is 𝑠 = 1/2, which is also the total angular
momentum of the ground state 𝑗 = 1/2 since 𝑙 = 0. This leaves only the nuclear spin 𝑖 and the
coupled total spin 𝑓 as parameters, as well as their projection onto the magnetization axis. So
in total the parameters and corresponding quantum numbers for a single atom are:

• total electron spin and its projection 𝑗, 𝑚u�

• nuclear spin 𝑖, 𝑚u�

• total spin 𝑓, 𝑚u� (for low magnetic fields)

We use the lower case letters 𝑠, 𝑗, 𝑖, 𝑓 for the single-atom variables, reserving the upper case
variants for the total spins in the molecular cases, where also the coupling is more complex.
This will be detailed in 4.1.3. In case of high magnetic fields, the electron’s and the nuclear spin
decouple and the total spin is not a good quantum number anymore.

The total energy of an atom in an external magnetic field 𝐵 is in this case given by the
hyperfine coupling and the Zeeman shift [13]

𝐻hfs + 𝐻u� = 𝑎hfs
ℏ2 s ⋅ i + (𝑔u�𝑚u� + 𝑔u�𝑚u�) ⋅ 𝜇u�𝐵

ℏ
(2.10)

The first term contains the hyperfine constant 𝑎hfs, which depends on the atomic species and is
given by the details of the interaction between the nucleus and the single unpaired electron. The
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2.3 Interaction with Electromagnetic Fields

second term indicates the uncoupled spins’ Zeeman shift with the corresponding gyromagnetic
factors of the electron on its orbit 𝑔u� and nucleus 𝑔u� and the Bohr magneton 𝜇u�. The factor 𝑔u�
differs from 𝑔u� even for an 𝑙 = 0 orbital in alkali atoms since the many-electron system has a
non-negligible impact on the outer electron.

Table 2.1 lists values of the gyromagnetic factors and hyperfine constants for both lithium
species as well as sodium, which are all used in the experiments described later. For comparison,
also the values for rubidium are listed.

Table 2.1: 𝑔-factors and hyperfine constants for different systems. The difference between 𝑔u�
and 2 is caused by QED corrections; for 𝑔u� additional influence from the whole
multielectron orbitals contribute to the deviation from 𝑔u�. The hyperfine constant
𝐸hfs is also called Magnetic Dipole constant. The hyperfine splitting is given by
𝐸hfs = 𝑎hfs ⋅ (𝑖 + 1/2).

System value

electron 2.002 319 304 361 82(52) [67]

Na 𝑔u�(32𝑆1/2) 2.002 296 0(7)[98]
Na 𝑔u� −0.000 804 610 8(8) [98]
Na 𝑎hfs ℎ ⋅ 885.813 064 4(5)MHz [98]

⁶Li 𝑔u�(22𝑆1/2) 2.0023010 [6]
⁶Li 𝑔u� −0.000 447 654 0 [6]
⁶Li 𝑎hfs ℎ ⋅ 152.136 840 7MHz [6]

⁷Li 𝑔u�(22𝑆1/2) 2.0023010(7)[6]
⁷Li 𝑔u� −0.001 182 213 0(6) [6]
⁷Li 𝑎hfs ℎ ⋅ 401.752MHz [6]

Rb 𝑔u�(52𝑆1/2) 𝑔u� × (1 + 5.9(1)𝑒 − 6) [6]
Rb 𝑔u� −𝑔u� × 4.9699147(50)𝑒 − 4 [106]
Rb 𝑎hfs ℎ ⋅ 6 834 682 610.904 310(3)Hz [75]

For two special states, the Hamiltonian Equation 2.10 is already diagonal, these are the states
with parallel electron and nuclear spin, called stretched states; in case of ⁷Li and Na these are
the ∣𝑓 = 2, 𝑚u� = ±2⟩ states and for ⁶Li ∣𝑓 = 3/2, 𝑚u�⟩ = ±3/2. The general solution is more
involved; following [98], one can reduce the problem to the diagonalization of

⎛⎜
⎝

(𝑔u�(𝑚u� − 1
2) + u�u�

2 )𝜇u�𝐵 + u�hfs
2 (𝑚u� − 1

2) 1/2√(𝑖 + 1/2)2 − 𝑚2
u�

1
2√(𝑖 + 1

2)2 − 𝑚2
u� (𝑔u�(𝑚u� + 1

2) − u�u�
2 )𝜇u�𝐵 − u�hfs

2 (𝑚u� + 1
2)

⎞⎟
⎠

(2.11)
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The eigenenergies and their dependence on the magnetic field 𝐵 can be expressed by a simple
formula which becomes easily readable with the substitution

𝑥 =
(𝑔u� − 𝑔u�)

𝑎hfs(𝑖 + 1/2)
𝜇u�𝐵 (2.12)

which results in the famous Breit-Rabi formula [14]

𝐸(𝐵) = −𝑎hfs
4

+ 𝑔u�𝑚u�𝜇u�𝐵 ± 𝑎hfs(𝑖 + 1/2)
2

⋅ √1 + 2 ⋅ 𝑥 ⋅
𝑚u�

𝑖 + 1/2
+ 𝑥2 (2.13)

The striking feature of this formula is that it allows an analytic calculation of the energy for
all experimentally relevant magnetic fields – but it is limited to the electronic ground state of a
𝑗 = 1/2 atom! This is sufficient for all states used in the final experiments presented below, but
for the cooling and imaging of the atoms, the field dependence of the excited electronic states
are needed. In those cases, the eigenenergies have to be calculated numerically.

Figure 2.1 shows the field dependence for all sodium states in both |𝑓 = 1⟩ and |𝑓 = 2⟩
manifolds as calculated with the above formula. The formula Equation 2.13 has one drawback:
For higher fields, the square root can take negative values for the negative stretched state
𝑚u� = −𝑓 . In this case, the root has to be replaced by (1 − 𝑥). The figure shows the result of
neglecting this with the dashed line.

Note that the quantum numbers 𝑓 and 𝑚u� are only well defined at low magentic field. For
higher fields, the electron’s and nuclear spin decouple and a well defined set of quantum numbers
are given by 𝑖, 𝑗, 𝑚u�, 𝑚u�. However, throughout this thesis, all states will be labeled with the
low-field quantum numbers, indicating the state to which the high-field state adiabiatically
connects.

While the full analytic result is very useful for calculations especially at higher fields where
the set of good quantum numbers is not given by 𝑓, 𝑚u� anymore, it is very instructive to
investigate the low-field part of the field dependence.

For small magnetic fields, the root in Equation 2.13 can be simplified via

√1 + 𝑎𝑥 + 𝑥2 ≈ 1 + 𝑎𝑥
2

+ 1
8

(4 − 𝑎2) 𝑥2 + 𝑂(𝑥3) (2.14)

to the low-field approximation

𝐸(𝐵) ≈ −𝑎hfs
4

+ 𝑔u�𝑚u�𝜇u�𝐵 ± 𝑎hfs(𝑖 + 1/2)
2

(2.15)

× (1 + 1
2

⋅ 2𝑥 ⋅
𝑚u�

(𝑖 + 1/2)
+ 1

8
(4 −

4𝑚2
u�

(𝑖 + 1/2)2 ) 𝑥2) . (2.16)
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Figure 2.1: Breit-Rabi diagram of sodium. Shown is the magetic field dependent energy of the
electronic ground state in both hyperfine manifolds. The dashed line shows the sign
problem of the stretched ∣𝑓 = 2, 𝑚u� = −2⟩ state.

Sorting the terms depending on the powers of 𝐵 gives the constant, linear and quadratic
dependence:

𝐸(𝐵) ≈ −𝑎hfs
2

(𝑖 + 1) (2.17)

+ (𝑔u� ±
𝑔u� − 𝑔u�

2(𝑖 + 1/2)
) 𝜇u� ⋅ 𝑚u�𝐵 (2.18)

+ (
𝑔u� − 𝑔u�

4
)

2 1
𝑎hfs(𝑖 + 1/2)

𝜇2
u� ⋅ (4 −

𝑚2
u� ⋅ 4

(𝑖 + 1/2)2 ) 𝐵2 (2.19)

In the case of 𝑖 = 3/2 as it is for ⁷Li, Na, and ⁸⁷Rb, where the latter two are common work horses
for spin dynamics that will be discussed later, these factors boil down to the well-known forms

𝐸(𝐵) ≈ −𝑎hfs
2

(𝑖 + 1) + 𝑝u�=3/2
u� 𝑚u�𝐵 + 𝑞u�=3/2

u� (4 − 𝑚2
u�)𝐵2, (2.20)

𝑝u�=3/2
u� = ±(

𝑔u� − 𝑔u�

4
± 𝑔u�)𝜇u�, (2.21)

𝑞u�=3/2
u� = ±(

𝑔u� − 𝑔u�

4
)

2 𝜇2
u�

𝐸hfs
, with 𝐸hfs = 2 ⋅ 𝑎hfs. (2.22)
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For the fermionic case of ⁶Li, where 𝑖 = 1, the prefactors of course look different:

𝑝u�=1
u� = ±(

𝑔u� − 𝑔u�

3
± 𝑔u�)𝜇u�, (2.23)

𝑞u�=1
u� = ±(

𝑔u� − 𝑔u�

4
)

2 𝜇2
u�

𝐸hfs
, with 𝐸hfs = 1.5 ⋅ 𝑎hfs. (2.24)

The prefactors 𝑝u� and 𝑞u� are called the linear and quadratic Zeeman shift, respectively. Since
the nuclear gyromagnetic factor 𝑔u� is several orders of magnitude smaller than 𝑔u�, it is the latter
one dominating the energy shifts.

It is important to note that even with identical 𝑔-factors the fermionic linear Zeeman shifts
differs from the bosonic case by a factor of 3/4, which will be crucial for the discussion of
Fermi-Bose heteronuclear spin changing collisions in subsection 5.1.3, where also the effect of
different hyperfine splittings on the quadratic term will be highlighted.

2.3.2 Optical Trapping

The realization of optical trapping potentials is a key development to both main topics of this
thesis, since it allows the trapping of different hyperfine states in the same trapping potential
and leaves the possibility to apply homogeneous magnetic fields as tuning parameters. Since
the effect of far off-resonat light on atoms in our setup has been studied extensively before [87,
83], only the basics are discussed here for an understanding of the physical background.

A dipole trap exploits the polarizability of the atoms by using a far off-resonant laser beam.
The potential, depending on the light intensity 𝐼(r) and the frequency 𝜔, as well as the atomic
properties (resonance frequency 𝜔0, linewidth of the transition Γ), is given by [37]

𝑉dip(r) = 3𝜋𝑐2

2𝜔3
0

( Γ
𝜔 − 𝜔0

+ Γ
𝜔 + 𝜔0

) ⋅ 𝐼(r) ≈ 3𝜋𝑐2

2𝜔3
0

( Γ
Δ

) 𝐼(r) (2.25)

Here the term with the sum of the frequencies is neglected since the detuning Δ = 𝜔 − 𝜔0 is
much smaller; this is known as the rotating wave approximation. One can directly see that the
potential is attractive for red detuning, i. e. 𝜔 < 𝜔0; therefore the experiment uses a 1064 nm
laser which is far red detuned for both sodium (589 nm) and lithium (671 nm) D-line transitions.

In previous experiments – and also planned for the future – a species-selective optical
potential was used which had a strong influence on lithium atoms but only a small one for
sodium. In that case one has to consider the spontaneous scattering rate, since any scattered
photon can remove an atom from the trap due to the transferred momentum. The scattering
rate is given by

Γsc(r) = 3𝜋𝑐2

2𝜔3
0

( 𝜔
𝜔0

)
3

( Γ
𝜔 − 𝜔0

+ Γ
𝜔 + 𝜔0

)
2

𝐼(r) ≈ 3𝜋𝑐2

2𝜔3
0

( Γ
Δ

)
2

𝐼(r) (2.26)

and depends quadratically on the detuning. The ratio of the right-hand side of both equations
gives the working point for species-selective lattices; in this thesis, the detuning of the 1064 nm
laser is so large that the spontaneous scattering is not the main loss mechanism and therefore
does not limit the experiments even for many seconds of hold times.
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2.3 Interaction with Electromagnetic Fields

2.3.3 Atoms Coupled to Radio Frequency Fields

The control over the population of the different hyperfine states at ultralow temperatures is
achieved conveniently and with a great control by direct coupling of the states via microwave
or radio frequency radiation.

These low-frequency electromagnetic waves can couple to the magnetic dipoles of the atoms
and thus drive transitions between the magnetic substates as well as between the hyperfine
states.

In the remainder of this work, we will consequently refer to microwave transitions as such
between different hyperfine manifolds, i. e. between the |𝑓 = 1⟩ and |𝑓 = 2⟩ manifold for the
bosonic and |𝑓 = 1/2⟩ and |𝑓 = 3/2⟩ manifold for the fermionic case.

For both kinds of transitions, coherent oscillations can be observed and used to control the
hyperfine state of the atoms.

The most relevant processes are the coupling of the spins to an RF field of constant frequency,
inducing Rabi oscillations; and a frequency sweep, wich can be used to apply a Rapid Adiabatic
Passage (RAP).

Rabi oscillations
A convenient description of Rabi oscillations for a two-level system makes use of the Bloch
sphere and denote the population as the 𝑧 component and the relative phase of the two levels
as angle. The states are then depicted as vectors pointing from the center of the sphere onto the
surface. The Rabi coupling then corresponds to a rotation around the 𝑥 axis for the population
transfer, and a phase evolution due to an off-resonant couplig corresponds to a rotation around
the 𝑦 axis; both can therefore be displayed by the Pauli matrices:

𝜎u� = (0 1
1 0) 𝜎u� = (0 −𝑖

𝑖 0 ) 𝜎u� = (1 0
0 −1) (2.27)

This depiction is especially useful since it can be extended to the case of a three level system.
Although the picture of a Bloch sphere is more difficult to imagine, the mechanism of rotations
using the corresponding matrices can help to understand the phase evolution, which will be
important for the spinor phase discussion later on.

The role of the Pauli matrices is played by the Spin 1 matrices:

𝑆u� = ℏ√
2

⎛⎜
⎝

0 1 0
1 0 1
0 1 0

⎞⎟
⎠

𝑆u� = ℏ√
2

⎛⎜
⎝

0 −𝑖 0
𝑖 0 −𝑖
0 𝑖 0

⎞⎟
⎠

𝑆u� = ℏ√
2

⎛⎜
⎝

1 0 0
0 0 0
0 0 −1

⎞⎟
⎠

(2.28)

The 𝑆u� matrix again denotes a rotation around the 𝑥 axis, corresponding to on-resonance
Rabi coupling, while rotation around the 𝑦 axis via 𝑆u� corresponds to the effect of detuned
coupling. Applying an RF pulse of a certain length corresponds to the rotation angle on a Bloch
sphere. The important example of a spin 1 system for our setup is the coupling of the initial
state where all atoms are in one of the side modes:

Ψini = (0 0 1)u� (2.29)
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The resulting state is given by the rotation angle:

Ψout = 𝑒−u�⋅u�u�⋅u� ⋅ (0 0 1)u� (2.30)

A rotation of 𝜋 leads to full population in the upper state, while a 𝜋/2 pulse results in equal
population of the side modes:

Ψout = 𝑒−u�⋅u�u�⋅u�/2 ⋅ (0 0 1) = (−0.5 −𝑖/
√

2 0.5)u� (2.31)

The same population can be reached by rotating the state with 𝜋/4, but starting in the middle
state,

Ψout = 𝑒−u�⋅u�u�⋅u�/4 ⋅ (0 1 0) = (−0.5𝑖 1/
√

2 −0.5𝑖)u� , (2.32)

however the relative phases of the states are different. This will be of importance later for the
discussion of the initial state preparation for the spin changing collisions. It is important to
note that the relative phase does not change if the angle of the rotation changes, but is only
given by the initial conditions.

Rapid Adiabatic Passages
While a 𝜋 pulse with a resonant coupling frequency is the most straightforward way to transfer
atoms from one state into another, the experimental realization can suffer from four limitations:

1. unstable MW/RF frequency
2. unreliable timing
3. unstable MW/RF power
4. fluctuating magnetic fields

All four of these can lead to incomplete transitions, leaving atoms in undesired states. This can
cause problems in the experiment, when e. g. the transfer of sodium into the lower hyperfine
state as described below does not work reliably and the remaining atoms cause excess losses in
the lithium numbers.

Therefore, for most state transfers, a more robust way of preparation is used, which is where
the rapid adiabatic passage (RAP) [65] comes in. The concept of this is to use a dressed state
to adiabatically transfer atoms from one state into another (therefore it is typically used in
two-level systems). Experimentally, one starts to couple two levels of energy difference 𝜔0
with a far-detuned frequency 𝜔. In this case, the bare state and the dressed state are close and
the atoms are projected basically completely onto the dressed state. By changing the detuning
Δ = 𝜔−𝜔0, the atoms follow the evolution of the dressed state, and if the coupling is turned off
far off-resonant on the other side of the resonance, the atoms are projected onto the bare state
which again only differs by a negligible factor. Therefore, the atoms are completely transferred.

However, the transfer efficiency depends on the sweep rate, i. e. the change of Δ(𝑡) = 𝛼𝑡,
since the atoms can tunnel diabatically into the unwanted state if the transfer is done too fast.
Quantitatively, the probability 𝑃 of this tunneling is given by the Landau-Zener formula [60]

𝑃 = 𝑒−2u� Ω2
|u�| (2.33)
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where Ω is the on-resonance Rabi frequency. For the concept of a RAP, it is only necessary
to change the detuning, which can be either done by a magnetic field ramp (thus changing 𝜔0)
and applying a constant frequency, or sweep the latter one at a constant magnetic field.

One of the experimental improvements done during this thesis was to enable frequency
sweeps for all necessary transitions, therefore all transfers were done at constant magnetic
fields. As can be seen from Equation 2.33, a strong Rabi coupling improves the transfer ef-
ficiency, as compared to the sweep rate. This does not imply that the slowest possible ramp is
the best experimental realization, as external influences can cause decoherence which disturbs
the transfer. Therefore one has to scan the transfer time and the detunings to achieve the most
reliable scheme.
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When you dance with the NaLi, it
doesn’t change.
It changes you.

(Losely based on 8mm.)3 Experimental Setup: Preparation and
Control of Ultracold Atomic Clouds

This chapter will present the apparatus used for all experiments discussed in the remainder of
this thesis. As the machine itself has been described in previous works [5, 102, 91, 88, 83], the
next sections will concentrate on the changes and improvements made during this thesis. These
improvements mostly regard the fine control of magnetic fields and microwave radiation, but
also other means of increased stability and better atom detection.

The experimental preparation of ultracold atomic clouds consists of three main cooling stages
that are applied consecutively and follow the traditional textbook example of the ultracold
quantum gas community. [107, 64] Changes between the hyperfine states can be introduced by
applying electromagnic radiation tuned to the resonance frequencies of the transitions, either
directly driving Rabi oscillations or using a rapid adiabatic passage technique.

The following sections explain the preparation of ultracold ⁶LiNa and ⁷LiNa mixtures, the
final state preparation as well as the state dependent detecion.

3.1 Preparation of Ultracold Samples

This section will go through the production of ultracold samples of sodium and lithium step-by-
step, focussing on the steps which had been changed during the course of this thesis.

Every single step has to work reliable and reproduceable for a stable total setup, and each
step has its own characteristic challenges, from the production of stable laser sources, over
ultra-high vacuum systems, high-flux atomic sources, to stable magnetic field and microwave
or radiofrequency sources.

3.1.1 Lithium Spectroscopy Scheme

The first stage of a laser setup for atomic physics is to provide a reliable frequency reference.
The easiest way to get this is the set up of a spectroscopy of the corresponding species. For
sodium, a doppler free saturation spectroscopy is used where the pump beam is shifted and
modulated by an AOM.The absorption signal is evaluated on a photodiode and fed into a lock-in
amplifier which produces the error signal needed for the analog feedback loop. The lock point is
the crossover between the hyperfine states of the upper 32P3/2 manifold, which can be resolved
in the case of sodium. Details for this setup can be found in [91, 5]. For sodium, there is only
one laser system from which all different beams needed for the whole setup have to be derived.
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Figure 3.1: Timeline for the production of an ultracold mixture of atomic gases. Starting from
the consecutive MOT loading as detailed in the text, the atoms are pumped into
the trappable hyperfine states and the magnetic trap is loaded (see zoom-in on the
right-hand side). After the clean sweep and compressing, the main cooling steps
produce cold thermal samples in the magnetic trap. These samples are loaded into the
waveguide, transferred to their absolute hyperfine ground state, and loaded into the
dimple trap during the final evaporation, while the hybrid trap is still on. The turn-off
of the magnetic confinement marks the final production stage of the Bose-Einstein
condensate; from this point on, all different experiments can be conducted.

The lithium laser setup in contrast consists of three laser devices: One master laser for
spectroscopy, one MOPA tapered amplifier (TA) for trapping, pumping, and imaging of the
atoms, and an additional diode laser for imaging at high magnetic fields.

To allow an easy change between the lithium species, a new spectroscopy cell was used in
the setup that contained an approximately equal amount of ⁶Li and ⁷Li by using enriched (95%
⁶Li) as well as natural lithium (95%⁷Li). Since the isotope shift is just on the order of the (small)
fine structure splitting of 10GHz, the diode lasers can easily be adjusted to either species.

The lock signal is generated by doppler free saturation spectroscopy, using a lock-in scheme,
again. As described below, the new implementation in our setup now includes an AOM in the
spectroscopy path; this allows to modulate the AOM’s frequency instead of the laser frequency,
which was done before. This enables a more robust lock scheme and has the advantage that
the laser frequency is narrower. Since the two slave lasers, the TA and the high field imaging
laser, are locked onto the spectroscopy master laser via a beat lock (described in [102]), the
non-modulated reference also reduces the linewidths of the slave lasers.

3.2 shows the absorption spectrum of the overlapping ⁷Li D2 and ⁶Li D1 line with the cell and
laser setup as now used in the experiment.

In contrast to the earlier setup, the Li laser is not locked onto the crossover between the
hyperfine states, but directly onto the resonance line. This scheme allows for a change between
the species without further adaption of any frequencies since only the repump beam then has
to be different.
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Figure 3.2: Photodiode signal of the Doppler free absorption spectroscopy of the ⁶Li D2 and ⁷Li
D1 line (left) and the ⁷Li D2 line (right). The strong triple-feature in the left graph
is the ⁶Li D2 line. The |𝐹 = 3/2⟩ Lamb dip is indicated as the lock point, as is the
|𝑓 = 2⟩ lock point for ⁷Li.

3.1.2 MOT and Optical Pumping

As both sodium and lithium are in the solid phase at room temperature and have a very low
vapour pressure, an oven is needed to heat the atoms and provide a reasonable flux of atoms.
The dual-species oven design used in our experiments is based on [96] and described in [88]; in
improved version was used after the latest change, and is described in [83]. To compensate for
the low natural abundance of ⁶Li, an equal amount of enriched ⁶Li and non-enriched Li are used
to have the flexibility to choose the species without the need of an oven change.

After leaving the oven, the atoms are decelerated in a Zeeman slower, sharing the same path
for both Li and Na, and trapped in a magneto-optica trap (MOT). Since the Li loading rate is
very low compared to Na, but the lifetime of the MOT is rather high for Li, the MOT loading
takes place in two stages: First, the magnetic field gradient, the Zeeman slower current and
the laser detunings are set to optimum lithium loading parameters. The Li MOT is loaded for
everal seconds, depending on the needed amount of lithium, then the field gradient and slower
current are both lowered to load a large Na MOT. For Na, a dark spontaneous-force optical trap
(dark SPOT) MOT is used to increase the initial atom density.

Sodium atoms are transferred into the magnetic trap using a spin polarization and optical
pumping scheme [104], for our setup desribed in [5, 102], that pumps the atoms into the |2, 2⟩
stretched state than can be trapped magnetically. An admixture of atoms in the |2, 1⟩ state will
also be trapped, since the optical pumping is not 100% effective.

For ⁶Li, the loading scheme is similar and also described in [5, 102]. In contrast to the sodium
loading, a compressed MOT phase is used to increase the Li density directly before the optical
pumping.

⁷Li is loaded analogous to ⁶Li, with changes in the setup detailed below. However, the pumping
scheme was simplified as no separate repumper is applied during the pumping. The necessary
population in the upper 𝑓 = 2 manifold is achieved by turning off the MOT beams before
the repump beams which populate the upper hyperfine state. The optical pumping then only
shuffles the population into the |2, 2⟩ state in which the atoms are trapped.
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Alternatively, both Na and ⁷Li can be trapped in the |1, −1⟩ state, as discussed below. The
preparation then is more straightforward since the sodium atoms are already in the lowest
manifold and turning off the lithium repumper will also quickly populate that manifold. Without
further pumping, one third of the atoms can than be trapped.

3.1.3 Changes for ⁷Li

The optical setup for ⁷Li differs from the ⁶Li MOT only in the repump beam frequency, which
makes a change between the species quite easy. The different hyperfine splitting of 804MHz
instead of 228MHz is done by adding a 290MHz AOM in double-pass configuration into the
repump beam, without the need of any further changes in the beam paths.

Unfortunately, however, the efficiency of the 290MHz AOM is rather low, which means
that after the double-pass the power in the repump path can limit the MOT loading for ⁷Li.
With respect to future experiments, an additional tapered amplifier was set up and will be
implemented into the Li repump line after the AOMs to increase the repump power. This also
leaves more laser power for the Zeeman slower and the MOT beams.

In total, a change from ⁶Li to ⁷Li requires manual relocking of both the master laser and the
MOPA, since the tuning range without mode hopping is much lower than the needed 10GHz.
Then, one half-wave plate has to be rotated to send the beam through the double pass AOM,
and the setup is ready for ⁷Li.

3.1.4 Conservative Magnetic Trapping

For efficient trapping of the atoms in an inhomogeneous magnetic field, several contraints have
to be taken into account: Magnetic trapping requires a field extremum – either a maximum or
minimum – to confine the atoms. Since a magnetic field maximum cannot be produced in free
space, the field has to have a minimum of the absoulte field strength. Therefore, only low-field
seeking states (i. e. atoms that gain energy with increasingf fields due to the Zeeman effect) can
be trapped.

Further, since only the total spin is conserved in the cold collisions, but not the spin of
inidividual atoms, spin relaxation has to be prevented. This is the reason why the |2, 1⟩ state of
Na is problemetic since the process |2, 1; 2, 1⟩ → |1, 1; 1, 1⟩ is exothermic and releases a high
amount of energy, which causes heating and losses from the trap.

For Na, the natural choice for the trapping state is |1, −1⟩ since the three body loss coefficient
for the |2, 2⟩ state is about an order of magnitute larger. [35] For ⁷Li, the |1, −1⟩ state is also
trappable, but the scattering length of this state is very small (7 a0 to 15 a0 below 140G) which
prevents efficient thermalization. However, the scattering length in the |2, 2⟩ state is negative,
−27 a0, which can pose limitations for cold, dense samples and especially condensation in this
state. Although both species are inconvenient in the |2, 2⟩ state, still Bose-Einstein condensates
could be achieved, either by low density, as in [35] for sodium, or for small atom numbers, as
in [11].

Trapping of ⁶Li in the lower manifold (|𝐹 = 1/2)⟩ is not possible due to the strong quadratic
Zeeman shift that prevents |𝑚u� = −1/2⟩ atoms to be trapped above 27G, corresponding to a
low temperature of 0.2mK, which is much lower than the MOT temperature. So for ⁶Li, only

32



3.1 Preparation of Ultracold Samples

0 100 200 300 400
−1000

0

1000

316.4G

143.6G
27.1G

64.30 𝑎u�

55.77 𝑎u�

−27 𝑎u�

7..15 𝑎u�

𝐵 [G]

𝐸
[M

H
z]

Na
⁷Li
⁶Li

Figure 3.3: Energy dependence of hyperfine states that can be trapped in a magnetic field
minimum, with indicated intraspecies background scattering length for the bosonic
species The energy maxima of the states in the lower 𝐹 manifold correspond to
temperatures of about 280mK (Na), 1.7mK (⁷Li) and 0.2mK (⁶Li). This is far lower
than the MOT temperature and thus trapping of ⁶Li is not possible.

the |3/2, 3/2⟩ state can be used. Figure 3.3 shows the field dependence of the trappable states,
calculated via the Breit-Rabi formula (Equation 2.13), of the three species. Also indicated are
the maximum fields up to which trapping is possible in the lower manifold and the intraspecies
scattering lengths at low fields.

Combining the different atomic species adds, but also solves some problems: The combination
of Na in |1, −1⟩ and ⁶Li in |3/2, 3/2⟩ leads to strong losses in ⁶Li due to spin relaxation since
the combination of |1, −1; 3/2, 3/2⟩ can decay into the |1, 0; 1/2, 1/2⟩ state. Thus, the ⁶LiNa
combination can only be trapped efficiently in the highest hyperfine states for both species. [42]

The ⁷LiNa mixture can be trapped in both |2, 2⟩ or |1, −1⟩, if both species are in the same
state. The convenient ⁷LiNa scattering length in the order of 20 a0 allows efficient thermalization,
thus lifting the limitation of the ⁷Li single species setting. This is important since both lithium
species are cooled sympathetically, which means that only Na is cooled evaporatively, and the
Li atoms are thermalized to the colder sodium temperatures by collisions. [70]

The setup of coils for the cloverleaf type Ioffe-Pritchard magnetic trap has been described
in [5] and is still used in the same way. In the remainder of this thesis, the coil pairs will be
called antibias or Feshbach coils for the large coil set in Helmholtz configuration; curvature coils
for the set that has the same distance as the antibias coils but is smaller in diameter, producing
a saddle point magnetic field. The gradient coils are consisting of four pairs of coils enabling
the radial confinement by producing a quadrupole field. An additional set of finetune coils is
also set up in Helmholtz configuration but with a lower number of windings compared to the
antibias coils. Figure 3.6 shows a skectch of the coil configuration without the gradient coils.

Additionally, three sets of large offset coils are built around the whole setup with diameters
and distances of about 1m. These are used to cancel external fields, apply low, very stable offset
fields and might be used in future experiments to cancel gradients, too.
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The electronic circuit for driving the coil currents is shown in Figure 3.4. One major change
was the addition of the bias current direction switch, indicated by the additional bias line. Note
that no additional IGBT was used in this line.
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1

curv

MOT

cu
rv

2
cu
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1

bias

AB

C+ C−AB+AB− B+ B− B̄−B̄+

Figure 3.4: Schematics of the electronic circuits for the cloverleaf trap, consisting of the coils,
IGBTs and diodes. The power supplies are labelled Curvature, AntiBias and Bias. B̄
indicates the inverted bias circuit for the hybrid trap.

The additional H-bride in the bias circuit allows to turn the current direction which was used
in the high-field hybrid trap described below. In some sets of experiments, the passbank in the
antibias circuit, described in [102], was connected to the circuit of the 1m offset coils to provide
a stable current source.

In the gradient circuit, the IGBT switch was removed as this switch was not necessary, but
limited the maximum current. This allowed for a slightly higher gradient and thus stronger
confinement.

3.1.5 Evaporative Cooling

While the atoms in the MOT are already orders of magnitude colder than room temperature,
the phase space density is still far away from the one needed for our quantum gas experiments.

To further lower the temperature and increase the phase-space density of the atoms, a
standard forced evaporative cooling scheme is applied. Using the microwave source described
in section 3.2, Na atoms are driven from the |2, 2⟩ state into the anti-trapped |1, 1⟩ state. By
lowering the frequency from a high initial value, only the hottest atoms are removed, which
have enough energy to reach the high-field regions of the trap. This leaves the remaining atoms
in a truncated thermal distribution. Collisional re-thermalization leads to a colder sample in
thermal equilibrium, until the next atoms are removed. The final temperature of the cloud is
then given by the lowest MW frequency applied and the value of the trap bottom, that is the
lowest magnetic field. In our setup, this is mostly controlled by the bias power supply: A higher
current through the curvature coils by this supply lifts the field minimum and colder atoms
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are transferred. Therefore, this minimum has to be very stable to reliably produce stable atom
numbers and temperatures.

For the case of trapping both Na and ⁷Li in the lower hyperfine manifold, the traditional
way of evaporative cooling is to drive the Zeeman transition |1, −1⟩ ⇒ |1, 0⟩. As our setup is
optimized to drive the microwave transitions, we use the |1, −1⟩ ⇒ |2, 0⟩ transition. This has
the advantage that the ⁷Li transitions are far detuned, which is not the case for the Zeeman
transitions, therefore only sodium is removed and the minority ⁷Li is kept in the trap.

Possible improvements for our cooling scheme have been investigated in [111], but the setup
is rather robust and thus fine tuning of the exact ramp form is not necessary. However, the old
implementation of the cooling ramp using the programmable frequency list of the microwave
source was not very reliable since the timing of the frequency list could differ from the main
experiment timing by up to several hundreds of milliseconds, thus inducing changes of the final
cooling point which made the preparation unstable.

Table 3.1 lists the cooling frequencies used in most of the experiments presented in this thesis.
Also listed are the clean sweep mentioned above as well as the standard transfers of the atoms
into the absolute hyperfine ground state.

Table 3.1: List of microwave sweeps in a standard experimental cycle. The clean sweep is done
at high offset field of about 60G, the transfers at low offset field of 1.6G. Cooling
of sodium can be done in the |2, 2⟩ state or |1, −1⟩. Note that in the latter case the
frequency increases for lower fields.

ramp 𝑓start [MHz] 𝑓stop [MHz] duration [ms]

clean |2, 1⟩ →|1, 0⟩ 1870 1810 1900

1ˢᵗ cooling |2, 2⟩ →|1, 1⟩ 1900 1800 9000
2ⁿᵈ cooling |2, 2⟩ →|1, 1⟩ 1800 1779.3 6000

1ˢᵗ cooling |1, −1⟩ →|2, 0⟩ 1630 1740 9000
2ⁿᵈ cooling |1, −1⟩ →|2, 0⟩ 1740 1761 6000

Na |2, 2⟩ → |1, 1⟩ transfer 1774.75 1775.25 32.5
⁶Li |3/2, 3/2⟩ → |1/2, 1/2⟩ transfer 230.178 232.178 32.5
⁷Li |2, 2⟩ → |1, 1⟩ transfer 805.831 807.831 32.5

3.1.6 Dipole Trap

While it is possible to produce quantum degenerate gases in conservative magnetic traps, for
many experiments it is more convenient to have a state-independent trap that allows to apply
a homogeneous magnetic field as an additional parameter. To be more precise, none of the
experiments shown here could have been done in a magnetic trap, or only with major limitations,
since the spin degree of freedom would not be accessible. Thus the dipole trap is a central and
important part of the setup.

Therefore many typical ultracold atom experiments end their preparation scheme in an optical
dipole trap. Depending on the species, experimental circumstances and available laser power, a
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magnetic cooling stage might even be skipped and the atoms can be trapped from the MOT
directly into the dipole trap.

The trapping is based on the AC stark shift as described in Equation 2.25 and for our case
does not depend on the atomic state since the detuning to the resonant 𝐷 lines (589 nm for Na,
671 nm for both Li species) is very large. We use a 1064 nm industrial welding laser with up to
50W output power.

For the trapping, the laser beam is split and power controlled as well as frequency shifted by
two 80MHz AOMs. The two resulting beams make up a crossed dipole trap with a horizontal
beam piercing the bull’s eyes of the coilholders and is tilted by 8° relative to the coil axis. The
second beam crosses diagonally from bottom to top with an angle of 42° to the horizontal plane.
Figure 3.5 shows the resulting configuration. As the imaging is done from the top view, all
absorption pictures presented and all data evaluation rely on this projection.

The trap frequencies are measured by displacing one of the beams using a mirror with piezo
mounts and suddenly switching it back, so oscillations are induced. For different waiting times,
the resulting position of the atoms after time of flight can be monitored and the frequencies
fitted. For typical trap settings we get 𝜔u�,u�,u� = 2𝜋 × (150, 100, 220)Hz, with a mean trapping
frequency �̄� = 3

√𝜔u� ⋅ 𝜔u� ⋅ 𝜔u� = 2𝜋 × 150Hz. These frequencies are along the main axis as
indicated in the figure. The top view corresponds to the imaging direction, as can be seen by
the absorption picture of a sodium cloud in-situ, on the left.
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Figure 3.5: Illustration of the crossed dipole trap setup. Both beams are derived from a 1064 nm
laser; the colors are used here for better distinction. The blue beam holds the atoms
against gravity and will also be called the waveguide, while the red beam confines
the atoms along the waveguide, serving as a dimple for the condensation, and comes
in under an angle of 42 ° to the horizontal plane. The picture shows a sodium cloud in
the crossed trap, with a large part residing in the waveguide. To the left, a small part
of the atoms escape the dimple, following the crossed beam along gravity (indicated
by g). The blue hole in the middle of the picture is an imaging artefact due to an
optically dense cloud.

The loading scheme of the dipole trap has been changed compared to earlier experiments
as the transfer from the magnetic trap into the dipole trap was very unreliable due to several
reasons:

• The endpoint of the cooling ramp was unstable due to the microwave timing.
• The trap bottom varied due to temperature changes.
• The magnetic trap center moves when ramping down the currents.
• The ODT position drifts slightly.
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• The high density of atoms in |2, 2⟩ leads to fast losses.
These reasons made the direct loading of atoms into the crossed trap very unreliable. Thus,

a new scheme was developed, as described in [83] in more detail. The main idea here is to
increase the horizontal beam’s confinement by reducing its waist and using the vertical beam as
a plug. The atoms are then released from the magnetic trap into the horizontal one-beam trap.

In the one-beam trap, the atomic density is low enough to prevent losses, and the transfer
to the lowest hyperfine state can be done. For this, an offset field of 1.6G is applied and two
microwave sweeps transfer the atoms. If both species are used, Na is always transferred first,
then the Li atoms. section 3.2 gives details about the frequency sources and ramps used for this.

The final cooling stage to reach quantum degeneracy is done by lowering the power of the
horizontal beam, leading to losses of the most energetic particles due to gravity, thus cooling
the atoms. This is done while the second beam is turned on, so that the atoms will be cooled
and pulled into the crossed region. To make this process more efficient, an additional magnetic
curvature is applied, but this time with a magnetic field maximum at the trapping point.

This high-field hybrid trap1 is produced by applying a homogeneous offset field using the
finetune coils. Then, the current direction of the bias circuit is turned around using an H-bridge
configuration of large relais, so that the resulting magnetic field is opposite to the finetune-field.

Figure 3.6: Coil configuration for the high-field hybrid trap. The red arrow indicates the dipole
trap beam’s propagation. Blue coils are dubbed curvature or bias coils, red coils are
finetune.

The combined field then produces themaximum that attracts the atoms in the lowest hyperfine
state, since those are high-field seekers. The radial anticonfinement is weak enough so the
atoms can be held by the horizontal dipole beam. Figure 3.7 shows a sketch of the fields and
potentials of the four coils and the two laser beams used for this setup.

After this final evaporation stage, the finetune and bias coils are turned off, and the preparation
of the atomic sample is finished. The whole procedure takes about 40 s and can produce Na BECs
of up to 1 × 106 atoms with large condensate fraction, or mixtures of Na and Li with varying
atom numbers, all in the lowest hyperfine state |1, 1⟩ and |1/2, 1/2⟩ respectively. The lower
atom number as compared to [83] is mostly caused by the limited magnetic trap confinement

1Dubbed high-field because there is a field maximum along the direction of the waveguide, but also because it was
used to condense atoms at high fields of 900G, see chapter 4.
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Figure 3.7: Sketch of the high-field hybrid trap. Shown are the magnetic field of the curvature
coils (black) and the result of applying the finetune field in opposite direction: A
field-maximum in the middle of the trap. The red lines indicate the potential of the
waveguide and the diple, where the atoms are trapped after the cooling. Not to scale.

due to the change of the chiller setup as explained below, but also because a big condensate
poses more problems for the experiments discussed here, mainly for the spin dynamics.

3.1.7 Cooling Water Temperature Stabilization

The final temperature and the number of remaining atoms after the evaporation depends on
two parameters: The lowest magnetic field in the trap and the final frequency of the MW knife.

While the final frequency can precisely be controlled with the new RF setup presented in the
next section, the magnetic field suffers from the construction of the trap design: The subtraction
of two large fields is sensitive to the exact position and resistance of the coils, which again is
dependent on the cooling water temperature. So far, it could not be definitely determined which
parameter changes, but the final cooling point is closely related to the water temperature.

Active Water Temperature Stabilization
To reduce this effect, two measures were taken: First, the loading scheme of the dipole trap
was changed to be less sensitive to the atoms’ temperature, second, the cooling water was
actively stabilized. Normally, this would be the chiller’s task, but in our setup, the compressor
was far overdesigned with a cooling power of about 20 kW. The maximum heat input into the
coils is around 12 kW, and this only during about half the time of one experimental cycle. This
leads to a fast cooling of the water reservoir, resulting in either strong fluctuations of the water
temperature or fast cycles where the compressor is running only for short times.

For a stable experimental setting, one has to choose the short cycles, which strongly reduces
the lifetime of the compressor. Therefore, an external heating of the water was implemented
that reduced the temperature fluctuations and allowed for a longer lifetime of the compressor.

The rather obvious ansatz of using a flow heater where the water is heated by flowing through
a hot pipe turned out to be much too slow to compensate for the temperature changes of the
incoming water. This was due to the high pressure and flow rates which lead to a very laminar
flow. Therefore the outer layer of the water could be heated, but the energy not be transported
to the inside, making this a very slow process – the compressor could cool the water in about
10 s which was faster than the reaction time of the heat pipe on the order of 30 s.
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A much faster and more versatile solution was to create a small reservoir of very warm water
and add small portions of this to the cool water to achieve the desired temperature. Figure 3.8
shows a sketch of this setup: The main path for the cooling water is above the pipe going
straight through the T-piece to the experiment. A small flow is branched off the cool water and
flows into the heating pipe from the lower end. Five heat clamps deliver up to 500W power
each to heat the water while it is in the pipe. At the top, below the T-part, is a valve (ASC0
SCG203B002) that can be opened to add a small flow of the hot water to mix it with the cool
flow. Since the water just has to be mixed in instead of being heated on-the-fly, this setup has a
much faster reaction time on temperature changes.

Figure 3.8: Sketch of the heat pipe and the sensor piece. The red dots indicate the position of the
thermistors used for temperature regulation of the water output and thermocouples
for the monitoring of the heat pipe’s temperature. Cold water enters the heat pipe
from below, is heated, and mixed with the cold water that is going straight to the
outlet.

The mixed water then flows through a brass connector that has a very thin wall where a
thermistor is mounted. Using a wheatstone bridge, the resistance is converted into voltage that
is read in by an Arduino microcontroller. This value is the input of a digital PID control loop
where the output is the opening of the valve in a pulse width modulation setup with a frequency
of 2Hz. The temperature of the pipe is also actively controlled, although with a much simpler
readout, to roughly 80 °C.

With this setup, the chiller’s hysteresis could be set to at least 1.1 °C, while the cooling water
input to the coils was stable to less than 0.1 °C.

Lower Power Chiller Setup
Even with the heat pipe setup, the chiller’s compressor broke again and therefore the cooling
setup had to be replaced. Instead of a repair or a new design, an old, smaller chiller was used to
cool the reservoir of the big one, while the stronger pump of the latter one was still used.
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This required changes to the settings for the atomic cooling sequence, since the small chiller’s
compressor was too weak and could not cool away the heat input during one sequence. To
reduce the heat input, the MW cooling of the atoms described to be shortened from 14 s to 9 s
and from 12 s to 6 s. Also, an additional pause was added between the runs to allow the chiller
to cool down the water. Finally, the current settings for the coils had to be reduced and the
corresponding MW frequencies adapted. However, for the loading and clean sweep, the full
power was still used to increase the transfer efficiency from the MOT.

Table 3.2 lists the currents and voltages set for the loading/cleaning and the normal trapping.
Since the power supplies are in constant current mode, the voltages vary slightly depending on
the exact coil temperatures.

Table 3.2: Current settings for the magnetic trap. Reduced values are necessary to compensate
the lower chiller power. Normally, only the bias current would be reduced to increase
the trapping frequencies.

coil pair 𝐼load [A] 𝑈load [V] 𝐼trap [A] 𝑈trap [V]

gradient 403 13.23 352 11.53
curvature 223 30.60 158 21.60
bias 20.0 13.71 2 8.72

These values were chosen as a trade-off between acceptable atom number and temperature
at the end of the cooling and short waiting times between the runs, to reduce the effective cycle
time.

3.2 Microwave Control

As described above, our experimental preparation of cold atoms depends on the ability to
manipulate their hyperfine states with microwave radiation. This is needed both for the removal
of hot atoms for the cooling procedure, but also for the final state preparation.

Furthermore, control over the Zeeman substates of the atoms is an important ingredient to
study any spin-dependent physics, starting from Feshbach resonances that occur in different
hyperfine states, up to coherent coupling of spinor condensate components.

In total, electromagnetic radiation in frequency ranges from 5 kHz up to 2GHz and powers
up to 100W are needed. This section describes the development, implementation and useage of
a versatile frequency source that, in combination with various amplifiers and antennas, provides
all of the desired frequencies and is connected to the experimental control via a simple and
robust communication protocoll.

The concept is based on twoDDS boards (Direct Digital Synthesis) that give a well-controllable
frequency output, different mixers to allow for high frequencies, as well as an adjustable
microwave source based on a PLL (Phase Lock Loop) and amplifiers for the final output power.
Alle devices are controlled by an Arduino microcontroller.
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Figure 3.9 shows a simplified scheme of the whole setup. The following subsections will
further explain the single parts and their connections. A list of all components used in this
setup can be found in the appendix, Table A.1.

Arduino PLL

500MHz

10MHz

DDS 1

DDS 2

< 1MHz

3 dB

2 dB

Figure 3.9: Simplified schematics of the whole MW/RF setup including the control/sources. Solid
lines depict an MW/RF signal line, the dotted line shows the 10MHz reference signal,
and the dashed lines indicate SPI communication lines.

3.2.1 Fixed-Frequency Sources and PLLs

Since RF and MW transitions are used to determine the absolute magnetic field at the place of
the atoms, the frequency of this interrogation also has to be known precisely and accurately.

Therefore the first part in the whole setup is a Rb frequency reference that internally probes
a hyperfine transition of Rb atoms and outputs an absolute 10MHz signal. We use this signal as
reference for all further frequency generation.

The next step is a 500MHz reference that is needed by the DDS boards and offered by an
Agilent E4421B microwave source that is locked onto the 10MHz reference. This device was
used as the main microwave source in earlier experiments since it offers a lot more features
than just a fixed frequency; if needed, it can easily be replaced by a cheaper solution.

The third device is a Phase-Locked Loop (PLL) board that is locked onto the 10MHz reference
output of the E4421B and thus also stabilized to the Rb reference. This is a standard procedure
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for frequency references: The frequency is distributed in a serial way instead of a star-formed
distribution. By this, reflections and intereferences causing disturbances of the signal are
avoided.

The PLL board consists (simplified speaking) of an oscillator and phase detector. A feedback
loop compares the phase of the oscillator with the reference signal and keeps them in lock. This
board provides two differential outputs of the same frequency; we use them non-differentially,
for which it is sufficient to terminate one of the outputs with 50Ω. If the terminator is not
present, however, a wide variety of reflections causes many spurious signals that strongly
disturb the operation.

Figure 3.10 shows the output spectrum of the PLL set to 410MHz (left) which is used as an
input for the mixer for the ⁶Li microwave transfer and for RF transfers at high magnetic fields.
The righ-hand side graph shows the setting for the ⁷Li transfer with 850MHz carrier. The Na
setting could not be recorded since the frequency is above the spectrum analyzer’s range. (HP
4396A)
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Figure 3.10: Spectrum of the 410MHz (left) and 850MHz (right) carrier output from the PLL.
Clearly visible are higher harmonics that have to be taken care of. Switching
between the settings can be done as quickly as 60 μs. The spectra were taken with
a 10 dB attenuator.

Already at this first point of the signal generation, higher harmonics and spurious signals
appear in the spectrum that cannot be suppressed directly. However, since the mixers and
the final amplifier for the ⁶Li setup are cut off at 500MHz, these harmonics do not disturb the
experiment and can be ignored. For the 850MHz setting, the higher frequencies are detuned far
enough to have no influence onto the atoms, but they can lead to a saturation of the amplifiers
and thus reducing the available power at the desired frequency.

During most of the time of the experiment, the carrier is kept constant: For the cleaning of
the |2, 1⟩ atoms as well as the full MW cooling, 1950MHz are used and the mixing explained
below produces all necessary frequencies. The only time critical step is the transfer into the
lowest hyperfine states: This is done consecutively for Na, then for Li, although for ⁶LiNa, this
could be done in parallel, since different amplifiers and antennas are used.
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Full optimization of the communication between Arduino and PLL bord allows to set the PLL
frequency in times as short as 60 μs. This actually would even be short enough to do everything
directly with the PLL, without the need for any further processing. But since the PLL board does
not have the ability to do ramps itself, the Arduino program would have to store (or calculate,
which would be too slow) each frequency step. This is not an option as the memory would be
too small; also, the output power of the PLL can only be set to five different values, which is not
flexible enough.

Due to all these reasons, the mixing scheme including the DDS boards, was implemented, to
gain full control over all frequency ranges.

3.2.2 DDS

The main frequency control is performed by using Direct Digital Synthesis (DDS), readily
available via a commercial evaluation board (see Table A.1 for a detailed list of used parts). The
working principle of DDS will not be explained here, but we will just take it as a signal source
with controllable frequency, amplitude and phase.

The DDS boards can be programmed either using a USB interface to a PC or by an SPI
interface. While the USB device is convenient for testing purposes, the SPI interface is used in
the experiment and is described below.

Our setup makes use of two DDS boards, with four and two output channels, respectively.
All channels can be controlled independently, in frequency, phase, and power. The available
frequency range is 0.3MHz to 200MHz with sub-Hz resolution. The phase resolution is 14 bit,
which is not needed in our setup, since only ±90 ° are used. For the power, a linear scale of
1024 steps is available.

3.2.3 I/Q Mixer setup

While the DDS offers a highly controllable frequency source, its limited bandwidth does not
allow to directly manipulate the atoms in all states. Especially the frequencies for transitions
between the hyperfine states are way above the 200MHz maximum output frequency.

Therefore, an I/Q mixing scheme has been implemented that allows to transfer the control of
the DDS output onto a high frequency microwave. While I/Q mixers are standard parts that
are commercially available, we did not find an integrated solution for all of our needs. So we
decided to set up two discrete I/Q mixers for the different frequency ranges.

Figure 3.11 shows the schematic concept of the I/Q mixing: A fixed microwave signal (local
oscillator LO, frequency 𝑓0) is mixed with a controllable intermediate frequency (IF, frequency
𝑓1, although this frequency is the lowest one in the setup) input in two separate mixers. The
LO input is split and one of the outputs shifted by 90°.

A simple unbalanced mixer will produce the product of the inputs, resulting in output
frequencies 𝑓+ = 𝑓0 + 𝑓1 and 𝑓− = 𝑓0 − 𝑓1. But also the input signals will be leaking through,
so at least four frequencies 𝑓0, 𝑓1, 𝑓+, 𝑓− will be present at the output. While the IF signal can
be filtered, the three bands at high frequency can cause major problems in our experiments.
Even with a more sophisticated balanced mixer that might suppress the 𝑓1 component, still the
two sidemodes 𝑓+, 𝑓− will be present.
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To compensate for this, the output radio frequencies (RF) of the mixers are combined without
further phase shift. This leads to interference of the mixer outputs and can lead to destructive
interference for 𝑓+ while giving constructive interference for 𝑓−. This way, only one sideband
will be left and the result is a clear single-frequency signal. Changing the phase of the IF
inputs can select the other sidemode or enable both sidemodes to pass, with continuos power
distribution between the two frequencies, depending on the relative IF phase.

Of course, any real mixer has more sidebands and the interference is not perfect. We achieve
a 20 dB attenuation of the carrier and around 40 dB suppression of the unwanted sideband.
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Figure 3.11: Schematics of a discrete I/Q mixer. The local oscillator is split and phase shifted
by 90 °, then inserted into the mixers. The IF signal is derived from the DDS with
a relative phase of ±90 ° and mixed with the LO. The RF output of both mixers is
combined without further phase shift; the interference of the signals in the combiner
results in the wanted frequency sidebands.

Since the output of the mixers is limited to (and thus also controlled) by the DDS output
power, the signal is by far too weak to drive the atomic transitions. Therefore, in each channel
a two-stage amplification is needed, with a low power pre-amplifier in both channels and the
final amplifier for the microwave channel (used for 800MHz to 2000MHz) and the RF channel
(used for 50MHz to 500MHz).

The typical output of the whole setup before the final amplifiers is shown in Figure 3.12 for
two settings: On the left-hand side, the spectrum of the setting for the sodium 𝐹 = 1 cooling is
shown, on the right-hand side the setting for the ⁷Li microwave transfer.

The numerous sidepeaks show that the sidemode suppression is not perfect. For the 1650MHz
case, the carrier was set to 1600MHz and is rather well suppressed, while the 1550MHz signal is
suppressed by only about 17 dB, which is still sufficiently weak to be neglected in the experiment.

For the 806MHz case, the spetral distribution looks really bad, and the desired frequency
is not even the strongest one. This is due to an inconvenient setting of the PLL which has a
very bad suppression of side modes at the desired frequency. However, no negative influence
could be observed in the experiment; the microwave transfer for ⁷Li works very well and thus
no further measures were taken to reduce the side modes.
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Figure 3.12: Spectra of the microwave source output after the pre-amplifier. The left spectrum
shows the output for 1650MHz, the carrier frequency is 1600MHz, and the desired
frequency has the highest power. The right spectrum is set for 806MHz, with the
carrier at 850MHz. Spectra were taken with 10 dB attenuation.

3.2.4 External Sources

For Zeeman transitions at very low fields, frequencies down to 5 kHz have to be provided. That’s
why the third line of amplifiers and antenna is implemented, offering two different possibilities:
The second DDS wich has two output channels, is connected directly to the amplifiers without
mixers, thus offering the 0.3MHz to 200MHz frequency range of the DDSwith the full frequency
sweep and power flexibilty.

For frequencies below 300 kHz, the DDS cannot be used anymore since the transformers on
the board will not work below that frequency. Since in this frequency range, no sweeps are
used, but only fixed frequencies for the Rabi coupling, a simple signal source can be used. We
used an Agilent 80Mhz arbitrary waveform generator, but only to produce a sine waveform.
Any other (preferably programmable) sine source would be sufficient, too. Since the external
source was only installed for a small number of test measurements, the frequency was set by
hand. In a final installation, the computer control can set the frequency simply via a GPIB
interface, which also allows automatic scanning of the frequency.

For the frequency range of 100 kHz to 300 kHz it turned out that the ZHL-3A amplifiers still
worked fine, although they are specified only down to 400 kHz.

Below 100 kHz, the amplifiers could not be used anymore, but the unamplified Agilent signal
is strong enough to allow very high Rabi frequencies, up to the driving frequency itself.

3.2.5 Antennas

The end stage of the MW/RF setup are antennas. For the three main frequency output ranges,
separate antennas were used. The amplifiers are directly connected to the antennas, so that
switching after the amplifier to another antenna or switching between two amplifiers for one
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antenna is not possible. This is to avoid the insertion loss of splitters which would reduce the
available RF power.

Two of the coils are designed to be as close to the atoms as possible with a low number of
windings. One antenna is connected to the microwave amplifier, thus used for the Na and ⁷Li
hyperfine MW transitions. The other antenna is connected to the RF amplifier and thus used
for the ⁶Li MW transfer as well as RF transfers at high fields where the Zeeman splitting gets in
the order of 170MHz (300G) to 340MHz (1000G).

..

1Figure 3.13: Position of the coils in the experiment. The round RF (blue) and MW (red) antennas
are centered above the glass cell, with the imaging beam propagating through them.
The rectangular low-frequency antenna (orange) is put over the glass cell without
blocking any optical access. Also shown are the magnetic field sensors discussed
below.

Figure 3.13 shows the position of the antennas in a top view onto the glass cell, embraced
by the coil holders. The MW antenna (blue) has only one winding with a diameter of 29mm,
the RF antenna (red) has two windings with a smaller diameter of 23mm. The low-frequency
antenna has two windings and encloses an area of 210 × 45mm2. All coils are connected above
the coil holders via coaxial cables to the corresponding amplifiers.

The third antenna in our setup was used with an impedence matching circuit at 16.9MHz
where the Zeeman sublevel preparation was done. This frequency was chosen as in the old
setup frequency sweeps were not possible, but the magnetic field had to be ramped. The
16.9MHz were convenient to selectively transfer Na or ⁶Li into the corresponding states. Now,
the matching circuit is not used anymore and the antenna is typically used at lower frequencies.
Still, a prominent resonance feature is present (see Figure 3.16).

At very low frequencies below 1MHz, the antenna proved to allow very efficient coupling,
with Rabi frequencies in the order of the driving frequency, which breaks down the rotating
wave approximation.

3.2.6 Control Chain

The control of the microwave signals follows three steps: The graphical user interface running
on our main PC sets the parameters and sequence files. These are passed to the control server
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Figure 3.14: Reflection spectra of the MW and RF antenna. The spectra show that no clear
impedencematching for a broad frequency range is given. The high Rabi frequencies
that can be achieved therefore show that the near-field amplitude is more important
then the radiated far-field energy.
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Figure 3.15: Zoom of the frequency dependence of the MW antenna for the relevant frequency
range for ⁷Li (around 800MHz) and for |𝑓 = 1⟩ cooling for Na (around 1600MHz).

that is evaluating the data, programs the National Instrument cards [59] which control the
digital and analog output channels for the whole experiment.

This server also communicates via a serial interface with the Arduino Due microcontroller.
The latter one writes the final data onto the DDS boards and is also in charge of triggering the
ramps.

The interface between control server and Arduino was chosen to be compact, yet human
readable as well as easy to log for later evaluation. Thus, a simple scheme based on the
interpretation of ASCII characters was developed. Since the control server setup is not capable
of asynchronous tasks, all data have to be written at the beginning of a sequence, evaluated by
the Arduino and then hardware-triggered.

The communication protocol starts with the transfer of the character r to initialize the ramp
mode. (For testing purposes, also a single tone mode is available, indicated by s.) An uppercase
R indicates the start of a new ramp, then come the mandatory parameters t, f and F for the
ramp time, the start and the stop frequency, respectively. The time is given in microseconds, the
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Figure 3.16: Frequency dependence of the low-frequency antenna. Clearly visible is the dip
around 17MHz where the antenna was built for, even without the matching circuit.
Also clearly visible is the drop in reflected power for low frequencies < 5MHz that
allows high coupling at low magnetic fields.

Table 3.3: List of source, amplification, antenna and use of radio frequencies in the experiment.

source frequency [MHz] amplifier used for

DDS 1 MW 800 – 2000 MW cooling, Na & ⁷Li MW transition
DDS 1 RF 50 – 500 RF ⁶Li MW transition, RF transitions > 70G
DDS 2 0.3 – 50 ext RF transitions < 70G
Agilent 0.005 – 0.3 ext RF transitions < 0.2G

frequencies in Hz. The default amplitude is full scale (1000) of the DDS, but can be changed by
the parameter a with a following number between 0 and 1000. A phase can also be defined
using p, but typically the Arduino automatically chooses the source and phase relations. The
communication is ended with a z; upon receiving this character in the input stream, the Arduino
program will start to calculate the ramps, and prepare the PLL and DDS for the first frequency
settings.

A standard communication string for the beginning of the experiment would define the MW
ramp for the |2, 1⟩ clean sweep and the two RF cooling ramps:

rRt1900000f1870000000F1810000000
Rt9000000f1900000000F1800000000
Rt6000000f1800000000F1779300000
z

While the communication is very fast due to the lightweight protocol, the ramp calculation
takes some time, especially the chopping which is explained below. The calculation is done
during the MOT loading, where the microwave setup is not needed. A too short MOT loading
will therefore lead to errors since the first cooling ramp will not work – an additional break
then has to be added to the sequence.

Depending on the given frequency range, the Arduino code decides which signal source
should be taken, with the possible values and chosen carriers listed in Table 3.4.
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Table 3.4: List of carrier and amplifier settings for all frequency ranges. The Arduino code
decides on its own which configuration is used. For the very low frequencies below
1MHz no amplifier is used at all, but only the power of the external source.

𝑓min [MHz] 𝑓max [MHz] source carrier [MHz] amplifier

1750 2150 DDS 1 MW 1950 MW
1450 1750 DDS 1 MW 1650 MW
650 1050 DDS 1 MW 850 MW
210 500 DDS 1 RF 410 RF 100W
20 200 DDS 2 – RF 100W
0.3 20 DDS 2 – RF 1W

0.005 0.3 extern – –

The carrier frequency for the corresponding ramp is written into the PLL and activated as
soon as the previous ramp has ended. This allows a very fast switching of the carrier and is an
important step to allow quick subsequent transfers of all hyperfine states.

Ramping of the frequency is done automatically by the DDS chip without the need of
externally setting each frequency step. Instead, the Arduino just writes the start and end point
as well as the ramp time. Additionally, the Arduino sets the frequency increase and the time
steps in which the frequency should increase.

Ramp Chopping
For ramps with a small slope, i. e. long ramps with a small frequency change, the finite step size
of the DDS leads to complications: Although the frequency resolution is well below the Hertz
level (0.1164Hz for 500MHz system clock), the finite slope resolution results in a slight offset
from the desired frequency in each step. For a long ramp, this can accumulate to a rather large
offset. Especially the cooling ramps are problematic in this sense; as has been investigated in
[111], these offsets also vary strongly for only a small change in desired frequencies.

This offset change is critical at the end of the cooling ramps, where several kHz frequency
offset can have a measurable effect on the final temperature of the atoms, wich limits the
reproducibility of the preparation.

Therefore, frequency ramps that take longer than 300ms are chopped, i. e. the ramp is divided
into smaller ramps by the Arduino. The program then calculates the best fitting combination of
time step and frequency rise by minimizing the deviation from the wanted frequency. For the
second part of the ramp, an offset is written so that it starts at the desired frequency, and not
at the (slightly off) end frequency of the first ramp. Figure 3.17 shows a sketch to explain the
concept of this frequency chopping.

Another reason for the chopping is the frequency dependend output power of the DDS,
which varies strongly over the whole frequency range. To compensate for this, a lookup table is
created with 200 values. For each frequency setting, the corresponding value is taken to ensure
a constant power output. The lowest power at full scale is at the highest frequencies, so the
output for lower frequencies is scaled to match the absolute power. This ensures a constant
power output over the full DDS frequency range.

49



3 Experimental Setup

0 2 4 6 8 10
0

5

10

15

time [a. u.]

fr
eq

ue
nc

y
[a
.u

.] desired freq. ramp
fixed slope ramps
chopped ramp

Figure 3.17: Effect of the finite size of the time step and frequency increase. The desired frequency
cannot be reached with the possible slopes. Chopping the ramps in short pieces
and giving an offset to each piece reduces this effect.

Timing
The data for the first ramp are written into the DDS at the beginning of the sequence. When
the first ramp is triggered (via the experiment control), the Arduino takes over the timing and
directly after the ramp start writes the data for the next ramp into the DSS buffer. This way,
the slow data transfer can already be done during the ramp. The second ramp is then started
when the first one has ended, after the data are pushed into the active registers. This is done
by an interrupt in the Arduino hardware, which allows the timing to be given by the Arduino
hardware clock instead of a software counter. Therefore, long ramps are timed by the Arduino,
which is not the highest possible precision, but far better than the old setup or being limited by
badly fitting slope parameters.

Finally, also the MW/RF switches are controlled by the Arduino to have the whole MW/RF
setup control combined in one device. Again, the Arduino code chooses the necessary switches
depending on the desired frequency. The switches serve two purposes: In the paths where only
one signal source is connected to one antenna, they block any spurious signal that might get
amplified and produce an unwanted parasitic coupling of states or heating of the atoms.

In the path with different sources or different antennas, the switch acts as its name suggests,
choosing between the different possibilities. This makes the setup even more flexible and since
the switches work even well below 1 kHz, the whole frequency range of the experiment is
covered.

50Hz Trigger
For experiments that are sensitive to magnetic fields, the 50Hz AC line might cause troubles
for high precisions measurements. While it is desirable to cancel the 50Hz AC field with an
active magnetic field control, as will be presented below, it is also an advantage to trigger the
experiment onto the 50Hz line to reduce the influence even further and allow more precise
MW/RF couplings.

For this purpose, the Arduino has two further input channels: The 50Hz trig input works
similar to the normal trigger channel, but waits for a signal on the 50Hz input signal. The
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latter one has to be applied externally, e. g. from a function generator which itself is triggered
on the AC line and gives a signal (edge or pulse) at a given phase of the AC line.

This way, the Arduino gets a trigger from the experiment and will start the DDS after it gets
the second signal. The other experimental parameters have to be designed in a way that the
additional delay of up to 20ms does not pose any troubles, e. g. for the timing of the imaging.

The effect of the 50Hz trigger was studied for the magnetic field calibrations. The signal, in
terms of measured width of RF/MW transfer as discussed below, was basically the same with
and without the trigger. This shows that the setup is not yet limited by the 50Hz noise, but this
might be important in future optimizations.

3.2.7 State Preparation

For all species used in our experiments, the upper hyperfine manifold (𝑓 = 2; 3/2) is unstable if
not in the stretched state and not suitable for further experiments: For sodium, the three-body
loss coefficient is too high to achieve a dense Bose-Einstein condensate – although condensation
is possible in a more shallow optical trap, as has been shown by [35]. For the trap settings used
in our experiments, the losses in the 𝑓 = 2 manifold lead to much too short lifetimes.

Even if the lifetime would not be the limiting factor, the spin relaxation rate is also very high,
as mentioned above. This does not only lead to losses in the magnetic trap, but also makes it
impossible to investigate spin dynamics in the 𝑓 = 2 state, since only the stretched states are
long-lived. This is in stark contrast to the case of rubidium, where both the 𝑓 = 1 ground state
and the 𝑓 = 2 upper hyperfine state can be used for spin dynamics and thus allow the study of
a richer field of parameters.

In the case of ⁷Li, the famous negative scattering length makes experiments in the upper
hyperfine state very challenging, since only a certain number of atoms can be condensed. [11]
As in sodium, the spin relaxation rate prevents experiments in the spin degree of freedom.

The latter is also true for ⁶Li, which is of course stable if only one Zeeman state is present,
but also suffers from strong spin relaxations if not prepared in a pure state.

All these reasons make it necessary to transfer the atoms from the upper manifold, where they
are trapped in the magnetic trap, into the lowest hyperfine state, 𝑓 = 1 or 𝑓 = 1/2, respectively.

Microwave Transfer

The microwave transfer of all species into the lower manifold is the first stage in the experiment
where the new frequency control based on the DDS brings direct advantages, since it allows
arbitrary frequency sweeps. Before the implementation of this setup, it was necessary to ramp
the magnetic field while applying fixed frequencies. While this scheme also worked nicely, it is
less flexible and the timing of the field ramps is more difficult to realize.

In the new setup, a magnetic offset field of 1.6G in total is applied after the atoms are loaded
into the horizontal dipole trap beam. Then, a frequency sweep for sodium of 32.5ms from
1774.75MHz to 1775.25MHz transfers the atoms from |2, 2⟩ to |1, 1⟩. This rapid adiabatic
passage is much more reliable than a 𝜋 pulse, which could in principle also be applied. If ⁷Li is
also used, the PLL is switched to the corresponding frequency, which takes about 60 μs.
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This fast frequency switch allows to start the ⁷Li ramp 375 μs after the Na ramp has finished,
already with a generous time buffer. The ⁷Li ramp then runs from 805.831MHz to 807.831MHz.

For the case of fermionic ⁶Li, the PLL also has to be set in the same time span, but the second
channel is used, going into the lower-frequency mixers. Since everything besides the PLL source
is separate from the microwave channel, the ⁶Li transfer could actually be done in parallel, if
a corresponding frequency source was available. Since the consecutive transfer did not pose
any limitations, as it is done during a very low density setting, the short time of combining ⁶Li
atoms in |3/2, −3/2⟩ with Na in |1, 1⟩ does not lead to strong losses. Therefore, the ⁶Li transfer
also happens after the Na transfer, with the same sweep duration of 32.5ms, and a frequency
ramp from 230.178MHz to 232.178MHz.

The rather large frequency range was chosen in such a way that external influences on the
magnetic field could be neglected. For smaller ranges (which allow faster transfer), the transfer
sometimes was unstable, due to the strong-field magnet three flors above the lab, as discussed
below. In fact, a basic magnetic field sensor was installed on the wall to monitor if the external
field changed, so that the frequency of the transfer could be adapted. An active stabilization of
the field at this point might be a helpful improvement.

RF Transfers at High Fields

The initial preparation in the absolute ground state 𝑚u� = +1 or 𝑚u� = +1/2 defines the start
point for all further experiments where other Zeeman states are accessible by a spin flip. For
low magnetic fields, this corresponds to a coupling of the total angular momentum Zeeman
substates ∣𝑚u�⟩, while for high fields in the Paschen-Back regime, these transitions correspond
to a flip of the nuclear spin while the electron’s spin is decoupled and conserved.

The state preparation can be done in two ways, depending on the time scale necessary. If
the timing is critical, i. e. the transfer has to be done as fast as possible, Rabi oscillations are
driven with a resonant pulse. At high fields, the transitions between the Zeeman substates
are far detuned due to the quadratic shift, therefore a resonant π pulse can transfer the whole
population of one state to another.

RF Transfers at Low Fields

At low magnetic fields (< 1G), the frequency difference between the transitions in the bosonic
species allows only to couple all three states simultaneously, giving rise to three-level Rabi
oscillations. [86] A transfer to a pure |1, 0⟩ state from |1, 1⟩ is thus not possible at low fields.
The state evolution of a three-component spinor during a Rabi coupling is shown in Figure 3.18
for the resonant (left) and off-resonant (right) case.

For most of the experiments investigating spin dynamics, this transfer was the final prepara-
tion step, since a coherent coupling of all states taking part in the process is needed. Therefore,
the ability to drive this preparation reliably, is a key ingredient to the study of the spin dynamics.

Figure 3.19 shows a typical example of the Rabi driving for sodium atoms at 96.9(3)mG, with
a driving frequency of 68.060 kHz. At this frequency, the driving can be done directly with the
function generator; no amplifier is necessary to achieve a sufficient coupling strength.
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Figure 3.18: Calculated 3-level Rabi oscillations of Na at 500mG on resonance (left) and with
a small detuning (right), starting in |1, 1⟩. The chosen Rabi frequency is 5 kHz,
driving frequency 351.2 kHz (corresponding to the mean of the Na transition at
500mG), and the detuning 2 kHz.
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Figure 3.19: Rabi oscillations of Na at 96.9(3)mG, driven with 68.060 kHz and 10Vpp set. The
fitted Rabi frequency is 2𝜋 ⋅ 1.7 kHz.

Typically, the spin dynamics for sodium was investigated with zero magnetization; this
requires a 𝜋/2 pulse which populates the side modes equally. Therefore, Rabi oscillations were
driven up to a point of equal side mode population, indepenent of the |1, 0⟩ population, which
would not be 50 % in the case of detuned driving.

For ⁶Li, the necessary superposition between |1/2, 1/2⟩ and |1/2, −1/2⟩ requires only a two-
level Rabi coupling, wich is a standard application in our setup. At low fields where the splittings
of the sodium transitions and lithium transition get close to each other, one can drive both
species simultaneously. Such a driving is shown in Figure 3.20, where the resonant driving
is for ⁶Li only, and sodium shows only a small far off-resonant coupling from |1, 1⟩ to |1, 0⟩,
which vanishes already after a short time. This might be due to fluctuating fields and the weak
coupling due to the detuning.

During this scan, the lithium atom number fluctuated strongly; still, the relative population
shows an excellent coupling behaviour, which shows that with the strong, resonant coupling, a
reliable state preparation is possible.
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Figure 3.20: Rabi oscillations of both ⁶Li and Na at 30.4(8) mG with strongly fluctuating ⁶Li
numbers; the Rabi fitted frequency for ⁶Li is 2𝜋 ⋅1.7(1) kHz. The relative population
of ⁶Li shows an excellent stability of the coupling. For Na, only a small population
chang in the beginning of the driving happens. For coherent coupling of both
species, therefore a much lower field is needed. Driving was done with 28.438 kHz,
and 5Vpp set on the function generator.

Disturbance of the Dipole Trap

The high power of the 100W amplifier can induce disturbances onto the optical dipole trap
regulation. Even the 1W RF amplifier already can influence the regulation so strongly that
further experiments are not possible.

As the dipole trap beams’ power is monitored on photodiodes and actively regulated to this
signal, any external influence on these loops will lead to decreased control over the atoms,
mostly heating or complete loss. While most external signals can be easily shielded by high-
quality cables, the radiation of the RF transfer cannot be shielded. This signal is picked up by the
photodiode and detected by the regulation as a sudden rise in signal. The regulation thus reacts
by lowering the power of the beams, ultimately even turning them off. After the RF power is
off, the beams are turned on again and remaining atoms might be re-trapped. However, this
procedure strongly heats the ultracold atoms and prevents further experiments. Figure 3.21
shows the result of the heating after time of flight for sodium.

To prevent this strong heating, a sample-and-hold circuit was implemented based on the
LF398 chip. The chip is sampling during the whole sequence, while the hold TTL signal is
connected to the RF switch so that it holds the latest signal before the RF pwer is turned on.
Although the signal will drift slightly during the pulse, this effect is not detectable on the atoms,
and the ultracold cloud is not getting heated. The right plot of Figure 3.21 shows the effect with
the sample&hold circuit.
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(a) Disturbance of the regulation leads to strong heat-
ing of the cloud; the atoms escape the dimple along
the strong horizontal beam.
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(b) Constant laser power with passive sample & hold
prevents heating due to power fluctuations.

Figure 3.21: Effect of the strong RF radiation on the dipole trap regulation and heating of the
atoms. Using sample & hold circuits, the disturbance can be greatly reduced.

3.3 Magnetic Field Control

One of the key ingredients for ultracold quantum gas experiments is the control over magnetic
fields. In our case, there are two very different scales of field strengths: The Feshbach resonances
studied in this thesis are at fields which are several orders of magnitude higher than the earth’s
magnetic field (roughly 0.5G in Heidelberg), ranging up to 1000G.

The quadratic Zeeman shift, which plays a role in the spin changing collisions, however,
requires much lower magnetic fields: For the experiments of coherent spin exchange, the
required magnetic field is on the same order as the earth’s field, or even orders of magnitude
smaller, with the lowest field used in our experiments of 6mG.

The main challenge for stable high fields is a very precise control of high electric currents
(electro magnets have to be used, since permanent ones are not flexible enough) which requires
a coupling of fine regualtion electronics with high power currents that range up to 400A.

For the low fields, the currents are in a less demanding range of about 10A, but external
influences are much more critical. These external factors range from temperature drifts in the
lab, over relatively large gradients from ion pumps’ magnets, to a residual magnetic field caused
by a 17 T (170 kG) magnet located in a lab three floors above our experiment.

The following section presents the techniques used to produce, characterize and apply the
magnetic fields in the different scenarios.

3.3.1 Precise Stabilization of High Magnetic Fields

Our setup is an improved version of the one described in [102] which was already used to study
NaNa and ⁶LiNa Feshbach resonances [53, 92]. However, the field stability in that setup was
rather bad, which made it impossible to resolve the narrow Feshbach resonances. The width
could only be estimated indirectly by comparing the lifetimes around the resonances.
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One of the main reasons to investigate the ⁷LiNa resonances was a potential application for
tuning the interspecies interaction. For this, the rough stabilization of the previous setup was
far too bad, so a new, flexible and very stable implementation was needed. This new setup uses
the same high-power parts as before, i. e. the same power supplies, coils, the current transducer
sensor and the passbank.

Four main improvements increased the overall performance of the regulation circuit:
• New analog PID controller
• Digitally controlled gain factor
• Digital set value with high resolution
• Highly stable read-out resistors

A sketch of the new setup is shown in Figure 3.22. The principle of the setup is rather simple:
Two power supplies connected in series provide the needed voltage to drive the coils. In total,
33V are available. The current is measurend by a current transducer; this signal is read by the
analog control circuit and the manipulated variable is the voltage on the gates of 32 power
MOSFETS in parallel.

…
…
…

to coils
LEM

Agilent

Delta

from coils

control

𝑉u�u�

Figure 3.22: Setup of the passbank control with current sensor (LEM), control box including the
Arduino, DAC board, sensing circuit and PID board, power supplies and connections
to the coils. The circuit is capable of driving the embedded antibias coils for high
fields or the offset coils for low magnetic fields. In the latter case, only the Delta
power supply is used.

Digital Gain Setting
A major challenge for the optimization of the PID parameters is the highly non-linear response
of the MOSFETs in the way they are used in our circuit. In the normal useage, one would
adjust the voltage of the whole setup in such a way that the current through the MOSFETs is
directly proportional to the applied voltage, resulting in a voltage-controlled current source.
However, in our setup this would require a higher voltage drop over the MOSFETs, resulting in
high power dissipation in the devices which can easily destroy them. Therefore, the voltage is
chosen such that only a small voltage drop occurs over the passbank, reducing the dissipation
to a manageable amount. Using the MOSFETs in this configuration, however, changes their
response strongly while ramping the current up and down. Thus, the parameters for a stable
PID loop would have to be adjusted for the different current stages. Elsewise, either the stability
during the hold time is compromised, or the ramps become highly unstable.
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Therefore, the fixed resistor of the final gain in the PID loop was replaced by a digital poten-
tiometer. This way, the resistance and thus gain can be chosen low during the ramps, allowing
a smooth increase and decrease of the current. During the hold time, the gain can be increased
to stronger suppress fluctuations and thus increase the stability of the regulation. Figure 3.23
shows the regulation box with the analog PID control board and the digital potentiometer on
the left side, attached to the board as replacement of the gain resistor. The rainbow colored
flatband cable is the connection to the Arduino which resides outside the closed box to reduce
the influence of the digital circuit.

Figure 3.23: Photograph of the new passbank control circuit, showing the analog PID board
below, the digital 10 Bit potentiometer on the left side, and the 20 Bit ADC on the
top. Flatband cables connect the digital parts to the Arduino control.

DAC setpoint
The set signal for the PID control was improved in several steps compared to the old setup. In
the original configuration, an analog signal from the experiment control was lead to the next
room (the power supplies and passbank are in the wohlfühloase together with all high power
electronics) and isolated from the common ground by DC/DC converters. These parts induced
strong fluctuations on the signal, in addition to noise picked up by the long signal cable. Thus
the first improvement was to use a stable fixed-voltage chip which was set a given value once
for a sequence. The ramp-up was then still done using the analog channel, but for holding the
signal was switched to the fixed voltage. This increased the stability greatly, but was not a very
flexible implementation.

An improved solution was using a 10 Bit digital potentiometer for the set signal. The two
ports of that potentiometer were connected to a positive voltage reference and the inverted
negative voltage, which suppresses fluctuations of the reference. The output port then can give
a very stable signal, which can be set by a microcontroller. Changing this signal quickly enables
ramps of the current.
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The full scale of the digital potentiometer for the set value should cover themaximummagnetic
field achievable in the experiment, roughly 1200G. The 10 Bit resolution then corresponds to
a step size of 2.3G since the potentiometer starts at maximum negative voltage, effectively
reducing the resolution by 1 Bit. For any precise measurement of Feshbach resonances, this
resolution is by far not sufficient, which is the reason that a 20 Bit analog to digital converter
(ADC) was implemented, allowing a resolution of 2.3mG per step.

High Precision Readout Resistors
The final improvement was the replacement of the sense resistor: The current is measured using
a current transducer LEM IT600-S that gives a secondary current proportional to the primary
one in the ratio of 1:1500. This smaler secondary current can be transferred into a voltage by a
resistor. For a primary current of up to nearly 400A, this means a current of up to 250mA in
our setup. The largest possible resistor, limited by the transducer’s ability to drive the secondary
current, is 20Ω. This also means a dissipation of over 1Wwhich leads to heating of the resistors.
Thus special resistors with very low temperature dependence (Vishay Dale Y1746-10ACT-ND,
0.05 ppm/°C) were used, and five of them with 100Ω are installed in parallel to distribute the
total power.

All these improvements lead to a strongly increased field stability for offset fields of up to
1200G with a FWHM of the spectroscopy signal as low as 2mG over the whole range. The
long-term stability is on the order of 10mG and might be given by external influences.

Control and Programming
The control chain starts with the experiment control which transmits the desired DAC value,
ranging from 524,288 (corresponding to 0V set voltage) to 1,048,576 (10V); negative voltages
are not meaningful since the current is uni-directional. Due to the necessary ground isolation,
the normal serial interface could not be used, thus a one-channel digital interface with an
optocoupler transmits both the value and serves as trigger for the ramps during the experiment.
Figure 3.24 shows a sketch of the control chain. Both the DAC and the digital potentiometer are
programmed via standard SPI commands, transmitted through high-speed optocouplers (HCPL-
2631). Due to their high bandwidth, the communication is only limited by the calculations for
each voltage step in the Arduino loop.

ArduinoOCexp. ctrl. OC PIDD
A

𝑉GS

OC

Figure 3.24: Sketch of the signal chain for the passbank control. The experiment control trans-
mits one number to the Arduino, which controls the DAC and the digital poti that
sets and adjusts the PID loop. The output voltage 𝑉GS is the gate voltage of the
passbank MOSFETs. The optocouplers invert the signals which has to be taken into
account for the Arduino programming.
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Once the Arduino is triggered, it writes a voltage ramp to the ADC, one value about each 100 μs.
The ADC is also decoupled from the Arduino via optocouplers, as is the digital potentiometer.
The latter one is set to a low value before the ramp, and to a high value after the final voltage
has been reached. For the downward ramp to turn off the currents in a controlled way, the
potentiometer is again set to a lower value to allow a smooth ramping behaviour. The rampdown
typically happens within 5ms to 20ms.

3.3.2 Active Stabilization of Low Magnetic Fields

Now, we will turn to the other extreme of magnetic fields: The stabilization and control of fields
up to 5 orders of magnitude smaller than the ones discussed in the last subsection.

The simplest approach of achieving a very low magnetic field would be the complete shielding
by high-permeable alloys (Mu-metal), which can provide a nearly field-free region. But it would
also block the complete optical access and would not allow any further manipulation of the
atoms. Therefore, this standard approach in other scientific machines cannot be applied to our
setup. This leaves only coils as tools again, which have to compensate the external fields.

For the low magnetic fields, there are several challenges that have to be overcome in compar-
ison to the high-field case. The easiest challenge is a stable current source, since only around
10A of current are needed, which is a convenient order of magnitude for a home-built current
source. Assuming the same order of current stabilization of about 10−5, as has been achieved
for the high-field circuit, this implies a current-noise limited stability of 10 μG at an absolute
field of 1G.

However, spectroscopic measurements of the magnetic fields result in much broader signals of
up to 2mG in width, and long-term drifts of even larger values. The widths of the spectroscopy
is partly given by the 50Hz field that is always present near any AC line and cannot be shielded
easily.

Flux Gate Sensor
Since 50Hz is comparably very slow for the electronic circuit used to control the coils, an
active compensation of this influence is possible, as implemented and shown in [33]. This setup
consists of a highly precise three-axes flux gate sensor (MAG-03MS1000) which gives an analog
voltage signal proportional to the magnetic field. The circuit to read out this sensor consists of
an offset subtraction, as well as filters and an amplifier, all optimized for lowest noise, so that
the limitation stems from the magnetic fields and not the electronics.

The results of this implementation are shown in Figure 3.25, where the signal of the sensor is
plotted with and without the active regulation. The 50Hz AC field is clearly suppressed; the
step answer at the beginning shows the time scale on which the circuit can react.

The remaining parts of the setup are similar to the high-field regulation: An analog PID
controller regulates the voltage of power MOSFETs on a passbank. Only this time both p- and
n-channel MOSFETs are used to provide positive as well as negative currents. Four devices in
parallel are sufficient to drive the rather low current of 10A, with one additional channel that
can drive up to 30A and is used for larger fields. Details of the performance of this setup can be
found in [33]; an improved circuit for the readout was also developed and will be used in future
experiments.
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Figure 3.25: Measured magnetic field without (red) and with (blue) active field stabilization. The
jump at 0ms indicates a step answer of the stabilization and shows the reaction
time. The 50Hz signal that is clearly visible in the passive measurement is strongly
suppressed with the active regulation. For comparison, a 50Hz sine is added. Data
from [33].

Integration Into the Experimental Cycle
While the active regulation was working very well, it is rather difficult to integrate into the full
experiment, since the coils used for the active regulation are also used passively in several steps
of the experiment: At the very beginning of the MOT loading, they are used to adapt the MOT
position to the minimum of the magnetic trap to improve the loading and reduce heating of the
atoms. At a later stage, the offset coils are used to provide the field for the microwave transfer
to the ground states, and they were also used to provide additional sweeps for the Feshbach
studies.

This list of passive regulations made it necessary to include a switch between passive and
active regulation. For the passive regulation it turned out to be the most stable operation if
the experiment control’s analog output was directly connected to the gates of the MOSFETs,
without any current sensing and regulating. This results in a non-linear response of the field to
the applied voltage, which did not impose any problems.

The combination of the passive and active control was implemented using a box with four
relays switching between the experiment control and the analog PID output. The moment of
switching is critical since the analog PID typically will be saturated during the sequence as the
magnetic trap produces fields way above the range of the sensor and the amplifying circuit.

In the final version of the coil control used for most of the spin dynamic experiments, only
two directions were actively controlled and set to values that cancelled the magnetic field in
these directions. For the third direction, 𝑧, the passive control was sufficient, since in this
direction (conveniently it is the one along the horizontal dipole beam which already is the
quantization axis for all experiments) external disturbances were the lowest. This allowed to set
the 𝑧 direction to a high value to define the quantization axis, then switch the 𝑥 and 𝑦 directions
to active field cancelling, and finally ramp to the desired total offset field.
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Field Gradients
One of the most challenging influences is given by magnetic field gradients. So far there is
neither a direct measurement of gradients possible, nor is a compensation implemented in the
setup. The existence of a large gradient could easily be found with a standard Hall probe that
showed field difference of about 300mG from the lower right to the upper left corner of the
glass cell, translating to a gradient of roughly 30mG/cm.

This gradient has an indirect and a direct influence on the experiments: Indirect, as the sensor
is not at the position of the atoms. Therefore, a cancelling of the fields using the sensor signal
would produce some different field for the atoms. This means that the compensation has to be
set to some finite fields where the values have to be found using time-consuming spectroscopies.

The direct effect of the gradient regards the inhomogeneity of the field over the extend of the
atomic cloud. This can directly be seen by the formation of domains as discussed later, which
would not be possible in the antiferromagnetic sodium in homogeneous fields. Also, for the
planned spin dynamics in the combined Fermi-Bose mixture of ⁶LiNa, this gradient can induce
a large energy scale, preventing any coherent dynamics.

Figure 3.26: The large magnet (black) of the ion pump near the glass cell (between the grey coil
holders) causes a strong magnetic field gradient at the place of the atoms (red circle).
Active stabilization is based on the fluxgate sensor (position indicated in blue) and
monitored with the six magneto-resistive sensors. The bias coils, indicated by the
green lines, are larger than all other length scales and cannot compensate a gradient.
The coordinate system indicates the axes as referred to in the text.

Several sources for gradients could be found, but one is dominating the whole setup: The
strong permanent magnet of the ion pump which is rather close to the glass cell; the setup is
shown in Figure 3.26. When the system was built, it was not designed for low-field experiments,
therefore no special care was taken about this magnet, as it did not interfere with any previous
experiments so far. For further, better-controlled spin dynamics, this magnet’s field has to be
compensated or shielded – this will be implemented in the next few months.

The figure also shows the coordinate system used to denote the magnetic fields. For both the
Feshbach studies as well as the spin changing collisions, the quantization axis is given in the 𝑧
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direction. This is done by either applying a high field using the antibias coils, thus all other
magnetic fields can be neglected, or by actively cancelling the latter ones, as is needed for the
low-field studies.

3.3.3 Calibration

To get a knowledge about the magnetic field at the place of the atoms, spectroscopy between
different states is the standard tool in cold quantum gases. This spectroscopy makes use of the
magnetic field dependence of the hyperfine transitions, which are mostly very well known.
The concept is then to ramp to the field which should be calibrated, apply a microwave/RF
pulse or sweep and detect the ratio of transferred atoms. For the latter one we use typically the
Stern-Gerlach imaging explained below, at low field.

Since the field range applied in the experiments of this thesis spans about five orders of
magnitude, the corresponding spectroscopy tools have to be equally versatile.

For the spectroscopy of high magnetic fields, typically the transition from |1, 1⟩ to |1, 0⟩ in
sodium is driven, except for the 905G resonance. In that case the spectroscopy is between
|1, −1⟩ and |1, 0⟩ since the |1, 1⟩ state suffers from the resonant losses. A transition to the
|𝑓 = 2⟩ manifold is not possible for these fields as already above 190G the necessary frequencies
are too high for the microwave setup.

For fields below 0.1G, on the other hand, Zeeman transitions are not useful for calibrations
since the frequencies get very low, and the two transitions |1, 1⟩ ⇔ |1, 0⟩ ⇔ |1, −1⟩ are not
clearly separated, making the evaluation problematic. Therefore, at low fields the |1, 1⟩ to
|2, 2⟩ transition is more convenient. However, one has to take care not to hit the |1, 1⟩ to |2, 1⟩
transition which is also very close for small frequencies. Figure 3.32 shows the effect of coupling
to all three possible upper states from |1, 1⟩.

For all calibrations, the spectroscopies are done iteratively, where the first scan uses high
power and a rather broad frequency sweep, which can cover a large range of fields so that the
resonance can be found easily even if the field is not well-known yet. Both the power and sweep
range are then reduced until the transition frequency is clear enough. By reducing the sweep
range by more than a factor of 2 in each iteration, the rough field settings can be found quite
fast, since only one transfer has to be detected to go to the next-lower sweep range.

The final scan then uses no or only a small sweep; the power and pulse time are adjusted
in a way that the transition is not saturated and the signal is not Fourier limited. This means
if a resolution of 1mG is wanted, which corresponds to 2.1 kHz, the pulse duration must be
longer than 500 μs. Vice versa, a shorter pulse can be used to achieve a clearer signal if the field
fluctuates too strongly.

A gaussian is fitted to the transferred ratio of atoms; the center value is attributed to the
central field, while the widths of the gauss curve gives the fluctuations or scattering. Throughout
this thesis, we use the full width at half maximum to indicate the width, instead of the variance.

The field is then calculated by inverting the Breit-Rabi formula; for all fields given in this
thesis, the notation 901(2)mG means that the center field corresponding to the gaussian fit to
the transferred atoms is 901mG and the full width at half maximum is 2mG.

An example for the very low-field calibration is shown in Figure 3.27. This setting shows the
active stabilization with the offset coils as described below.
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Figure 3.27: Microwave spectroscopy for one of the lowest field used in the experiments. Peak
transfer is at 1771.644(3)MHz, corresponding to 8.6(12)mG. A 2 kHz sweep was
applied during the 2ms pulse. The uncertainty in the frequency denotes the full
width at half maximum, not the error of the peak which would be ±1 kHz.

For intermediate fields of 3G, using the offset coils passively-driven and the antibias pass-
bank for the comparatively large field, spectroscopy can still be done with the RF transitions.
Figure 3.28 shows an example where both Na and ⁷Li were probed. The small difference in
resonance positions is exactly the difference in the quadratice Zeeman shifts, as expected and
calculated from the Breit-Rabi formula. This scan therefore also gives a direct measure for the
detuning of spin changing collisions in the corresponding channels.

Note that the whole spectroscopy for all fields is done conveniently by the new microwave
setup; with the old setup, frequency sweeps could not easily be applied. In that case, additional
magnetic field sweeps were used to find the resonances.

The last example for a magnetic field calibration is given in Figure 3.29 to show the stability
of high magnetic fields, in this case 120G. This field was produced with the antibias circuit and
used for the study of one of the Feshbach resonances of ⁷LiNa.

3.3.4 Field Monitoring With Independent Sensors

Any active stabilization’s performance can be increased – or at least monitored – with an
independend set of sensors. In our case, additionally to the very precise, but costly, flux gate
sensor, which requires a complex readout, we added a set of very cost efficient and still rather
precise magnetoresistive sensors that can easily be read.

The Magnetoresistive Sensors
These sensors are based on the Honeywell HMC5883L sensor on a GY-273 breakout board
and can be controlled and read out using a standard I²C interface. Each sensor has three
perpendicular axes, so that the field direction and strength can be determined. Unfortunately,
each chip and each channel has its own offset. It was not possible to calibrate each channel
reliably, therefore absolute values could not be measured, but only relative changes in the field
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Figure 3.28: RF Spectroscopy of |1, 1⟩ to |1, 0⟩ in both Na and ⁷Li in one run. The fit for Na
results in a center frequency of 2.0597MHz, for Li 2.0587MHz. Both correspond
to 𝐵 = 2.9358G. Full width at half maximum is for Na 0.34mG, one of the lowest
widths measured in our setup. Lithium suffers from a very high background noise
and bad imaging quality, therefore the large offset in the |1, 0⟩ signal.

strength could be monitored. Still, a lot of important information could be drawn of these cost
efficient sensors that were not accesible with only one very precise fluxgate sensor. The step
size of one digital step is roughly one milligauss, so that at least the changes can be understood
in absolute scales.

One of the drawbacks of the cheap sensors, however, is the communication protocoll: The
sensors are read by an Arduino microcontroller, which only has one hardware I²C port. We did
not want to rely on a software-based I²C, therefore the readout of the six sensors was switched
using relays, again controlled by the Arduino. After getting a trigger from the experiment
control, the microcontroller reads the values from each sensor as quickly as possible, switching
the hardware I²C channel to each of the chips. This takes about half a second, meaning that
only one value for each sensor can be read during one sequence.

The digital values read by the Arduino are saved together with all other data from the
scan, as well as the analog value from the flux gate sensor. These voltages are taken by using
a sample&hold chip which samples the voltage at the relevant time and holds it until the
experiment control can read them at the end of the sequence. A synchronous reading during
the sequence is not possible so far. Since the S&H chips suffer from a small decay of the voltage,
the monitored signal at the end is not exactly the one measured at the sampling, but this does
not pose any limitations.

Sampling an Over-Night Scan
Letting the machine run over one night and day and monitoring all sensors provided the data
shown in Figure 3.30, where several features can be seen. The 𝑥-axis is the number of experiment
cycles, which is roughly one minute each. For this scan, the field regulation was alternatingly
active and passive. This means that each second shot is controlled by the flux gate circuit,
while for the other ones just the passive control of the current was applied. Therefore two
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Figure 3.29: RF spectroscopy of sodium around 120G where one of the ⁷LiNa 𝑠-wave Feshbach
resonances is located. The center frequency of the fit is 79.438MHz, corresponding
to a field of 120.174(1)G. The width of 1mG is again given by the FWHM of the
gaussian fit.

curves with the same color are shown, which are actually one dataset. The offset between these
curves has no further meaning since it is just the difference in the set points. Unfortunately, the
communication to some sensors or at least one of their axes broke after their installation, thus
not all directions at all places could be monitored.

The Ion Pump
Themost striking feature are the two peaks around shot number 1700. This feature was produced
on purpose to prove a hypothesis: The big magnet of the ion pump strongly influences the field
near the glass cell and the field depends on the temperature. For this, the magnet was heated
with a band heater by about 3 °C over a few minutes, then the heater was turned off. Clearly
visible is the fast increase of the field in all dimensions and on all sensors. The following decrease
gives a rough time scale on which this part of the experiment thermalizes. This signal clearly
shows that the magnet is a big problem and has to be shielded and, if possible, temperature
stabilized. In fact, a temperature stabilization for the room air has been installed after observing
this strong influence.

It is also clear from the sensor signals that the magnet causes a gradient since the different
sensors are affected more or less strongly, with the most obvious signal in the sensor closest
to the magnet. See Figure 3.26 for the position of the sensors relative to the magnet. Also,
while the flux gate shows a complete compensation for the actively-regulated shots, the sensors
clearly show a remaining effect or even an overcompensation.

The Magnet Three Floors Above
The second feature with a similar structure are the peaks around shots 1400 and 1500, which
show the ramping of the strong-field magnet in our institute three floors above our experiment.
While the disturbing influence is clearly visible in the passive data, the active regulation can
mostly compensate the effect in the 𝑥 direction. In the 𝑦-direction, on the other hand, it looks
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Figure 3.30: Data of the GY-273 HMC5883L magnetometers and the flux gate sensor over a
time of more than 3000 experimental cyles. Data are shifted towards zero offset for
better comparison. The four striking features are clearly visible: The jump around
shot 100, the ramp of the 17 T magnet around 1400 to 1500, the heating of the ion
pump’s magnet starting around shot 1700, and the very slow drift over the whole
measurement time with a peak around shot 700.

like the regulation over-compensates the influence and actually makes the influence stronger.
This indicates a gradient, since the flux gate sensor shows a complete compensation.

Drift and Jumps

Finally, there are two less obvious features, which still limit the performance of the experiment.
These are a jump at the beginning of the measurements, most prominently in the 𝑧 direction.
The reason for this jump is not known, but similar effects have been observed several times. We
suspect an external influence that we did not yet find.

The second feature is a slow drift over the whole measurement time. This drift has been
observed over several days, clearly following the room temperature. While one influence clearly
is the ion pump, other sources of varying fields cannot be excluded. These drifts give another
clear motivation for a more stable room temperature.

In total, these monitoring data show that the active stabilization is working well but is limited
due to gradients. For a better performance, these gradients have to be eradicated at all or actively
compensated by using another sensor so that gradient measurements and thus compensations
are possible.
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3.4 Atom Detection

As in most ultracold atom experiments, all information about the experiment is drawn from
absorption pictures of the atoms. For this, a resonant laser beam is shone onto the cloud and
imaged onto a CCD camera. The shadow gives space-resolved information about the atomic
density, integrated along the beam path. For our two-species experiment, both beams come
from the same fibre, go through the glass cell from above, and then are split using a dichroic
mirror after the imaging lens. The reflected 589 nm light for sodium is detected by the first
camera; the transmitted 671 nm light for lithium is reflected onto the second camera by another
mirror. Only the objective lens system is used, without additional imaging optics in front of the
cameras. This two-camera setup allows easy detection of both species independently.

For all experiments presented here that deal with spinor physics, the hyperfine state has to
be resolved, but also for the Feshbach resonance measurements, where the state preparation
has to be checked, as well as for the field spectroscopies.

This state-dependend detection could be done at high magnetic fields, where the imaging
transition for the different hyperfine states is detuned. More convient, however, is using a Stern-
Gerlach seperation where a magnetic field gradient splits the states with different magnetic
moments spatially and allows simultaneous imaging of all states. In this way, relative counting
of the atom numbers is possible and fluctuations of the total atom numbers have no impact on
the relativly measured populations.

3.4.1 Absorption Imaging

Detection of the atoms is done using a standard absorption imaging technique. [51, 52] The
atoms scatter photons from the beam, leaving a shadow image. A second laser pulse is used
as a reference, and by taking the logarithm of the divided picture, one gets a signal that is
proportional to the atomic column density, which is integrated along the imaging beam direction.

Normally, the imaging is done at low magnetic offset field, especially for the spin-dynamics,
since then all magnetic hyperfine substates can be imaged simultaneously. For the investigation
Feshbach resonances, in contrast, it is useful to be able to image the atoms directly at the high
offset field, without the need to ramp down, which takes time and can cause additional strong
losses (in case of a broad resonance in-between) or blurr any further structure that one wants
to observe.

Therefore, in addition to the normal low-field imaging, for both species a high-field imaging
is present. For lithium, it consists of an additional diode laser that can be offset-locked to the
spectroscopy laser. [102] This setup is very flexible and allows imaging of lithium atoms at all
accessible magnetic fields in all states.

In the case of sodium, laser sources are very expensive, therefore a different approach is used:
By shifting the frequency only with an AOM and using the right transition, one can enable an
imaging around the 905G resonance in the |1, 1⟩ channel, which is one of the reasons for the
longer investigation of this resonance instead of the somewhat broader 1202.6G resonance in
the |1, −1⟩ state. For both high-field imaging systems, a repump beam is not necessary, since
the transitions are mostly closed and enough photons can be scattered for a sufficiently clear
signal.
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3.4.2 Stern-Gerlach Separation

The state-dependend mapping relies on the spatial separation of the different Zeeman substates.
The easiest way to achive this is to apply a gradient magnetic field, since as mentioned in
subsection 5.4.2, the energy of an atom with total spin F depends on an external magnetic field.
Therefore, an inhomogeneous field exerts a force on the atoms:

𝐸Z = −𝜇 ⋅ 𝐵 ⇒ F = −∇𝐸 = 𝜇∇𝐵 (3.1)

So by applying a field gradient onto the atoms, different spin states experience a different force
and can be separated during the free expansion after release from the trap.

Finetune Gradient Mapping
In the experiment, there are two possible ways to apply a field gradient perpendicular to the
imaging direction: In the first configuration, only one of the finetune coils is used. This method
also directly offers a finite and defined offset field which prevents uncontrolled spin flips. Since
the inductance of the finetune coils is rather low, this gradient can be turned on (important to
observe fast spin dynamics) and off (important for zero-field imaging) quite fast and has been
used for many years in previous experiments of our setup.

Figure 3.31: Finetune (inner large coils) and MOT (small curvature coil on the right-hand side
and outer large antibias coil on the left-hand side) gradient configuration for Stern-
Gerlach separation. Arrows and color indicate the current direction. Black coils are
not used in these configurations. The red arrow indicates the propagation direction
of the horizontal dipole trap beam.

MOT Gradient Mapping
While the finetune mapping has certain advantages, it suffers from the low gradient which does
not allow for a very clear separation especially of the ⁶Li atoms. The limitation stems from the
connected power supply and the maximum possible current. Using the second coil would be
possible, but the gradient would only increase by a factor of two, while the advantage of the
offset field would vanish and the switching circuit would become more complex.

Therefore, another scheme was used, exploiting the readily available MOT configuration.
Contrary to the MOT situation, where only a few amps are applied, a high current can be used
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in this circuit, since the limiting element is only the diode (see Figure 3.4) which can withstand
short peak currents of much higher value than the constant current limit.

The high gradient that is possible in this configuration allows a very clear separation of all
spin states of the three species. The gradient is roughly 1G/cm/A, and up to 225A can be
applied. A typical setting would result in a calculated gradient of about 45G/cm, compared to
a maximum of 3.9G/cm that can be produced by the finetune configuration.

But of course this high gradient setting also comes with a price: Due to the high inductance
of the curvature and antibias coils, the current cannot settle during the short pulse duration
of a few ms. Also, since the coils are not symmetric, the field is neither a pure gradient, nor
pointing directly in the direction of the offset field that defines the spin dynamics. This causes
problems at very low fields since the atoms can undergo spin flips, making a clear mapping
impossible. Third, turning off the field also is slow and thus can cause a detuned imaging. Since
the detuning then is different for the magnetic substates, this may even have an influence on
the measured magnetization.

Figure 3.32 shows a typical picture of the MOT gradient mapping. Clearly separated are
four clouds of atoms, resulting from a microwave spectroscopy that coupled the |1, 1⟩ ground
state to the three possible upper states |2, 0⟩, |2, 1⟩ and |2, 2⟩ via a 2ms frequency sweep from
1771.65MHz to 1771.75MHz at an offset field of 50(3)mG. The ring-shaped structure results
from a detuned imaging cause by residual magnetic fields.

Na: shot #1, x = 1771.7
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Figure 3.32: Stern-Gerlach separation of sodium atoms after coupling from |1, 1⟩ to all possible
|𝑓 = 2⟩ states. Clearly visible is the vertical as well as slight horizontal shift. The
spatial distribution of each cloud indicates a detuned imaging.
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The mapping sequence for this shot was the following: Directly after the MW pulse has
finished, first the horizontal optical dipole trap beam is turned off to reduce the optical density
for Na as much as possible into the now free direction, leading to the ellipitical shape of the
cloud. Since the second ODT beam is diagonal to the imaging direction, the atoms actually
propagate along this tilted axis, and are pulled by gravity to the left side of the picture.

The vertical dipole trap beam actually runs under an angle of 45 ° into the picture plane, thus
the atoms also expand under this angle and not perpendicular to the imaging axis.

After 1ms of expansion, also the second dipole trap beam is shut off, and the MOT gradient
is turned on for 𝑡grad = 1.125ms and turned off again. Here, the current was set to 20% of the
maximum value, allowing for a longer time of flight than with the full current. After the turn off,
the sodium atoms expand freely for 𝑡tof = 7.875ms before imaging starts with optical pumping
into the |2, 2⟩ state and imaging 125 μs later.

To verify that the currents in the coils can follow the applied set voltages, one can calculate
the expected seperation of the clouds and compare with the observation. The atoms are only
accelerated during the application of the gradient, and flying freely after that; taking a gradient
of 𝐵′ = 45G/cm, the total displacement due to the gradient can be calculated as

Δ𝑥 = 𝜇𝐵′

2𝑚
((𝑡grad + 𝑡tof)

2
− 𝑡2

tof) = 1mm (3.2)

with the Bohr magneton 𝜇. The observed separation of the |1, 1⟩ and |2, 0⟩ state in Figure 3.32
is about 810 μm in (from the point of view) vertical direction, i. e. along the horizontal dipole
trap beam. Comparison of these two values leaves three different interpretations:

1. The gradient is only 35G/cm,
2. the gradient is not only in the direction of the dipole trap beam, but also perpendicular

and possibly also along the imaging axis, which cannot be resolved,
3. the coils are not fast enough to allow the strong current in the short time where the

voltage is applied.
None of these possible effects has a direct impact on the performance of the experiment, but

one has to keep them in mind if the settings are changed. Especially for the lithium mapping,
where an even greater gradient is applied, the coil current might be too slow to vanish after the
set turn off, which might lead to additional detuning in the imaging.

For most experiments, the parameters of coil current ramps and time of flight could be chosen
in a way that a reliable mapping was possible. Unfortunately, a strong gradient that clearly
separates the lithium atom clouds, accelerates the sodium too strongly, driving it out of the
field of view of the camera too fast. Therefore, the possible time of flight of sodium is too short
and the cloud becomes too optically dense, preventing a precise atom counting. This is one
of the reasons why in the heteronuclear experiments, the effect of lithium onto sodium is not
detectable and thus all experimental results on magnetization transfer from one species to the
other can only be found in lithium.

To improve the situation, one could apply a second gradient opposing the first one to decelerate
the sodium atoms strongly enough. This was tested with the finetune gradient, since it points
against the MOT gradient, but the effect was much too weak.
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3.4.3 Mapping Problem

Achieving a stable operation at very low magnetic fields poses a set of challenges, even if the
field itself can be precisely stabilized. The main problem is to reach this field from a higher
offset field, to keep the atoms in the prepared state, and being able to state-selectively detect
the atoms, without influencing the state population in any unwanted way.

Ramping to and from the Final Field
The first and third point of this list boil down to the ability of adiabatically ramping magnetic
fields. Especially at very low fields, zero-crossings have to be avoided, which is especially
challenging if the coils are not in perfect Helmholtz configuration and therefore the different
directions are (at least slightly) coupled.

For the initial preparation of a state at low fields, this is not a very crucial problem, since any
field ramps can be executed very slowly, allowing the atoms’ spins to follow any change of field
direction adiabatically.

More demanding, however, is the mapping at the end of the investigated time scales. In
the case of slow dynamics, it is possible to ramp up the gradient for the mapping, and the
atoms again can follow, without changes of the populations. However, looking at the short-time
dynamics is more critical, since then the field has to be ramped up fastly, might cross a zero
point or change the direction too fast for the atoms to follow.

This was the case for offset fields below about 50mG. For these fields, first the homogeneous
offset field had to be increased, before the mapping gradient could be applied. Only then a
reliable state detection was possible. Unfortunately, this prevents the observation of any short-
time dynamics at the very low fields, which might be interesting for the ⁶LiNa heteronuclear
spin exchange process.

For the most successfull observations in the spin exchange processes which were done with
sodium, however, the dynamics do not change critically below these fields, so that no important
information would be lost. More sophisticated mapping sequences are possible, of course, where
the gradient would be ramped more slowly up and down – also, a completely different state
mapping without a spatial separation might be a future solution.

Parasitic Coupling
A major problem which was very time-consuming were stray RF fields in the lab that coupled
the different Zeeman states unintentionally: For quite many magnetic field settings, a clear state
preparation could be achieved, but after holding times of several hundreds of milliseconds – a
typical time scale where the magnetic fields are allowed to settle before the experiment proper
starts – atoms in other Zeeman states were detected. We dubbed this effect parasitic coupling
and it will play a role in discussing the results of the spin dynamics experiments.

This effect clearly depends on the hold time and makes experiments with longer evolution
times nearly impossible. Examples for this effect are shown in Figure 3.33 for fields of several
hundreds of milligauss, and in Figure 3.34 for lower fields down to below 100mG. Spectroscopies
could only be done at the indicated fields, where no parasitic coupling was present or where it
could be neglected.

Many RF sources in the lab were investigated, additional shieldings for several sources of
radiation were installed, but none of these measures could reduce the observed effects. Several
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Figure 3.33: State population after a short hold time at different magnetic fields, showing the
mapping problem; the fields roughly correspond to about 100mG to 350mG. Single
fields are calibrated with the shown values; the fields with strong mapping problems
could not be calibrated since a clear readout is needed for that.

power supplies of the coils were exchanged to also exclude influence from the applied magnetic
fields, but in the end only avoiding certain offset fields could offer a stable state during longer
hold times.

The main change between the data of Figure 3.33 and Figure 3.34 were different settings of
the actively regulated coils in 𝑥 and 𝑦 direction. This shows that for the same absolute field
value, the parasitic coupling can be stronger or not present at all. All of this made it especially
challenging to find the right settings for very low absolute fields since the normal procedure of
iteratively changing and scanning the fields was disturbed by the parasitic state populations.

Finally, one setting for the 𝑥 and 𝑦 coils could be found which nearly cancelled the fields in
these directions and a scan with low offset fields could be done. Figure 3.35 shows the parasitic
coupling effects at these fields, with the lowest spectroscopically measured field in our setup
of 6 ± 2mG.

72



3.4 Atom Detection

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

127(11)mG

69(7)mG

84(18)mG

magnetic offset field [a. u.]

re
la
tiv

e
po

pu
la
tio

n
|1, −1⟩
|1, 1⟩
|1, 0⟩

Figure 3.34: Mapping problem for lower offset fields in 𝑥 and 𝑦 direction. The scan shows that
neither the absolute field nor the 𝑧 value can directly be related with the mapping
problem.
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Figure 3.35: Mapping at the lowest fields realized, with fixed, actively regulated fields in 𝑥 and 𝑦
direction, scanning the passively regulated 𝑧 direction. The lowest field calibrated
in this sequence was at 6(3)mG. Finally, there are many low-field points with a
reliable state preparation, holding, and detection possibility.
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In the darkest times, hope is
something you give yourself. That
is the meaning of inner strength.

(Uncle Iroh)4 Feshbach Resonances

The investigation of Feshbach resonances is an interesting field, since fundamental concepts of
the quantum scattering theory can be shown and applied in a straightforward way, and it can
provide very precise input for the calculation of interaction potentials. But in most cases in the
field of ultracold gases, the search for Feshbach resonances is driven by the great amount of
possibilities they offer for experimental atomic physics.

Due to the ability to tune the scattering length between atoms, Feshbach resonances provide
a tool to investigate strongly interacting systems, suppress the interaction, or to reverse their
sign. This enables the investigation of further few-body states as the Efimov physics, where
the strong interactions cause three-body bound states without two-body bound states, or even
higher few-particle states.[57, 19, 29, 80, 103]

Also moderate tuning can be of great use, as in [69], where a small change in the scattering
length of one channel induces interesting non-classical many body physics.

Finally, the crossing of molecular levels with the atomic threshold that causes the resonance
can be used to associate molecules, which enabled the study of the BEC-BCS crossover, and
offers an intermediate step on the way to ultracold molecules, where especially the fermionic
case opens a wide range of possible applications.

In this chapter, the first observations of the Feshbach spectrum of the bosonic mixture of ⁷Li
and Na will be presented. Additionally, the possibilities and limitations of interaction tuning in
both homo- and heteronuclear Feshbach resonances is studied in respect to possible future use
for tuneable impurity physics or spin dynamics.

Besides from this, the Feshbach studies provide important parameters for the fine tuning of
the modelling of the interaction potential and therefore offer a more rigorous calculation of
the scattering lengths which are an important parameter for the spin dynamics discussed in
the next chapter. Finally, an understanding of the physical background of Feshbach resonances
helps to understand where the coupling of the spin degrees of freedom comes from and how it
could be influenced.

4.1 Physical Background

The diluteness and low energy of ultracold alkali atoms allow a very simple description of their
scattering properties that can be expressed by one single number, the 𝑠-wave scattering length 𝑎:
Since the interaction potential is spherically symmetric, any scattering can be decomposed
into spherical waves. The discussion of this decomposition and the resulting properties of the
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scattering are topic to each standard quantum physics textbook, therefore this section will point
out the most important steps needed for the basic understanding.

4.1.1 s-Wave Scattering

The eigenstates of a spherically symmetric scattering potential of a point-like particle can be
decomposed into the spherical harmonics

Ψu�(x) =
∞
∑
u�=0

𝑖u�(2𝑙 + 1)𝑅u�(𝑟)𝑃u�(cos𝜗), (4.1)

with the angular momentum 𝑙 in units of the Planck constant, 𝑅u� the amplitude of the partial
wave with angular momentum 𝑙 and the Legendre polynomials 𝑃u�. These polynomials provide
an orthogonal set of eigenstates, thus coupling between the different harmonics is not possible.

The description of the scattering is based solely on elastic processes, therefore the amplitude
𝑅u� of each angular momentum has to be conserved, and the scattering can only affect the
relative phase 𝜂u� of the incoming and outgoing waves. Due to the small extent of the scattering
potential compared to the typical interatomic distance, the details of the potential do not play
a crucial role. Therefore the phase evolution can be described by one effective number, and
thus be compared to the scattering in a box potential, which results in the same phase shift, but
offers a much simpler description.

In the asymptotic limit for the interatomic distance 𝑅, each scattering channel’s wave function
can be expressed by

Ψu�,u�(𝑅, 𝐸) → 𝑐 sin(𝑘𝑅 − 𝜋𝑙/2 + 𝜂u�(𝐸))
𝑅

√
𝑘

𝑒u�u�u�(u�) for 𝑅 → ∞, (4.2)

where the phase shift 𝜂u� generally depends on the particle’s kinetic energy 𝐸 = ℏ2𝑘2/2𝜇 and
𝑐 = √2𝜇/(𝜋ℏ2) is a normalization constant with the reduced mass 𝜇. 𝑘 is the wavevector of
the incoming particle.

For 𝑙 > 1, i. e. scattering with a non-vanishing angular momentum, the rotation introduces
an energetical barrier, preventing atoms with low energy to reach the scattering center; this is
sketched in Figure 4.1. In the remainder of this thesis, we follow the usual convention to name
rotational states with the labels 𝑠, 𝑝, 𝑑, 𝑓, 𝑔, … known from atomic spetroscopy, although their
meaning sharp, principal, diffuse, fundamental, have no meaning here whatsoever.

This rotational barrier suppresses collisions with 𝑙 > 0 for very low relative momenta,
which is the case in the ultracold quantum regime that dominates basically all experimental
stages discussed in this thesis. Therefore, the most important scattering channel is the 𝑙 = 0
𝑠-wave scattering. For the low momenta, corresponding to small wavevectors 𝑘, the phase shift
parameter 𝜂0(𝐸) depends on the kinetic energy via [78]

𝑘 cot 𝜂0(𝐸) = −1
𝑎

+ 1
2

𝑟0𝑘2 (4.3)

where 𝑟0 is the extension of the potential and 𝑎 is a constant. For small 𝑘, this expression can
be simplified even further by neglecting the quadratic 𝑘2 term, leading to

tan 𝜂0(𝐸) = −𝑘𝑎. (4.4)
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Depending on the potential depth, 𝜂0 can take any value from 0 to 2𝜋, thus the so-called
scattering length 𝑎 can diverge from −∞ to +∞ and take any value in between. Even with a
purely attractive potential, a positive scattering length can appear, which results in a repulsive
interaction.
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Figure 4.1: Illustration of the different molecular potential types causing Feshbach resonances:
Atoms can enter in the lowest-lying open channel, inducing singlet 𝑠-wave or 𝑑-wave
Feshbach resonances. 𝑝-wave resonances occur due to the coupling to the 𝑙 = 1
continuum. The higher-lying triplet can cause resonances as closed channel.

Open and Closed Channels, Coupling
If the potential has a bound state, a Fano-Feshbach resonance can occur [31, 30, 27], in the
remainder just called Feshbach resonance for brevity.

The crucial formula for the dependence of the scattering length on an externally applied
magnetic field connects the background scattering length with the universal scaling which
occurs near a Feshbach resonance, and gives a simple scaling:

𝑎 = 𝑎bg ⋅ (1 + Δ𝛿𝜇
−𝐸0 + 𝑖(𝛾/2

) (4.5)

The background scattering length 𝑎bg depends on the full potential depth and is normally not
easily accessible a priori, but can be calculated if the potential is well-known. The position of
Feshbach resonances can be an important input parameter for the fine-tuning of the potential
modelling.

𝐸0 is the position of the resonance threshold, and in the case of magnetically-induced
resonances can be tuned by a magnetic field. Δ is the width of the resonance, defined as
Δ = −ℏ2/(2𝜇𝑟2

0𝛿𝜇).
Speaking about Feshbach resonances, two terms are often used in two different contexts:

Narrow and broad. Typically one uses them to characterize the parameter Δ as the magnetic
field difference between the zero-crossing of the scattering length and the divergence point.
In this sense, both the famous ⁶Li and the ⁷Li resonances are very broad, since both show a
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significant change in the scattering length over several hundreds of gauss. Examples for narrow
resonances, in contrast, would be the ⁶LiNa resonances with Δ < 10mG.

However, a more rigorous definition of narrow and broad is given by the resonance strength
and depends on the universal behaviour shown by the resonance. Taking the lithium resonances
again as example, one sees that for the ⁶Li case the universal scaling is valid for a wide range
between the resonance and the zero-crossing, while for ⁷Li this is true only for a very small
part. Quantitatively, the resonance strength is defined as

𝑠res =
𝑎bg

𝑅vdW

𝛿𝜇Δ
𝐸vdW

(4.6)

with the van der Waals radius 𝑅vdW of the interaction potential and the corresponding energy
𝐸vdW = ℏ2/(2𝜇𝑅2

vdW). A large parameter 𝑠res ≫ 1 denotes a broad resonance, which is largely
dominated by the open channel. In contrast, narrow resonances are closed-channel dominated
and show the universal scaling only over a small range of Δ, which in turn also often is rather
narrow itself.

This constraint about the universal scaling has to be kept in mind when the tuneability of
the resonances is discussed below. For simplicity, for that discussion the resonance strength
parameter is neglected and a universal behaviour is assumed to estimate an order of magnitude
for the tuning possibilities. A rigorous measurement or full coupled channels calculation would
be needed to provide a more reliable prediction of the scattering length dependence on the
magnetic field.

4.1.2 Connection of Scattering Lengths

The exact numerical values of each scattering channel have to be calculated using the full
interaction potential. But for a basic understanding of the underlying physical properties and
mechanisms and also approximate results, one can project the molecular states 𝐹, 𝑀u� onto the
electronic basis states 𝑆 = 0, 1. The scattering lengths of these states then add up according to
the relative decomposition and give an approximate scattering length for this molecular state.
This results in the 𝑎u�=0,1,2 parameters often used to describe spinor physics, as will be the
case in chapter 5.

From these molecular state scattering length, the interaction strength for each single atomic
channel can be calculated by another decomposition using the commonly known Clebsch
Gordan coefficients.

To calculate the decomposition of the molecular states into the electronic singlet/triplet states,
one has to couple four spins. The well-known case of coupling two spins makes use of the
Clebsch-Gordan coefficients. In analogy to this, for four-spin coupling, the Wigner 9-j symbols
[47] have to be used, given by:

√(2𝑗3 + 1)(2𝑗6 + 1)(2𝑗7 + 1)(2𝑗8 + 1)
⎧{
⎨{⎩

𝑗1 𝑗2 𝑗3
𝑗4 𝑗5 𝑗6
𝑗7 𝑗8 𝑗9

⎫}
⎬}⎭

(4.7)

= ⟨((𝑗1𝑗2)𝑗3, (𝑗4𝑗5)𝑗6)𝑗9 | ((𝑗1𝑗4)𝑗7, (𝑗2𝑗5)𝑗8)𝑗9⟩ (4.8)
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In our case, the coupling involves two nuclear spins 𝑖1, 𝑖2 and two electronic spins 𝑠1, 𝑠2 that
are coupled to the atomic hyperfine states 𝑓1, 𝑓2. The three sets couple to the total nuclear spin
𝐼 with projection 𝑀u�, total electronic spin 𝑆 with projection 𝑀u� and total angular momentum
𝐹 , 𝑀u� = 𝑀u� + 𝑀u�.

Using this notation, the molecular state |𝑓1, 𝑓2, 𝐹 , 𝑀u� ⟩ can be decomposed into the sum
over all 𝑆,𝐼 ,𝑀u� :

|𝑓1, 𝑓2, 𝐹 , 𝑀u� ⟩ = ∑
u�,u�,u�u�

⟨𝑆, 𝐼, 𝑀u�, 𝑀u� | 𝑓1, 𝑓2, 𝐹 , 𝑀u� ⟩ (4.9)

and the coefficients can be calculated by using Equation 4.8 with 𝑗1 = 𝑠1 = 1/2, 𝑗4 = 𝑠2 =
1/2, 𝑗3 = 𝑓1, 𝑗6 = 𝑓2, 𝑗7 = 𝑆, 𝑗8 = 𝐼 , 𝑗9 = 𝐹 :

√(2𝑆 + 1)(2𝐼 + 1)(2𝑓1 + 1)(2𝑓2 + 1)
⎧{
⎨{⎩

𝑠1 𝑖1 𝑓1
𝑠2 𝑖2 𝑓2
𝑆 𝐼 𝐹

⎫}
⎬}⎭

(4.10)

The numerical calculation of these values is rather involved and error-prone, but fortunately
a ready-made Matlab script[74] can be used to solve this problem.

Given the singlet and triplet scattering length 𝑎u� and 𝑎u� e. g. from the full coupled channels
calculation, the scattering length 𝑎u� is directly given by

𝑎u� = ∑
u�=0,1

u�1+u�2

∑
u�=0

𝑎u� ⋅⎛⎜
⎝

√(2𝑆 + 1)(2𝐼 + 1)(2𝑓1 + 1)(2𝑓2 + 1)
⎧{
⎨{⎩

1/2 𝑖1 𝑓1
1/2 𝑖2 𝑓2
𝑆 𝐼 𝐹

⎫}
⎬}⎭

⎞⎟
⎠

2

(4.11)

As a side remark we want to emphasize that the scattering in the stretched states (i. e. for
Na the |2, 2⟩ atomic state or for ⁶LiNa |3/2, 3/2, 2, 2⟩) is directly given by the electronic triplet
scattering length since there is no coupling to the singlet channel.

The decomposition of the 𝐹, 𝑀u� base into the 𝑓1, 𝑚u�1, 𝑓2, 𝑚u�2 base is shown in detail in
chapter 5. Table 4.1 shows a list of scattering lengths calculated by this method. As input for
the calculation, we only take the known electronic singlet and triplet scattering lengths, and
compare, if possible, to the full numerical calculation.

Obviously, some of the shown values deviate more or less strongly from the full calculations.
In case of small deviations (as e. g. for NaNa) this can be explained by the oversimplification of
the potential: Since the scattering potentials are not point-like, the simple decomposition cannot
give correct results, but these finite size effects have to be taken into account. The scattering
takes place neither in the pure electronic triplet/singlet base nor the molecular base, therefore
the projections onto these bases are strictly speaking wrong.

For larger deviations, especially for ⁷Li, the scattering properties are dominated by resonant
effects.

An interesting case can be seen in the case of ⁷LiNa |1, 0; 1, −1⟩. While the explanations
above would assume that this channel can only be projected onto the three 𝐹 = 0, 1, 2 states
and therefore the scattering length must be a mixture of them, the actual value is larger than
the largest molecular channel, 𝑎2. This can be understood from the full description since even
though the atoms are both in the 𝑓 = 1 state, they can couple to the 𝑓 = 2 manifold which
changes the scattering properties accordingly.
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Table 4.1: List of scattering lengths of different channels relevant for this thesis. The values in
the third column are calculated according to Equation 4.9 and Equation 4.11 from the
electronic singlet and triplet potentials.

species channel calc. value [𝑎u�] lit. value [𝑎u�]

NaNa triplet 64.30 64.30 [53]
NaNa singlet 18.81 18.81 [53]
NaNa |2, 2, 0⟩ 35.87 –
NaNa |2, 2, 2⟩ 44.39 –
NaNa |2, 2, 4⟩ 64.30 64.30 [53]
NaNa |1, 1, 0⟩ 47.24 48.91 [53]
NaNa |1, 1, 2⟩ 55.77 54.54 [53]

⁷Li⁷Li |1, 1, 0⟩ – 23.9[95]
⁷Li⁷Li |1, 1, 2⟩ – 6.8 [95]

⁶LiNa triplet – -76.0 [92]
⁶LiNa singlet – -73.0 [92]
⁶LiNa |1/2, 1, 1/2⟩ -75.0
⁶LiNa |1/2, 1, 3/2⟩ -75.4

⁷LiNa triplet – 21(2) [24]
⁷LiNa singlet – 6.8(10)[24]
⁷LiNa |1, 1, 0⟩ 18.9 [24]
⁷LiNa |1, 1, 1⟩ 19.3 [24]
⁷LiNa |1, 1, 2⟩ 20.0 [24]
⁷LiNa |1, 0; 1, −1⟩ 20.2 [24]

⁶Li⁷Li |1/2, 11/2⟩ 36.7 [24]
⁶Li⁷Li |1/2, 13/2⟩ 38.2 [24]

4.1.3 Asymptotic Bound State Model

The precise calculation of the scattering lengths is possible with the coupled channels calculation
and provides very good results regarding the background scattering length, Feshbach resonance
positions, and determination of their strength. While this model can deliver coarse calculations
rather fast on amoderately powerful computer, the necessary data for the full potential modelling
may not be readily available in all cases, and the useage and understanding of the numerics are
very challenging.

A rather simple, but still very powerful tool for determining Feshbach resonance positions and
assigning them to molecular states is offered by the Asymptotic Bound State Model, ABM. [66,
101] While an advanced version of this model can even calculate resonance widths, the calcu-
lations presented here are only using a rather basic modelling. An in-depth discussion of the
ABM can be found in [34] and an application to the ⁶LiNa system in [91].
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4.1 Physical Background

For the ABM, one exploits the fact that the resonant scattering is caused only by the least
bound molecular states closely below the disossiation energy and therefore can neglect the
complex details of the full scattering potential.

These least bound states are so-called halo states [48, 84] that all share a common property:
Themost weight of the wavefunction is outside the potential, while only a small part is contained
inside the classical turning point. Close to the dissociation, the wave function can then be
described by the asymptotic behaviour Ψ(𝑟) ∝ 𝑒−u�u�. This ansatz allows a simple description
of the magnetic field dependence of the states and thus the crossing of the molecular and the
atomic energies, as well as their coupling. This determines the resonance position as well as
their strength.

The Hamiltonian of the molecular states depends on both external and internal parameters:

𝐻 = 𝑇 + 𝐻u� + 𝐻hf(𝑅) + 𝑈(𝑅) + 𝑉SS(𝑅), (4.12)

where the meaning of the terms is:

𝑇 = −ℏ2∇/(2𝜇) kinetic energy, (4.13)

𝐻u� = ∑
u�

(𝑔u�u�𝑠u�u� + 𝑔u�u�𝑖u�u�)𝜇u�/ℏ ⋅ 𝐵 Zeeman shift, (4.14)

𝐻hf = ∑
u�

𝑎u�su� ⋅ iu�/ℏ2 the hyperfine interaction, (4.15)

𝑈(𝑅) = 𝑈u�(𝑟)𝑃u� + 𝑈u�(𝑟)𝑃u� interatomic potential (4.16)

𝑉u�u�(𝑅) = 2
3

𝜆(𝑅)(3𝑆2
u� − 𝑆2) electron spin-spin coupling (4.17)

𝜆(𝑅) = −3
4

𝛼2 ( 1
𝑅2 + 𝑎SO𝑒−u�SOu�) (4.18)

The summation over 𝛼 = 1, 2 is for the two atoms. The 𝑔-factors are of the electrons 𝑔u� and
the nuclei 𝑔u�, with the corresponding spins s and i and their 𝑧-projections; 𝜇u� is the Bohr
magneton.

The interatomic potential 𝑈(𝑅) can be projected onto the electron singlet 𝑆 = 0 (labeled 𝑋
in accordance with the spectroscopy literature) and triplet 𝑆 = 1 (labeled 𝑎) Born-Oppenheimer
potentials, using the projection operators 𝑃u�/u�.

The electron spin-spin interaction 𝑉u�u� includes in the first term in 𝜆 the magnetic dipole-
dipole interaction, while the second part comes from a second-order spin-orbit contribution.
[22] 𝛼 is the fine structure constant.

Diagonalization of Equation 4.12 first requires a suitable basis. A good set of eigenvalues are
the rovibrational eigenstates in the singlet or triplet potentials, with their spin projections of
the uncoupled and coupled spins. We denote the states as

|𝜈𝑙, 𝜎⟩ = ∣Ψu�,u�
u� ⟩ (4.19)

where 𝜈, 𝑙 are the vibrational and rotational quantum numbers of the molecular state in the
𝑆 = 0 singlet or 𝑆 = 1 triplet potential. |𝜎⟩ = ∣𝑆𝑀u�𝑚Na

u� 𝑚Li
u� ⟩ denotes the total electron spin,

its 𝑧-component and the nuclear spin projection of the two atoms in case of heteronuclear
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4 Feshbach Resonances

systems. For a homonuclear system, one could choose |𝜎⟩ = |𝑆𝑀u�𝐼𝑀u�⟩ for the total nuclear
spin 𝐼 and its projection.

In these states, the Hamiltonian can be written as

ℋu�′u�′u�′,u�u�u� = ⟨𝜈′𝑙′𝜎′ ∣ 𝐻 ∣ 𝜈𝑙𝜎⟩ (4.20)

= 𝜀u�,u�
u� 𝛿u�u�′𝛿u�u�′𝛿u�u�′ (4.21)

+ 𝜇u�𝐵 (𝑔u�𝑀u� + 𝑔Na
u� 𝑚Na

u� + 𝑔Li
u� 𝑚Li

u� ) 𝛿u�u�′𝛿u�u�′𝛿u�u�′

+ 𝑎hf𝛿u�u�′𝜂u�u�′

u�u�′ (𝑙) ⟨𝜎′ ∣ ∑
u�
su� ⋅ iu� ∣ 𝜎⟩ /ℏ2

Here, 𝛿 denotes the Kronecker delta; 𝜀u�,u�
u� is the eigenenergy of the molecular level in the

vibrational state 𝜈 with angular momentum 𝑙 in the singlet (𝑆 = 0) / triplet (𝑆 = 1) potential.
For a given molecular state, this represents the binding energy for 𝐵 = 0, if no couplng to other
states is given.

For finite magnetic fields, the Zeeman term shifts the energies proportional to the electron
and nuclear spin projections and the gyromagnetic factors.

The hyperfine coupling term ⟨𝜎′| ∑u� su� ⋅ iu�|𝜎⟩ in Equation 4.21 influences the splitting
of the molecular levels at low magnetic fields. The operator does not commute with the total
electron spin, therefore it induces the coupling between singlet- and triplet states.

The last expression in Equation 4.21 also contains the overlap integral 𝜂u�u�′

u�u�′ (𝑙) between the
molecular states with the same angular momentum 𝑙: 𝜂u�u�′

u�u�′ (𝑙) = ⟨Ψu�,u�
u� |Ψ′u�′,u�

u� ⟩. For 𝑆 = 𝑆′,
this is given by 𝛿u�u�′ , since the states in each electronic potential are forming an orthogonal set.
For different electronic spin, this integral gives the coupling strength between singlet and triplet
states, which can cause avoided crossings in the level schemes and thus change the structure of
the Feshbach spectrum and the magnetic field of the resonances.

A simplification of the Hamiltonian in Equation 4.20 can be found by using the approximation

∑
u�

𝑎u�su� ⋅ iu� ≈ 1/2 S ⋅ I (4.22)

which decouples the singlet and triplet states as the expression on the right-hand side commutes
with the total spin 𝑆. By this, the coupling term vanishes from the Hamiltonian, leaving only the
eigenenergies 𝜀u�,u�

u� as free parameters, while the Zeeman terms are fixed by the gyromagnetic
factors and the spin projections.

This model will be called the Moerdijk model [66] and allows a coarse understanding and
assignment of observed Feshbach resonances with only the binding energies as free parameters.
The remaining deviations can then be explained and taken into account by including the singlet-
triplet coupling and the overalap integrals as fit parameters, in total allowing for a sufficiently
accurate description of the observed resonance spetrum.

4.2 ⁷LiNa Measured Resonances and Modelling

This sectionwill describe themeasuement andmodelling of newly observed Feshbach resonances
in our system. However, before discussing the results, one has to know how Feshbach resonances
can be studied experimentally at all.

82



4.2 ⁷LiNa Measured Resonances and Modelling

0 100 200 300 400 500 600 700

−5000

−4000

−3000

−2000

magnetic field 𝐵 [G]

En
er
gy

[M
H
z]

free atoms
Moerdijk
ABM

Figure 4.2: Effect of the singlet-triplet coupling for the ⁷LiNa molecular spectrum. Without
coupling (Moerdijk), the lower singlet and lowest triplet branch overlap at low fields.
The coupling induces a shift in all triplet states but the uppermost which has purely
triplet character. The detailed effects of these shifts will be elaborated below.

The effect of Feshbach resonances on ultracold atoms are twofold: While the change of
the elastic 𝑠-wave scattering length has been discussed so far, this parameter is difficult to
measure. Detection possibilities of the change in scattering length include an in-situ imaging,
detecting a change of the atomic cloud size as the chemical potential changes. But this requires
a high-resolution imaging and the possibility to image at all magnetic fields resonantly. Both is
not available in our system.

The second option is the study of time-of-flight images, since the change in the chemical
potential changes the expansion speed. This method does not need a high imaging resolution,
but still an imaging at the field of the resonance. Also, for the mixture, the overlap of the clouds
plays a role, making these measurements very demanding.

Instead, we used a standard technique that exploits an increased three-body interaction in
the vicinity of a Feshbach resonance, namely three-body recombination.

4.2.1 Experimental Signature: Losses

Several processes can reduce the atom number during the experiment. The density-independent
processes are caused by collisions with the background gas in the vacuum chamber, since the
residual atoms in the glass cell have the thermal velocity of the room temperature. This is much
higher than the trap depth, thus any collision with an ultracold atom will kick that one out
of the trap. This vacuum-lifetime is the reason why great care has to be taken to reduce the
pressure in cold quantum gas experiments, typically below 10 × 10−11 mbar. Also, in the dipole
trap, atoms can off-resonantly scatter photons, and the momentum transfer can remove the
atom from the trap, too.

Loss mechanisms involving two atoms are also possible, but not if both atoms are in their
respective ground state. For our experiments, these processes are not dominating, but the
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4 Feshbach Resonances

mechanism is a spin exchange process, where the coupling of singlet and triplet potentials can
cause different molecular states with the same total angular momentum to couple. The atoms
can then undergo spin flips to the lower state, gaining enough energy to leave the trap.

The relevant loss mechanism for the Feshbach spectroscopy, however, is the three-body
channel. For a dense Bose-Einstein condensate in our setup, this is typically the dominating loss
process and the reason for the transfer of sodium from |2, 2⟩ to |1, 1⟩, since the combination
coefficient for the upper hyperfine manifold is about 10 times higher than for the lower one.
In the typical three-body recombination process, two atoms can be scattered into a bound
molecular state instead of elastically bouncing off. The bound state typically has a binding
energy much larger than the trap depth, which is on the order of 10 μK, or 0.2MHz. As will be
shown later, the molecular binding energy of the least bound state in the ⁷LiNa molecular at zero
magnetic field is on the order of 500MHz. To fulfill both energy and momentum conservation,
a third collisional partner is needed, therefore this process transfers a large amount of energy
to three atoms, and all three will be lost from the trap due to their high momenta.

In the vicinity of a Feshbach resonance, the binding energy can be much less, in fact the
molecular and atomic states are degenerate at the resonance. On the bound-state side of the
resonance, the energy of the molecular state scales with the universal law

𝜀u� = − ℏ2

2𝜇𝑎2 (4.23)

which means that for large scattering lengths the binding energy can be small enough that the
released energy is not sufficient for the atoms to escape from the trapping potential. However,
the overlap with deeper-lying molecular states is larger than the free atom’s wave function, thus
this weakly-body molecule can undergo a relaxation if a third atom is present, again leading to
losses.

In total, this does not mean that a Feshbach resonance suppresses losses – quite the contrary
is true: From a qualitative argument, [28] shows that the recombination rate for the three-body
process is proportional to 𝑎4.

This now gives the tool needed to allocate the position of a Feshbach resonance: At a magnetic
field where a strongly enhanced loss happens, the resonance occurs. The strongest losses are
expected at the exact resonance position, at least for the simple description for the narrow
resonances that are important for the mixtures studied in this thesis.

It is important to keep in mind that the 𝑎4 scaling does not mean that atom losses would
be strongly suppressed at the 𝑎 = 0 crossing of the scattering length. This scenario is more
involved and will be discussed further in the context of the sodium 905G resonance.

Most of the resonances in the ⁷LiNa spectrum are too narrow, anyways, to clearly resolve the
loss curve to distinguish the exact loss mechanisms involved.

4.2.2 Detection Procedure

The measurement procedure for the detection of all resonances was the same and is depicted in
Figure 4.3: The investigated hyperfine combination of both species is produced at low offset
fields after the final evaporation step in the dipole trap. Then, the current through the antibias
coils is ramped up, controlled by the Arduino microcontroller as described in section 3.3.
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4.2 ⁷LiNa Measured Resonances and Modelling

The initial negative set value is to avoid uncontrolled jumps or small currents during the rest
of the sequence. Unfortunately, it also causes an uncontrolled jump, as soon as the set point
is set to some positive value. Therefore care has to be taken to not heat up the atoms due to
uncontrolled currents. A possible improvement would be the addition of a switchable short
circuit for the analog integration part of the regulation. Preliminary tests with such a switch
were not successfull and did not give a clear improvement of the turn-on conditions.

From microwave spectroscopy we know that the magnetic field drifts over about 1 s, partly
due to warm-up effects of the coils and magnetization of any material around the glass cell.
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Figure 4.3: Scheme for the detection of Feshbach resonances. The red and blue lines indicate
the set points for the currents of the antibias and finetune coils, respectively. The
negative value is explained in the text. Both currents are ramped up in parallel; and
the final field is set with finetune ramps. After the desired hold time, all fields are
turned off. The indicated points on the timeline are: State preparation, Lowest field
in the ramp range, Highest field in the ramp, Imaging. The antibias ramps in the
experiment are actually faster than shown in this sketch, typically 100ms up and
5ms down.

After this waiting time, the finetune coils are used to add an additional field, as those coils
can be ramped more conveniently, although their field stability is very bad, with a measured
width of 30mG. This limits the field determination when this coil pair is used.

For a coarse search of loss features, the finetune field is ramped generously by up to 8G. The
time of the ramp is varied depending on the loss strength and ramp width, and may be between
10ms and 1 s. After the final ramp point has been reached, both the finetune and the antibias
currents are ramped down, and the remaining atoms are imaged at low offset field.

The final position of the resonances given below depends on this ramping scheme. In the
errors of the field determination, this ramp widths is either included or given explicitly; in most
cases the ramp width limited the resolution, as the aim was not a high-precision measurement.

To make use of the resonances to tune the interaction, this scheme is not useful due to the
large fluctuations of the finetune coils. For these cases one tries to hold the atoms at the final
field only with the antibias coils or add, if necessary, a small field with the equally stable large
offset coils which can deliver additional fields of up to 2G.
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4 Feshbach Resonances

4.2.3 𝑠-Wave Resonance Spectrum

In the course of this thesis, the interspecies Feshbach spectrum of the bosonic ⁷lithium-sodium
mixture was investigated and a total of 11 𝑠-wave resonances in four different hyperfine state
combinations were found and identified. Additionally, 10 loss features were observed that could
partially be identified as 𝑝- and 𝑑-wave resonances. The correct identification of these loss
features is not conclusive and will be discussed below.

Table 4.2 lists the observed 𝑠-wave resonances with the prepared hyperfine states, the center
field of strongest loss as calibrated with MW or RF spectroscopy, and, if possible, the assignment
by coupled channels calculations including the width, as well as the estimated resonance position
according to an asymptotic bound state model.

The detection of the first 𝑠-wave resonances was rather straightforward, since the coupled
channels calculations published in [92], based on the ⁶LiNa resonances measured in our setup,
could predict the spectrum with a rather broad resonance at – comparably – low magnetic fields.
Figure 4.4 shows the first observation of heteronuclear losses in the new mixture.

Due to the strong imbalance in atom numbers, it is not possible to see a clear loss in the
sodium numbers, so the whole information is given by lithium.

For fields above 220G, Li atoms are lost without obviously assignable interspecies resonances.
We assign these losses to the intraspecies scattering length of ⁷Li which becomes negative for
fields above about 150G.
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Figure 4.4: Coarse scan in the |1, 1; 1, 1⟩ channel for detection of the first Feshbach resonances.
With a 8.4G sweep for each point, the width of the loss features are exaggerated.
We attribute the losses around 120G and 150G to the corresponding Feshbach
resonances. The different Na atom numbers are caused by bad laser performance and
increased after re-adjustment during the scan run. This also shows the challenges
of an unstable experimental preparation. The losses above 220G start when the
⁷Li⁷Li scattering length becomes negative, showing that experiments in the 𝑎LiLi < 0
regime are challenging.
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4.2 ⁷LiNa Measured Resonances and Modelling

After the detection of these first resonances, it was clear that the whole spectrum had to be
shifted by about 50G towards smaller fields as compared to the predictions in [92]. From this
point on, it was rather straightforward to find further resonances, following the field ramping
procedure explained above.

As soon as a loss feature could be identified, the field rampwas reduced iteratively to minimize
the uncertainty of the resonance position. The results of these scans are listed in Table 4.2 for
the four hyperfine combinations which were experimentally investigated. For the hyperfine
ground state of both species, also the predictions for higher field resonances are listed which
could not be investigated experimentally.

Table 4.2: List of 𝑠-wave Feshbach resonances in the ultracold ⁷LiNa mixture. 𝐵meas is the
magnetic field of the strongest losses. For data where only one error is given, it is
the combined uncertainty of a magnetic field ramp and the calibration error. If two
errors are given, the first one is the calibration error, the second one shows the ramp
width. The given value corresponds to the middle of the magnetic field ramp. For
comparison, the coupled channels results and the Moerdijk and ABM calculations are
listed.

state 𝐵meas [G] 𝐵CC 𝐵Moerdijk 𝐵ABM

|1, 1; 1, 1⟩ 85.18(02) 85 85.1 85.1
|1, 1; 1, 1⟩ 121.50(05)cal(10)sweep 121 142.1 121.8
|1, 1; 1, 1⟩ 150.2(1) 150.0 184.8 149.6
|1, 1; 1, 1⟩ 543.2(4) 543.0 617.7 542.7
|1, 1; 1, 1⟩ 609.3(4) 609.4 629.0 609.1
|1, 1; 1, 1⟩ –– 1095 1101.1 1096.0
|1, 1; 1, 1⟩ –– 1188 1101.2 1192.5

|1, 0; 1, 1⟩ 127.05(04) 127 126.9 126.9
|1, 0; 1, 1⟩ 172.16(04) 172 193.4 172.6
|1, 0; 1, 1⟩ 202.27(16) 202 232.6 201.7

|1, 1; 1, 0⟩ 130.00(16) 130 130.0 130.0
|1, 1; 1, 0⟩ 176.93(10) 177 198.8 177.4
|1, 1; 1, 0⟩ 207.77(10) 207 239.7 207.3

|1, 0; 1, 0⟩ 208.36(10) 208 208.7 208.3
|1, 0; 1, 0⟩ 262.90(16) 263 287.2 263.4

Moerdijk Model
Neglecting the coupling between the molecular levels gives already important information
about the overall structure of the Feshbach spectrum, especially if the resonances tend to be
narrow. Figure 4.5 shows an overview of measured resonances in the 𝑀u� = 2, 1, 0 channels
for positive magnetic fields, corresponding to the atomic asymptotes of |1, 1; 1, 1⟩, |1, 0; 1, 1⟩
and |1, 1; 1, 0⟩, and |1, 0; 1, 0⟩. This plot contains much information: Each cross indicates an
observed loss, induced by a Feshbach resonance at the given magnetic field, and was assigned
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to a molecular 𝑙 = 0 state. The dashed lines show the energy of the free atom pair at the given
magnetic field. The open circles show the coupled channels predictions, while the solid lines
shown the molecular states and their field dependence according to the Moedijk model.

The parameters for the model are the energies of the least bound states, and for this scenario
were chosen to be

𝜀1
u� = ℎ ⋅ −2846.5MHz (4.24)

𝜀0
u� = ℎ ⋅ −4210.4MHz (4.25)

for the triplet and singlet energy, respectively. The vibrational level 𝜈 is not yet assigned; for
the ABM, this number is not important.

Note that the energetic zero point is chosen for the atomic case without hyperfine interaction,
therefore the zero-field energy for the free atoms is at

𝐸atoms = −5/4 ⋅ (𝑎hfs,Na + 𝑎hfs,Li) = −1.609GHz (4.26)

with the hyperfine constants 𝑎hfs.
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Figure 4.5: Basic Moerdijk model of the ⁷LiNa Feshbach spectrum, based on one triplet and one
singlet molecular level. While the overall structure of the spetrum can be modelled,
strong disagreements are obvious for resonances caused by different hyperfine
levels of the same molecular branch. The atomic asymptotics are (a) |1, 1; 1, 1⟩, (b)
|1, 1; 1, 0⟩ (upper) and |1, 0; 1, 1⟩ (lower), and (c) |1, 0; 1, 0⟩. The open circles show
the positions of resonances predicted by coupled channels calculations; the crosses
indicate measured resonances.

For low fields, this model can qualitatively describe and assign the character of the observed
resonances: In the 𝑀u� = 2 channel (a), the three lowest 𝑠-wave resonances are caused by the
three uprising branches of the least bound molecular triplet level. But the spacing between the
resonances is far off the experimental errors and cannot be altered in the modelling since there
is no free parameter; the splitting is purely determined by the hyperfine interaction and the
Zeeman shift.
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The same kind of deviation is found in the 𝑀u� = 1 (b) and 𝑀u� = 0 (c) manifold, also for
the resonances at lowest fields. In the 𝑀u� = 1 case, six resonances were found, three in both
the |1, 1; 1, 0⟩ and |1, 0; 1, 1⟩ channel, that are caused by the three highest molecular levels,
while the fourth one could not be investigated experimentally in both scenarios. The interesting
feature in the 𝑀u� = 1 channel is that the same molecular levels couple to two different atomic
asymptotes, therefore measurements in these different channels can complement each other,
e. g. if one channel cannot be accessed due to the negative scattering length of ⁷Li.

Also, in case the structure was completely unknown, the relative position of resonances
in different atomic channels could directly indicate whether the resonances are caused by an
𝑀u� = 1 or 𝑀u� = 0 multiplet due to the slope of that molecular level.

Even more dramatic than in the low-field cases is the splitting in the 𝑀u� = 0 spectrum
between the resonances around 500Gwhere only one of them in each channel could be explained
by the corresponding triplet branch, while the other one is at far too low fields. The same is true
for the 𝑀u� = 1 case, but here the resonances around 500G could not be investigated. Only the
two resonances around 700G were found, which could still be in accordance to the Moerdijk
model.

Finally, the coupled channels calculations agree very well with the experimental findings and
show the same deviations, also for further resonances that were not observed.

Asymptotic Bound State Model
The fitting of resonances can be greatly improved by taking coupling between the molecular
levels into account. For this, the Frank Condon-overlap between the states is used as a fit
parameter for the resonance positions. This leads to different fractions of singlet and triplet
part, providing additional insight into the overall spectrum.

For the three lowest-field resonances in the |1, 1; 1, 1⟩ channel, the triplet character is dom-
inating, but the 120G and 150G resonances already show clear singlet admixtures, which is
also connected to their larger width. Therefore, the triplet level energy can already be fixed
by the 80G resonance, while the position of the other two resonances help determining the
singlet energy without the need of explicit singlet resonances. Indeed, no Feshbach resonance
caused by the lower lying singlet level could be measured due to the strong losses of the ⁷Li
intraspecies resonance and the negative scattering length of this species for higher fields.

The results of the best fit using all experimentally observed Feshbach resonances in the
|1, 1; 1, 1⟩, |1, 1; 1, 0⟩, |1, 0; 1, 1⟩ and |1, 0; 1, 0⟩ atomic states is shown in Figure 4.7. This rather
complex presentation provides a lot of information and needs some further explanations:

The graphs again show the energy dependence of the atomic states on the magnetic field. The
extension to negative values here allows an easy comparison of states with the same absolute
𝑀u� , i. e. states with 𝑀u� = ±2, ±1, 0. For the atomic states this means that the channel which
is |1, 1; 1, 1⟩ for positive magnetic fields, shows the |1, −1; 1, −1⟩ state for negative fields. So
at −1000G the resonance is not in the |1, 1; 1, 1⟩, but at a positive field in the |1, −1; 1, −1⟩
channel.

This is also the reason why in the 𝑀u� = 1 channel, four combinations of atomic states
can be compared, namely |1, 0; 1, 1⟩, |1, 1; 1, 0⟩ on the positive-field side, and |1, 0; 1, −1⟩ and
|1, −1; 1, 0⟩ on the negative-field side. For the 𝑀u� = 0 case, there is no dependence in the
|1, 0; 1, 0⟩ channel, but the |1, 1; 1, −1⟩ and |1, −1; 1, 1⟩ channels are asymmetric.

89



4 Feshbach Resonances

In the lines that indicate the free atoms’ energy, there are also the scattering properties of
⁷Li encoded: For magnetic fields with positive intraspecies scattering, a green line is drawn,
while the dotted red line indicates fields with negative scattering lengths. For many cases, this
negative scattering length prevented measurements at these fields, therefore the red area does
not indicate that no resonances are present, but that their detection is more challenging. For
sodium, the background scattering length is only very slightly field dependend, and does not
play any role here, since sodium can be prepared easily at any field – at least below the strong
905G resonance in the |1, 1⟩ channel.

The final information shown in the graph are additional atomic states that open for higher
magnetic fields and provide additional loss channels. While these states were not investigated,
their loss-induced broadening of resonances can have strong influence on the interpretation of
loss spectra. For the 𝑀u� = 2 case, this is the |2, −2; 1, 0⟩ state from the upper ⁷Li hyperfine
manifold, which is lower in energy than the |1, −1; 1, −1⟩ channel above 500G.

In the 𝑀u� = 1 manifold, the situation is again more complex, since the |1, −1; 1, 0⟩ state is
already below the |1, 0; 1, −1⟩ state. But additionally, the |2, −2; 1, 1⟩ crosses |1, 0; 1, −1⟩ at
439.9G and |1, −1; 1, 0⟩ at 639.9G, adding a second and third inelastic loss channel for high
fields.

Figure 4.6 shows a closer look at the mentioned features that support the coupled ABM levels.
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Figure 4.6: Most important resonances supporting the ABM scenario: The three 𝑠-wave reso-
nances in the |1, 1; 1, 1⟩ channel with the 1G broad resonance around 150G; and in
the 𝑀u� = 1 channel resonances in the different atomic states caused by the same
molecular level.

The binding energies of the molecular states are the same as shown above (in fact, they were
fitted to the resonance positions with the coupling taken into account), and the parameters for
the model are

𝜀1
u� = −2846.5MHz ⋅ ℎ (4.27)

𝜀0
u� = −4210.4MHz ⋅ ℎ (4.28)

𝜂01 = 0.978 (4.29)
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Figure 4.7: Improved asymptotic bound state model taking into account the coupling between
the molecular branches. The model contains two singlet and two triplet states, while
only one of each is mainly causing the resonances. The other two states can be used
for fine-tuning of the resonance positions by fitting the coupling parameters and are
not essential for the resonances studied here. For the color coding see text.
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4.2.4 Higher Partial Wave Resonances

For identical bosonic particles, the scattering at a central pontential is limited to even numbers of
quantized angular momentum, therefore 𝑝-wave scattering is not possible. For distinguishable
particles, however, this restriction does not exist and a richer scattering spectrum can be
investigated.

p-wave resonances
In the heteronuclear scattering, the parity restriction due to particle exchange symmetry is
not given, and odd partial wave scattering is possible. This is also true in the case of identical
fermions, whereas 𝑠-wave scattering is not possible in the latter system. But even if 𝑝-wave scat-
tering is possible, it is normally strongly suppressed in cold quantum gas experiments, since the
rotational barrier is much higher than the atom’s temperature, as described in subsection 4.1.1.

In the vicinity of a Feshbach resonance caused by an 𝑙 = 1 molecular state, however, the
scattering can be strongly enhanced and thus also shows a stronger interaction and increased
three-body loss. Since the scattering happens in another channel, the 𝑠-wave scattering length
is not a useful parameter for the scattering properties anymore, and the resonance strength
depends on the temperature, too. In the experiment, we measured three 𝑝-wave resonances
in the lowest hyperfine state, where two of them originate from the same molecular level and
its splitting into the 𝑀u� = 0 and 𝑀u� = ±1 states. These two resonances are at 268.29(10)G
and 270.35(10)G, respectively. The third loss feature we assign to a 𝑝-wave resonance that was
measured at 237.50(40)G, where the theoretical description is not in good agreement. Table 4.3
shows an overview of observed loss features that could not be explained in the 𝑠-wave spectrum
and are thus assigned to higher partial waves.

d-Wave Resonances
The rotational barrier for higher partial wave scattering also prevents resonances for relative
angular momentum 𝑙 ≥ 2, which is why there is no scattering and also no resonance features
in these higher angular momentum channels. But due to the magnetic dipole-dipole interaction
which can couple 𝑙 = 0 and 𝑙 = 2 states, the scattering properties of the 𝑠 wave continuum
can be influenced by molecular states of even angular momentum larger than zero. In our
experiment, we could find seven loss features in two hyperfine channels that we assigned to be
caused by 𝑑-wave molecular states, see Table 4.3.

In earlier experiments in our setup, also 𝑔-wave resonances in the NaNa system could be
observed, where molecular states with 𝑙 = 4 couple to the 𝑙 = 0 atomic continuum. However,
for the ⁷LiNa mixture, molecular states with 𝑙 > 2 were not studied.

The vast amount of molecular states with 𝑙 = 2 makes their modelling using the ABM much
more complex. Especially since the number of possible resonances is much higher than in the
𝑠-wave molecular spectrum, it is not easily possible to assign the observed resonances clearly
to a given molecular state, as there are too many fit parameters to choose. Figure 4.8 shows a
calculated spectrum of 𝑑-wave states in the 𝑀u� = 2 channel.

This assignment was not achieved doing a fit to experimental data, since only a few loss fea-
tures could be observed that were assigned to 𝑑-wave resonances. While the model reproduces
the experimental loss features nicely and also fits to the coupled channels calculations, one has
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Table 4.3: List of loss features assigned to higher partial wave resonances. For data where
only one error is given, it is the combined width of a magnetic field ramp and the
calibration error. If two errors are given, the first one is the calibration error, the
second one shows the ramp width. The given value corresponds to the middle of the
magnetic field ramp.

state 𝑙 𝐵meas [G] 𝐵CC 𝐵ABM

|1, 1; 1, 1⟩ p 268.24(10) 267 –
|1, 1; 1, 1⟩ p 270.30(10) 269 –
|1, 1; 1, 1⟩ p? 327.3(4) 327 –

|1, 1; 1, 1⟩ d 42.96(10)(05) 40 40.8
|1, 1; 1, 1⟩ d 54.72(10)(05) 54 54.7
|1, 1; 1, 1⟩ d X 162 159.0
|1, 1; 1, 1⟩ d X 301 301.1
|1, 1; 1, 1⟩ d 321.8(4) 322 321.7
|1, 1; 1, 1⟩ d 353.6(4) 353 352.1
|1, 1; 1, 1⟩ d 410.7(4) 407 405.8

|1, 0; 1, 1⟩ d 58.820(087)(160) –
|1, 0; 1, 1⟩ d 81.396(54)..81.316(50) –

to keep in mind that the number of possible assignments is so high that also other scenarios
could be possible, therefore these models are just preliminary.

An additional loss feature at 327.50(40)G was observed but could not clearly be assigned to
the 𝑑-wave spectrum. Thus we do not claim that this feature is caused by a Feshbach resonance,
but cannot explain it so far.

Figure 4.9 shows the effect of an unstable RF transfer that could be used as a tool: While
trying to prepare lithium in the |1, 0⟩ state, a large part of atoms remained in the |1, 1⟩ ground
state. The magnetic field scan then shows two loss features, both not saturated, as only atoms
of one of the two states are lost and the imaging is not state-selective.

This scan therefore gives a direct measure for the distance of the two resonances without
the need of calibration for each of them separately. The drift to lower atom numbers for higher
fields has no physical reason, but might be caused by the stronger field ramping of the finetune
coils, causing heating and thus increased loss of the atoms from the trap.

4.2.5 Inelastically Broadened Feshbach Resonances

Although in many cases a direct connection can be made between the two body elastic scattering
and the three body inelastic losses around a Feshbach resonance, as shown in subsection 4.2.1, it
is also possible that a resonance is strongly dominated by inelastic scattering into other atomic
channels. Such a case was found in the ⁷LiNa |1, 1; 1, 0⟩ state around 702G. There, an over 5G
broad loss feature was observed, while the coupled channels calculation for the elastic scattering
predicts a much narrower feature.

93



4 Feshbach Resonances

0 250 500 750 1000

−4000

−3000

−2000
𝑀u� = 2

magnetic field 𝐵 [G]

En
er
gy

[M
H
z]

𝑠
𝑑
pred
meas

Figure 4.8: Asymptotic Bound State Model including the 𝑑-wave molecular states (orange) for
the |1, 1; 1, 1⟩ channel. The rotational shift was chosen to be 2010MHz for the triplet
potentials and 2310MHz for the singlet potential, respectively, relative to the 𝑠-
wave spectrum (shown in blue). The crosses indicate measured loss features; the
open circles coupled channels predictions for 𝑑-wave resonances. Due to careful
preparation of a small ⁷Li sample, the range of negative scattering lengths was still
accessible.

Taking the inelestic scattering channels into account, the calculations can reproduce the
loss feature and thus explain the apparent deviation: The two-body inelastic process |1, 1; 1, 0⟩
⇒ |1, 0; 1, 1⟩ releases about 120MHz energy, and is strongly enhanced around the Feshbach
resonance. The calculated width of 3G at 1 μK temperature fits well to the observed roughly
5G since the loss is saturated and thus broadened, and a field sweep of about 840mG was used.

This inelastic process alsomeans that the broad resonance here is not suited for any interaction
tuning and instead has to be avoided to prevent too strong losses.
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Figure 4.9: Scan of magnetic field showing two loss features in the lithium atom numbers.
Due to an insufficient RF transfer, lithium atoms of both |1, 1⟩ and |1, 0⟩ states are
present, allowing to observe the 85G 𝑠-wave resonance in |1, 1⟩ and the 81G 𝑑-wave
resonance in the |1, 0⟩ channel. The blue curves are guides to the eye.
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Figure 4.10: Two loss features in the |1, 1; 1, 0⟩ channel of very different widths, both caused by
the 𝑀u� = 0 triplet 𝑠-wave branch. While the 693G resonance is very narrow, the
703G resonance shows a > 5G broad loss feature. Coupled channels calculations
show that this resonance is dominated by inelastic scattering, thus it is not suited
for tuning the elastic cross section. The blue curves are guides to the eye; the blue
data were taken with a smaller field sweep to resolve the narrow feature.
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4.3 Tuning of Interaction Strength

Since the existance of Feshbach resonances is long known in both homonuclear and heteronu-
clear ultracold quantum mixtures, the investigation of these resonances here is not the main
interest itself. The resonances are mostly considered one of the main tools for cold quantum
gas experiments, as the tuning of the interaction by application of an external field is a very
convenient way to build a model system for interesting physics.

During the course of this thesis, different scenarios for interaction tuning have been studied,
mostly with the aim of influencing the polaronic coupling constant

𝛼 = 𝑎2
IB

𝑎BB𝜉
(4.30)

which is an important parameter for impurity physics. [100, 40, 41, 83] 𝛼 here depends on the
scattering length of the background (𝑎BB) and the interaction between the impurity and the
background (𝑎IB). The healing length 𝜉 of the background condensate denotes the length scale
on which the condensate can react onto spatial structures, and is given by

𝜉 = ℏ
√2𝑚𝑛𝑈0

= 1√
8𝜋𝑛𝑎

. (4.31)

Thus, 𝜉 also depends on 𝑎BB, and 𝛼 in total scales only with the square root of sodium scattering
length, but also with the density.

The tuning possibilities thus include the change of the background’s scattering length, here
sodium, or the change of the interspecies scattering length, with ⁶LiNa or ⁷LiNa. The following
subsections will present the results of these investigations and discuss future possibilities.

4.3.1 Sodium Resonance

The strong Feshbach resonance in the sodium ground state is famous as it was one of the very
first observed ones [46, 53], triggering the research on and application of Feshbach resonances
with a wide range of important experiments.

However, up to our knowledge, no experiment so far made use of this specific resonance to
tune the interaction strength. This is mostly due to the strong losses associated with Feshbach
resonances in bosonic systems, especially if a strong tuning of the scattering length is desired.
Losses can be prevented in special geometries, e. g. in a lattice where no more than two atoms
per lattice side are prepared. Energy and momentum conservation then prevent losses.

In a free geometry, however, as it was planned for our experiments with a bath of very high
density, the losses are not suppressed. Therefore, we studied the possibilities of experiments in
a short-lived Na BEC close to the 905G resonance. Unfortunately, the lifetime indeed was too
short to be usefull for the planned experiments on impurity physics.

Several approaches were used to try and use the resonance for background interaction tuning.
Figure 4.11 shows the results of a spin-flip into the |1, 1⟩ state: The atmos were transferred
from the |2, 2⟩ state from the magnetic trap into |1, 1⟩ and subsequently to |1, 0⟩ at low field.
Then the strong offset field was ramped up, and at high field, the |1, 0⟩ atoms were cooled to
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condensation using the high field hybrid trap. The magnetic curvature is shut off and a wait
time of 50ms makes sure that the final field is well settled.

After the wait time, a 5ms RF sweep transferred the atoms into the resonantly interacting
|1, 1⟩ state. These experiments were done before the microwave setup presented in section 3.2
was completed, therefore the frequency generator (Agilent 8657B) was used via the ability to
modulate its output frequency proportional to an analog input voltage.

Using a π pulse instead of the RAP turned out to be too unreliable. Thus, the 5ms were the
fastest transfer possible. Directly after the pulse is finished, the atoms are released from the
dipole trap and imaged after 20ms of free expansion using the high-field imaging set up in [8].
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Figure 4.11: Atom loss around the 905.17G resonance after RF transfer into the |1, 1⟩ state.
Shown are the number of remaining atoms and the width of a gauss fit to the atomic
cloud. The latter one has been scaled for better comparison; the off-resonant width
is about 100 μm. The blue line indicates the change of the scattering length due to
the resonance. Blue dots indicate the possible changes of the interaction parameter
𝛼 ∝ √𝑎NaNa (see text). Atom signals have been shifted by 0.3G to fit the theoretical
resonance form, accounting for residual magnetic fields from the hybrid trap.

As there was no additional hold time, the remaining fraction of atoms is the highest that
could be achived. Since the interaction parameter is proportional to the inverse square root of
the background interaction as mentioned above, the sodium-sodium scattering length has to be
tuned to one fourth of its background value 𝑎bg = 54.45 𝑎0 to increase 𝛼 by a factor of two. But
already at this interaction change, we observe a loss of atoms, for higher values correspondingly
stronger. Since the planned experiments deploying the motional Ramsey sequence take several
milli seconds, this hold time is already too long and too many sodium atoms will be lost.

A somewhat improved situation could be achieved by adding a delay after the ramp of the
hybrid trap. It is known that the turn off of the bias coils is rather slow, therefore the field was
given 10ms to reach the final value. The result of this changed ramping is shown in Figure 4.12,
which shows less losses around the zero crossing of the scattering length.
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Figure 4.12: Atom loss feature as in Figure 4.11, but with less cooling and a stronger confinement.
An additional delay after the hybrid trap ramp and before the RF pulse allows a
longer life time of the sample; the data shown are taken after 10ms.

Even if the atoms were not lost from the BEC, the sudden change of interaction and thus
mean field shift will cause oscillations of the BEC density on the time scale of the trap frequency,
which is also on the order of the Ramsey interferometry. This changing background density
would make the interpretation of the results even more challenging.

The structure of the atom loss and especially the fitted width of the atomic cloud requires a
further explanation: A striking feature in the loss spectrum is that right in the middle of the
strongest losses a bulk of atoms remains, although with a larger width, corresponding to a
higher temperature and thermal fraction.

We explain this feature by a bosenova explosion,[85, 23] where the BEC collapses due to the
sudden change to negative scattering length. We expect a high three-body collision rate, leading
to strong losses that heat the sample and cause the increased width of the cloud. For strongly
negative scattering length, this process can happen so fast that a thermal cloud remains, while
for weaker interaction all atoms are lost in a somewhat slower process.

The decreased cloud size at small but positive scattering length can be associated with the
decreased mean field energy, leading to smaller momenta of the released atoms, thus decreasing
the spread after time of flight.

To prevent the sudden quench of the scattering length and allow a smooth change, one
can also ramp the magnetic field while the atoms are kept in the resonantly interacting state.
Unsurprisingly, the increased three body recombination causes even stronger losses, again
preventing the usability of this resonance. Figure 4.14 shows the results of such a ramping
ansatz.

In this setting, the atoms were condensed in the high field hybrid trap for fields above the
resonance. Since the hybrid trap adds an offset field, turning off the trap leads to a decrease in
the field, leading to a ramp towards the resonance. For fields below the resonance, the finetune
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Figure 4.13: Scanning the hold time around the 905G sodium resonance. Again, the strong
losses for sodium prevent any tuning toward small scattering lengths.

coils were off, leading to a total negative offset. In this scenario, turning off the bias current
leads to an upwards ramp.

In both scenarios, the fields were turned off with a rather slow linear current ramp of 20ms,
and the atoms were imaged directly at the final field without additional hold time.

Another possibility of background interaction tuning could be the −1.473G broad resonance
in the |1, −1⟩ state at 1202.6(6)G that was reported in [92]. This resonance is caused by a
molecular state coming from above the atomic threshold, thus showing the inverse scattering
length dependence: The zero-crossing is below the resonance, while a bound state appears
at higher fields. This makes the experimental preparation much easier since the sample can
conveniently be cooled at low field and the final field could be ramped easily from below.

In this work, this resonance has not been investigated since a high-field imaging for this field
is more challenging than for the more convinent 905G. The necessary detuning can not easily
be achieved with standard AOM or EOM techniques. Since laser sources at 589 nm are still
very expensive as no direct laser diodes are available, it is also not possible to copy the simple
offset-lock scheme that can be used for lithium.

Two final remarks regarding the reduction of the background scattering length has to be
made: While the plots above assume a scaling of 𝛼 with 1/√𝑎BB, one has to take into account
the density increase for smaller scattering lengths: The atoms in the condensate will repel each
other less, leading to a smaller interparticle spacing, which in turn increases the healing length
𝜉. Therefore, the scaling of 𝛼 is even worse than the assumed inverse square root.

A second remark regards the physics involved in the polaron coupling picture: The impurity
couples to the excitations of the BEC, which vanish for 𝑎BB → 0. This means a break down of
the whole description, which of course is again an interesting case requiring a new formalism.
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Figure 4.14: Magnetic field ramp towards the 905G Na resonance from above and below and
that shows the strong losses. The hybrid trap was ramped down from its full value
during 20ms. For the bottom-up ramp, only the bias coils were used, for top-down
both finetune and bias were active. The right-hand sketch shows the corresponding
scattering length, assuming the resonance position to be at 905.17G.

4.3.2 ⁶Lithium-Sodium resonances

The extremely narrow interspecies Feshbach resonances of the ⁶LiNa mixtures renders it nearly
impossible to use them for any interaction tuning to a strongly interacting mixture. However,
it has been shown in [43] shown that it is possible to create Feshbach molecules by ramping
over the 745G 𝑑-wave resonance. Although Feshbach resonances caused by higher angular
momentum molecular states tend to couple much less to the atomic spectrum and thus lead to
very narrow resonances, this resonance is the broadest in the ⁶LiNa spectrum at experimentally
accessable magnetic fields.

Even though strong tuning will not be possible with the standard experimentally achievable
magnetic field stability of a few milli gauss, the resonance could be used for moderate tuning of
interaction, since the bath-impurity interaction parameter is proportional to the square of the
impurity-bath scattering length

𝛼 ∝ 𝑎2
IB

𝑎BB𝜉
(4.32)

Figure 4.15 shows the scattering lentgh dependence of this 10mG broad resonance and the
possible tuning parameters. A 10 % increase in 𝛼 can be achieved already 200mG away from the
resonance; at this field, no increased losses have been observed. This moderate tuning, however,
could provide additional insight on the impurity problem. An increase of 50 % would require to
go 44mG close to the resonance. This field might already show stronger losses, but should still
allow a lifetime long enough for the motional interferometry.

Stronger interaction changes could be achieved assuming a magnetic field stability of 2mG,
but the steep derivative closer to the resonance will lead to stronger fluctuations during the
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Figure 4.15: Possible interaction tuning scenario for the ⁶LiNa resonance at 745G. Although
the resonance is very narrow (Δ = 10mG), the field stability would allow for a
moderate tuning of about 50% or even 100%, depending on the lifetime.

measurement, possibly limiting the precision. So far, no experiments deploying the motional
Ramsey spectroscopy have been done at magnetic fields close to any resonance.

4.3.3 ⁷Lithium-Sodium resonances

In contrary to the ⁶LiNa resonances, the ⁷LiNa spectrum offers several broader Feshbach res-
onances which could be used for interaction tuning. The most convenient one is the 150G
resonance, as the magnetic field is still rather low for a good field control, and the width is far
above the experimental field stability.

Figure 4.16 shows the scattering length in the ⁷LiNa system between 110G and 170G with
the two broadest resonances observed. The right-hand picture shows the tuning possibilities.

If the predicted resonance around 1095G would be accessible, the width of 5G of course
could offer even better possibilities for a strongly-interaction system.

4.3.4 ⁷Li-⁷Li Resonance

The ⁷Lithium interaction is over a large range of magnetic fields dominated by a strong Feshbach
resonance, in effect similar to the very broad ⁶Li resonances. [82] reported on the use of this
resonance for a tuning of interaction over several orders of magnitude. Figure 4.17 shows a
sketch of the scattering length for the |1, 1⟩ and |1, 0⟩ intraspecies channels.

In our experiments, the strong resonance and corresponding losses limited the maximum
magnetic field where interspecies Feshbach resonances could be investigated. Especially the
predicted 5G broad resonance around 1095Gwhich might offer good interaction tuning abilities
could not be reached without too strong losses of ⁷Li.

While a more sophisticated cooling and ramping strategy might allow to investigate and
use the high-field interspecies resonance, also the lower field properties might be interesting
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Figure 4.16: Left: Scattering length in the lowest hyperfine states for ⁷LiNa near the two broadest
observed resonances. The resonance at 150G has a calculated width of about 1G
and might be suitable for interaction tuning. Right: Possible interaction tuning
scenario for the ⁷LiNa resonance at 150G.

for impurity physics: [82] report on the observation of ⁷Li⁷Li scattering lengths below 0.1 a0
with more than 10 × 105 atoms remaining. So since the sodium as background is not strongly
tuneable due to the high losses, changing the role of impurity and background gas might allow
to immerse a sodium atom in a very weakly interacting background. This gives rise to a rather
large interaction parameter 𝛼, allowing to investigate the effects of strong effective interaction
with a very weakly interacting background.
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4.3 Tuning of Interaction Strength
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Mîn úngemach, daz ich durch si
erlitten hân,
swenne ich mit senenden sorgen
alsô sêre rane, sol mich daz alsô
kleine wider si vervân?

(Walther von der Vogelweide)5 Spin Dynamics

In this chapter, the physical cause for the coupling of spin states and the dynamics induced by
this process will be discussed. Analytic models of increasing complexity will be introduced,
followed by a numerical simulation. For the latter one, the one-dimensional Gross-Pitaevskii
equation for a spinor gas is utilized to gain understanding of the observed dynamics, and is
especially useful to discuss the multimode effects.

The second part of this chapter will present the experimental results of homo- and heteronu-
clear spin dynamics, with quantitative comparisons to the simulations and analytical results if
applicable.

5.1 Theoretical Background

Several levels of complexity can be adressed when looking at coherent spin dynamics. For
didactical reasons, to gain an understanding of the coupling mechanism, it is instructive to look
at the description of the two-body system first, where no many-body properties and spatial
degrees of freedom are involved which allows a basic analytic model of oscillations.

5.1.1 Two-Body Theory

We will start the discussion here with the heteronuclear system because only two states are
involved and an easy analogy to the Rabi oscillations of coupled hyperfine states can be made.
After that, the homonuclear case involving three states will be discussed.

Heteronuclear Spin Dynamics
The interaction Hamiltonian for two distinguishable spin-1 particles |𝑓1, 𝑚1⟩ and |𝑓2, 𝑚2⟩ (the
case of ⁷Li and Na) is given by the possible molecular states and their respective interactions:

𝐻u� = ∑
u�

𝑔u� |𝐹 , 𝑀⟩ ⟨𝐹 , 𝑀| , (5.1)

where 𝑔u� = 2𝜋ℏ2/𝜇 ⋅ 𝑎u� is the interaction parameter for the molecular channel with total
spin 𝐹 and reduced mass 𝜇. The scattering length 𝑎u� for the molecular channels has been
discussed in chapter 4 in the context of the electronic singlet and triplet channels and the
corresponding scattering in the coupled channels.

Again, 𝐹 = 𝑓1 + 𝑓2 and 𝑀 = 𝑚1 + 𝑚2 is the projection onto the quantization axis. The
collision is spin-conserving, therefore the total projection equals the sum of the single particle
𝑧-components.
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5 Spin Dynamics

In contrast to the homonuclear case, several spin channels can possibly undergo spin dynam-
ics; for the ⁷LiNa case the most relevant one is |𝑀u� = +1⟩ with the atomic states |1, 0; 1, 1⟩
and |1, 1; 1, 0⟩, where the first entries denote the total spin and the projection for ⁷Li, the third
and fourth correspondingly for sodium. In the case of ⁸⁷RbNa, it would be the |𝑀u� = −1⟩
channel with |1, 0; 1, −1⟩ and |1, −1; 1, 0⟩. This is given by the differential Zeeman shift and
will be detailed in subsection 5.1.3.

Since the atoms are prepared in the free atom base |𝑓1, 𝑚1; 𝑓2, 𝑚2⟩, one has to project these
states onto the molecular ones. The trivial case would be the preparation in the hyperfine
ground state |1, +1; 1, +1⟩ where |𝐹 = 2, 𝑀 = 2⟩ and the interaction is solely given by 𝑔2.
Obviously, this state is stable and no dynamics will happen. For the experimentally relevant
case of |𝐹 = 1, 𝑀u� = +1⟩, the two states |1, 1; 1, 0⟩ and |1, 0; 1, 1⟩ are taken into account,
which are distinguishable in the heteronuclear case. In this case, both the |𝐹 = 2⟩ and |𝐹 = 1⟩
channel contribute, while |𝐹 = 0⟩ is not involved:

𝐻u� = 𝑔2 |2, 1⟩ ⟨2, 1| + 𝑔1 |1, 1⟩ ⟨1, 1| (5.2)

The projection onto the atomic basis via the projection operators 𝒫2 and 𝒫1 allows to write
the Hamiltonian in the atomic basis as

𝐻u� = 1
2

(𝑔2 + 𝑔1 𝑔2 − 𝑔1
𝑔2 − 𝑔1 𝑔2 + 𝑔1

) . (5.3)

The diagonal elements give the state-independent interaction, while the off-diagonal elements
lead to a coupling of the states. Since 𝑔 ∝ 𝑎, the scattering lengths give a direct indication about
the coupling strength – the bigger the difference in 𝑎2 and 𝑎1, the stronger the spin exchange.

For the total Hamiltonian, the Zeeman shift also has to be taken into account, in general form
as 𝐸1,2(𝐵), where 𝐸1,2 is the energy of the configuration 1 ∶ |1, 0; 1, 1⟩ and 2 ∶ |1, 1; 1, 0⟩
which differ for the heteronuclear case. The dependence of Δ𝐸(𝐵) = 𝐸1(𝐵) − 𝐸2(𝐵) on
the magnetic field for different combinations of species is shown below in Figure 5.2. For
homonuclear cases, one parameter (𝑞) can describe the dependency, while for the heteronuclear
cases, the dependency is more complex.

These energies give an offset on the diagonal elements, such that

𝐻 = (
1/2(𝑔2 + 𝑔1) + 𝐸1(𝐵) 1/2(𝑔2 − 𝑔1)

1/2(𝑔2 − 𝑔1) 1/2(𝑔2 + 𝑔1) + 𝐸2(𝐵)) (5.4)

This system now looks exactly as the coupling of two atomic states via a light field or a
microwave, and one can calculate a generalized Rabi frequency:

ΩSCC = √Δ𝐸(𝐵)2 + (𝑔2 − 𝑔1)2ℏ (5.5)

This model would predict oscillation of a minimum frequency given by the difference of the
𝑔2,1 at Δ𝐸 = 0, which can be the case at 𝐵 = 0 or at finite magnetic field for heteronuclear
atoms, see Figure 5.2. However, as also pointed out by [62], this simple model gives a wrong
prediction: At Δ𝐸 = 0 they observe a suppression of spin oscillations, and the full many body
theory predicts vanishing oscillations at this point.

Therefore, a more rigorous model has to be applied, which accounts for the interactions in
the many body system.
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5.1 Theoretical Background

5.1.2 Mean-Field Description

The full despription of the many body system of a condensed spinor gas includes, besides the
coupling terms and the Zeeman detuning, also all state-dependend interactions as well as spatial
degrees of freedom, which was missing in the previous section.

For simplicity, we will now discuss the homonuclear case of indistinguishable spin-1 particles.
The full Hamiltonian in this system is given by [44, 73]:

ℋ = ∫ dr( ℏ2

2𝑀
∇Ψ̂+

u� ⋅ ∇Ψ̂u� + 𝑈Ψ̂+
u� Ψ̂u�

+ 𝑐0
2

Ψ̂+
u� Ψ̂+

u� Ψ̂u�Ψ̂u� + 𝑐2
2

Ψ̂+
u�Ψ̂+

u� Fu�u� ⋅ Fu�u�Ψ̂+
u� Ψ̂+

u� )
(5.6)

Here Ψ+
u� (Ψu�) is the creation (annihilation) operator for an atom in the state 𝑎; the atom’s mass

is 𝑀 . The external potenial 𝑈 consists of the trapping potential 𝑉 which is the same for all
states in the optical dipole trap. For small magnetic fields, the Zeeman energy 𝐸u� will consist
only of the quadratic shift, since the linear one cancels in the homonuclear case.

The atomic interaction can be expressed by the two simple parameters 𝑐0 and 𝑐2, depending
on the scattering lengths of the molecular channels as

𝑐0 = 4𝜋ℏ2(2𝑎2 + 𝑎0)/3𝑀 (5.7)
𝑐2 = 4𝜋ℏ2(𝑎2 − 𝑎0)/3𝑀, (5.8)

and are similar to the previously used numbers 𝑔1 and 𝑔2 or their sum and differences, respec-
tively, up to prefactors.

The vector F contains the spin-1 matrices, in explicit form:

F′ = (𝑆u� 𝑆u� 𝑆u�) = ℏ√
2

⎛⎜
⎝

⎛⎜
⎝

0 1 0
1 0 1
0 1 0

⎞⎟
⎠

⎛⎜
⎝

0 −𝑖 0
𝑖 0 −𝑖
0 𝑖 0

⎞⎟
⎠

⎛⎜
⎝

√
2 0 0

0 0 0
0 0 −

√
2

⎞⎟
⎠

⎞⎟
⎠

(5.9)

This rather complex and very compact notation of ℋ contains a lot of information; two
examples shall help to clarify the situation:

The scattering of two particles in |1, 1⟩ is given by 𝑎2. This can be seen by setting 𝑖 = 𝑗 = 1.
The matrix entries for 𝑥 and 𝑦 are zero, while for 𝑧 it equals

√
2. Therefore the interaction is

𝑎11 ∝ 𝑐0/2 + 𝑐2/2 ∝ (𝑎0 + 𝑎2)/3 + (𝑎2 − 𝑎0)/3 = 𝑎2, (5.10)

in agreement with the projection onto the molecular state.
For the case of two atoms colliding in the |1, 0⟩ state, the direct interaction is given by 𝑐0/2,

since the matrix entries all vanish, therefore

𝑎0,0 ∝ 𝑐0/2 ∝ (2𝑎2 + 𝑎0)/3. (5.11)

The other scattering lengths are given by:

𝑎11 = 𝑎−1−1 = 𝑎10 = 𝑎−10 = 𝑎2 (5.12)
𝑎00 = (2𝑎2 + 𝑎0)/3 (5.13)

𝑎1−1 = (𝑎2 + 2𝑎2)/3 (5.14)
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5 Spin Dynamics

For the experiments presented below, we are only interested in large occupations of the states.
Therefore quantum fluctuations play no role and the creation/annihilation operators Ψ̂ can by
replaced by the macroscopically occupied wave functions Ψ. This has an important effect in the
case of non-seeded coherent spin changing collisions induced by quantum fluctuations as will
be mentioned below, but those are not investigated experimentally here.

With these values one can re-write the Hamiltonian using the wave functions Ψ1, Ψ2, Ψ3
of the single components. We will neglect all additional proportionality factors here, which
means that we set 4𝜋ℏ2 = 1, 𝑀 = 1/9, so that 𝑐0 = 2𝑎2 + 𝑎0, 𝑐2 = 𝑎2 − 𝑎0. This reduces the
complexity of the matrix and allows to concentrate on the scattering length entries:

𝐻int = ⎛⎜
⎝

3𝑎2(Ψ2
1 + Ψ2

2) + (𝑎2 + 2𝑎0) ⋅ Ψ2
3

(𝑎2 − 𝑎0)Ψ∗
2Ψ3

0
(𝑎2 − 𝑎0) ⋅ Ψ2 ⋅ Ψ∗

3
3𝑎2 ⋅ (Ψ2

1 + Ψ2
3) + (2𝑎2 + 𝑎0)Ψ2

2
(𝑎2 − 𝑎0) ⋅ Ψ2Ψ∗

1

0
(𝑎2 − 𝑎0) ⋅ Ψ∗

2Ψ1
3𝑎2 (Ψ2

3 + Ψ2
2) + (2𝑎2 + 𝑎0) ⋅ Ψ2

1

⎞⎟
⎠

(5.15)

We choose this explicit depiction of the matrix form for didactial reasons, since it allows to
directly plug in the scattering lengths known from the Feshbach studies, and it is also used
in this form for the numerical simulation discussed at the end of this chapter. In terms of 𝑐0
and 𝑐2 the matrix representation reads

𝐻int = ⎛⎜
⎝

(𝑐2 + 𝑐0) (Ψ2
1 + Ψ2

2) + (𝑐0 − 𝑐2)Ψ2
3

𝑐2Ψ∗
2Ψ3
0

𝑐2 ⋅ Ψ2 ⋅ Ψ∗
3

(𝑐2 + 𝑐0)(Ψ2
1 + Ψ2

3) + 𝑐0Ψ2
2

𝑐2Ψ2Ψ∗
1

0
𝑐2 ⋅ Ψ∗

2Ψ1
𝑐2 + 𝑐0 (Ψ2

3 + Ψ2
2) + (𝑐0 − 𝑐2)Ψ2

1

⎞⎟
⎠

(5.16)

Here the diagonal terms give the mean-field shift of the different states with the corresponding
intra- and interstate scattering properties. The non-zero off-diagonal terms give rise to the
spin-coupling, as atoms in one state are annihilated and created in another one. The structure
thus is of the form:

𝐻 = ⎛⎜
⎝

𝑀𝐹 𝑆𝐶𝐶 0
𝑆𝐶𝐶 𝑀𝐹 𝑆𝐶𝐶

0 𝑆𝐶𝐶 𝑀𝐹
⎞⎟
⎠

(5.17)
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5.1 Theoretical Background

This notation is also helpful to understand the effect of the seeding as mentioned above: If one
or both states in the coupling terms (SCC) are zero, i. e. all atoms are perpared in |1, 0⟩ or in
a superposition of |1, 0⟩ and |1, 1⟩, all SCC-terms vanish as Ψ−1 = 0, and no dynamics will
happen at all.

This also shows a limitation of the mean field approach wich is of course wrong for low occu-
pation numbers, especially for zero occupation, since the quantum fluctuations then dominate.
Indeed, quantum fluctuation-driven spin changing collisions without seed can and have been
studied. [93, 20, 79, 26, 38]

The operators for the wave functions evolve according to the Heisenberg operator equation
of motion

d
d𝑡

Ψ(𝑡) = 𝜕
𝜕𝑡

Ψ(𝑡) + 𝑖
ℏ

[𝐻(𝑡), Ψ(𝑡)], (5.18)

which for our case results in a set of coupled Gross-Pitaevskii equations. This is the point
where the numerical simulation starts, which also takes the external potential and the (spatially-
dependend) Zeeman shift into account, and allows for spatial degrees of freedom.

For an analytic treatment and many experimental realizations, however, an important simpli-
fication can be made, which is the single mode approximation. Here, the spatial mode function
is the same for all three spin states and can be adapted from the Hamiltonian neglecting the
spin-dependend 𝑐0 part. This approximation is valid if 𝑐2 ≪ 𝑐0 which is the case for the work
horse rubidium (𝑐0 > 300 ⋅ 𝑐2) as well as for sodium (𝑐0 > 15 ⋅ 𝑐2). For ⁷Li, however, they differ
only by a factor of 2.

We will not provide the full analytic solution here which is rather involved, but refer to
[105], where the equations are solved for both ⁸⁷Rb and Na in the |𝑓 = 1⟩ manifold, i. e. for the
ferromagnetic and antiferromagnetic case, respectively.

In contrast to the purely sinusoidal oscillations one would expect from the simple approach in
Equation 5.5, the solutions have the form of a classical non-rigid pendulum. We will concentrate
on the Na case as we can compare this to our experimental findings. Two scenarios have to be
distinguished which depend on the spinor phase, which is mainly given as the relative phase
between the |1, 0⟩ and the side modes, as discussed below. In our experiments, this phase is
zero. Also, in the experiments the magnetization is chosen to be zero, meaning equal population
in the side modes. As the coupling is done via a resonant three-level Rabi pulse, the initial state
preparation is about 50% in the |1, 0⟩ mode and 25% in each of the side modes.

For this initial preparation, one gets the resonance feature of the non-rigid pendulum, where
the magnetic offset field is the scanned parameter. For zero field, where all states are degenerate
and only the scattering lengths differ, the oscillation amplitude vanishes for a spinor phase
𝜗 = 0. It increases then up to the resonance where 𝑞 = 𝑐2 ⋅ �̄�, with the mean density �̄� and
the quadratic Zeeman detuning parameter 𝑞, i. e. at a point where the Zeeman shift is the same
as the spin coupling term. Up to this point, the oscillation period also rises, meaning slower
oscillations. This regime corresponds to the periodic oscillations of the pendulum.

For higher magnetic fields, both the amplitude and oscillation period drop, and small, fast
oscillations remain, corresponding to the running phase solutions of the pendulum. The numeric
simultations shown in Figure 5.1 can reproduce this behaviour and are shown here for reference.
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Figure 5.1: Amplitude and period for numerically simulated spin changing collisions vs. detun-
ing, with initial |1, 0⟩ state population of 50% and spinor phase 𝜗 = 0. The divergence
in the amplitude is due to fit problems. Details will be explained in section 5.2. The
𝑥 axis is the square root of the detuning, thus linear in the magnetic field.

In the experiment, the coupling pulse might be off-resonant, leading to a smaller population
in the |1, 0⟩ mode; this shifts the point of zero oscillation amplitude to finite magnetic fields,
which can also be seen in Figure 5.6.

5.1.3 Detuning in Finite Magnetic Fields

As mentioned above, the energy shift due to the (quadratic) Zeeman shift is an important
parameter which controls the detuning and resonance behaviour of spin dynamics. For the
homonuclear case, this parameter mostly is rather simple, as in the spin 1 systems it is only one
number related to the process of |1, 0; 1, 0⟩ ⇔ |1, 1; 1, −1⟩: The quadratic Zeeman shift, see
subsection 5.4.2. For ⁸⁷Rb, this shift is rather small with 71.9Hz/G2, while Na shows a larger
shift of 277.3Hz/G2 and ⁷Li has the strongest quadratic shift1 of 611.5Hz/G2. For typical trap
parameters and atom numbers, the resonance condition 𝑞 = 𝑐2�̄� is met in the range of a few
100mG which is a very convenient scale where active magnetic field stabilization can be used
and external influences are still comparatively small, see subsection 3.3.2.

For the heteronuclear case, the shift in the magnetic field offers more possibilities. This stems
from the larger number of possible spin combinations and the difference in quadratic shifts.
In these systems, the dependence on the magnetic field is more complex. Fortunately though,
one can easily calculate the full Breit-Rabi formula for all states if the numbers for hyperfine
splitting, nuclear 𝑔 factors etc. are known well enough. The possible scenarios for spin changing
collisions and the respective detunings are shown in Figure 5.2.

In most calculations and discussions about spin dynamics, the parameter 𝑞 is mostly given per
atom; since always two atoms are taking part in the spin exchange processes, the numbers in
Figure 5.2 are twice as high as this parameter, since the energy for the total process is plotted. For
the heteronuclear processes, this is a clearer depiction, since the total energy differences enter
the calculations. Therefore, for 𝐵 = 1G, the homonuclear curves show the values 𝛿𝐸 = 2 ⋅ 𝑞.

1It is interesting to note that the ratio of the quadratic Zeeman shifts for ⁸⁷Rb and ⁷Li equals u� ⋅ u� to within 0.4%.
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Figure 5.2: Possible scenarios for spin changing collisions. The first ket in the legend entries
denotes the state combination with the higher energy. This means that the process
|1, 1; 1, −1⟩ ⇒ |1, 0; 1, 0⟩ is exotherm, releasing the plotted energy. All processes
are in the |𝑓 = 1⟩ or |𝑓 = 1/2⟩ manifold, respectively. The dashed-plotted state
combinations have not been investigated and are shown for comparison and future
possibilities. The ⁶LiNa line is nearly invisible in this scale due to the huge differential
linear Zeeman shift. Shown is the energy of the pairs, so the 𝑞 parameter used in
the homonuclear SCC is half of this.

For the successful observation of heteronuclear spin changing collisions, the bosonic mixtures
are more promising than the Fermi-Bose mixture. In case of ⁷LiNa or RbNa, one can choose
between different spin combinations. The advantage is that the zero detuning is at a rather
large field where the homonuclear dynamics can already be suppressed, especially if the density
is chosen low enough, so that only the interspecies effects should dominate. Also, preparing
the single species in a superposition of only |1, 1⟩ and |1, 0⟩ will suppress the homonuclear
dynamics strongly since there is no seed in the |1, −1⟩ state.

The Fermi-Bose mixture, on the other hand, provides a huge challenge, which is obvious
from the fact that the red ⁶LiNa line nearly is not visible on the scale of the other species and
combinations: The (comparatively) huge differential linear Zeeman shift gives an immense
energy scale which is far beyond any other scale in the system for even a total field of a few
milligauss and will only allow very far detuned dynamics if at all. So the main challenge here
is to reduce the offset field. On the other hand, the very low field will again suppress the
homonuclear spin dynamics of the bosonic component, similar to the high field on the other side
of the homonuclear resonance. Of course, the RF coupling to the Bosons will always populate
all states.

5.1.4 The Spinor Phase

The initial phase of the spin dynamics is determined by the sign of the interaction parameter 𝑐0
(i. e. ferromagnetic, 𝑐0 < 0, or antiferromagnetic, 𝑐0 > 0) and also by the spinor phase, given by
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𝜗 = 𝜗1 + 𝜗−1 − 2 ⋅ 𝜗0, (5.19)

i. e. the relative phase between the side modes and the 𝑚u� = 0 mode. For most of the homonu-
clear measurements shown here, the atoms are condensed in the |1, 1⟩ state, followed by a Rabi
coupling with a π/2 pulse to the superposition of equal side mode population, with 50% in the
|1, 0⟩ mode. This pulse corresponds to rotation of the vector (001) by 𝜋/2 around the 𝑥 axis
with the spin-1 matrix 𝑆u�.

𝜗1 = 0, 𝜗0 = −u�/2, 𝜗−1 = 𝜋 ⇒ 𝜗 = 2𝜋 = 0. (5.20)

The same phase would result from a start in |1, −1⟩, which is common in experiments that trap
the atoms directly in the |1, −1⟩ state in a magnetic trap, just inverting the role of |1, 1⟩ and
|1, −1⟩, resulting in the same dynamics.

The alternative way of preparing a (0.25, 0.5, 0.25) superposition, which was not reliable in
our experiments, would have had a step in-between: The preparation of all atoms in |1, 0⟩. This
can be done via a rapid adiabatic passage, which must happen at a higher magnetic field where
the quadratic shift clearly separates the transitions. Then, a magnetic field ramp to the final
field is needed.

Another approach would be a transition to the |2, 1⟩ or |2, 0⟩ state and then to |1, 0⟩, but this
requires a stable upper state, which is not available for sodium. A STIRAP process where the
upper state is never populated, but the population can be adiabatically shifted to |1, 0⟩ could be
a possible solution, but requires very precise control over the microwave radiation. In principle,
the DDS setup presented in section 3.2 could provide the necessary frequency and power ramps,
but this was not further investigated.

After preparation of the |1, 0⟩ state, a π/4 pulse then will also result in 50% of the population
remaining in the |1, 0⟩ mode, with 25% population in each of the side modes. The resulting
spinor phase is then

𝜗1 = 𝜋/2, 𝜗0 = 0, 𝜗−1 = 𝜋/2 ⇒ 𝜗 = 𝜋. (5.21)

While 0 and 𝜋 are the only spinor phases that can be produced by the Rabi coupling, arbitrary
phases can be realized if the spinor gas is held for example at a high magnetic field, where
the single components have different energies and thus different phase evolutions. After the
corresponding hold time, the field can be ramped to the final field where the dynamics start. As
the ramping of fields is rather slow and uncontrolled, a better way to achieve this is applingy a
microwave dressing to one of the states, to induce the phase shift. This radiation can be very
well controlled and turned on and off instantaneously.

Finally, a less controlled way of changing the spinor phase depends on the initial population
of the Zeeman substates. In our preparation scheme, where only |2, 2⟩ atoms are in the magnetic
trap, which are transferred to |1, 1⟩, the initial preparation in this state is very clearly defined.
Another approach of cooling sodium is to load the atoms into the dipole trap directly from the
MOT. The atoms are then distributed in all Zeeman states. Applying a magnetic field gradient
during the cooling changes the magnetization of the sample, as e. g. the |1, 1⟩ atoms are expelled
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from the trap, leaving the |1, −1⟩ atoms as energetically lowest state. However, in this scheme
small populations of |1, 0⟩ can remain and thus change the spinor phase; this has been reported
in [9]. The spinor phase can be used as a fit parameter to the experimental results, since the
magnetic field dependence of oscillations amplitude and frequency depends on the phase.

The effect of the initial spinor phase onto the spin dynamics is experimentally easily dis-
tinguishable: Starting from the superposition with 50% population in the |1, 0⟩ state, this
population will increase for 𝜗 = 𝜋 and decrease for 𝜗 = 0. For the first experimental signature
of spin changing collisions therefore one expects a decrease in the |1, 0⟩ mode, while an increase
would not suit the predictions and indicate additional, uncontrolled, spin dynamics. Also, for
both settings the |1, 0⟩ population always stays below (𝜗 = 0) or above (𝜗 = 𝜋) the initial
preparation; any deviation from this can only result from multimode dynamics and incoherent
drifting into the ground state, as will be explained later.

5.1.5 Coherent Dynamics in a Thermal Gas

The quantum degerenate state of a Bose-Einstein condensate is often thought of as a textbook
example for coherent many body dynamics. This is most obviously true for the external degree
of freedom, where collective oscillation modes show the coherence of the process.

On the other hand, the internal degrees of freedom do not necessarily depend on the external
ones and thus coherent spin dynamics are also possible in a purely thermal gas. This has been
shown just surprisingly recently, considering that the production of a single mode Bose-Einstein
condensate is much more challenging than the preparation of a cold thermal cloud.

[77] nicely showed coherent oscillations in cold thermal sodium and compared the findings
to a single-mode as well as a multi-mode BEC. [63] investigated the effects of the interaction
between a thermal and a condensed spinor gas with the result of an increased domain separation
due to large spin waves in the thermal part.

The theoretical description shown here closely follows the experimental paper [77]; in-depth
theoretical discussions can be found in [25, 72, 71].

For the description in second quantization of an atomic spinor gas with a quadratic Zeeman
shift given by 𝑞, the Hamiltonian has been shown in Equation 5.6.

For a thermal gas of spin-1 Bosons, none of the condensate modes is macroscopically occupied,
thus ⟨Ψ̂u�⟩ = 0 for all spin states, and the spatial and momentum distributions are constant,
given by the trap potential only. With this, one can introduce the Wigner density operator
[108]:

̂𝑓u�u�(r,p) = ∫dr′𝑒u�p⋅r′/ℏΨ̂†
u�(r − r′/2)Ψ̂u�(r − r′/2) (5.22)

The further derivation uses the assumption that the momentum and spatial degree of freedom
are given by a Boltzmann distribution, therefore separating from the spin states. Integration
over the spatial and momentum coordinates, gives the equation of motion

𝑖ℏ𝜕u�𝜎 = [𝜎, 𝑀TG] (5.23)

with 𝜎u�u� = √𝜌u� exp(−𝑖𝜗u�)√𝜌u� exp(𝑖𝜗u�) containing the spinor information. 𝜌u� is the popu-
lation of the state |𝑖⟩ = |1, 1⟩, |1, 0⟩, or |1, −1⟩, and 𝜗u� the corresponding phase. The matrix
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𝑀TG contains the coupling and quadratic Zeeman shift for the thermal gas:

𝑀TG = 2𝑐2�̄�Tr(𝑆u�𝑛)𝑆u� + 𝑞𝑆2
u� , (5.24)

with the mean density

�̄� = ∫ dr[𝑇 𝑟(𝑛(r))]2/𝑁, (5.25)

and the density distribution

𝑛(r, 𝑡) = ∫ dp/(2𝜋ℏ)𝑓(r,p, 𝑡). (5.26)

Note that the mean density for a thermal gas cannot just be calculated by summing over all
atoms and dividing by the volume; this would result in zero.

For the BEC case, the analog formulation is given by

𝑖ℏ𝜕u�𝜏 = [𝜏, 𝑀BEC] (5.27)

with 𝜏u�u� = 𝜓∗
u�𝜓u�, and

𝑀BEC = 𝑐2�̄�Tr(𝑆u�𝑛)𝑆u� + 𝑞𝑆2
u� . (5.28)

Comparing Equation 5.24 with Equation 5.28, one finds that the thermal dynamics are similar
to the BEC case, just with a factor of 2 in the coupling term. This allows an easy comparison of
the two cases experimentally by scaling the density correspondingly.

5.1.6 Multimode Dynamics

For the physics discussed so far, the external degrees of freedom were not considered, since the
SMA for a BEC and the Boltzmann distribution for the thermal gas assume a time independent
density distribution which is the same for all components. But for a dense Bose-Einstein
condensate in a rather shallow trap, this approximation is not given anymore. The number of
merit for this case is the spin healing length 𝜉u� given by [9]

𝜉u� = 2𝜋ℏ
√2𝑚|𝑐2|𝑛

. (5.29)

This gives a length scale on which the condensate can react in the spin degree of freedom,
very much like the ordinary healing length [78]

𝜉 = ℏ
√2𝑚𝑛𝑈0

= 1√
8𝜋𝑛𝑎

(5.30)

gives the length scale on which the condensate can react on spatial disturbances.
For the typical large sodium BEC in our setup, the mean spin healing length is about 17 μm,

and the healing length at the maximum density about 11 μm. Both numbers are smaller than
the diameter of the cloud, calculated as twice the Thomas-Fermi radius, in our system:

2 ⋅ 𝑟TF,u�,u�,u� = 2 ⋅ (10 μm, 14 μm, 6 μm). (5.31)
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Therefore the BEC cannot react on the spin dynamics as a whole, but will start forming
domains where the spincomponents separate, which is energetically favourable for the antifer-
romagnetic interaction present in the sodium gas.

Without damping and decoherence effects, these domains will oscillate spatiall in a rich variety
of frequencies; this will be discussed shortly in the numeric simulations. For the experiment,
the damped case is more important, as the system evolves into equilibrium by forming domains
in the presence of a magnetic field gradient.

5.2 Numerical GPE Simulation

Since the full description of the many body spin dynamics is rather involved, the following
section presents the resuls of a quite simple numerical calculation for a spinor condensate with
three components in one dimension. This can easily be extended to higher dimensions and also
to more than one species.

For simplicity, only a pure BEC (that is, a gas with temperature far below the critical temper-
ature) is considered, since the combination of a thermal gas and a BEC makes the description
much more involved. In the BEC case, the ground state in the trap is given by the time-
independent Gross-Pitaevskii equation (GPE) [81, 39], and the whole dynamics are goverend by
the time-dependent GPE:

𝑖ℏ𝜕𝜓
𝜕𝑡

= (− ℏ2

2𝑚
𝜕2

𝜕𝑥2 + 𝑉 (𝑥) + (𝑁 − 1)4𝜋ℏ2𝑎
𝑚

|Ψ|2) Ψ, (5.32)

where the external potential 𝑉 (𝑥) is here taken as constant in time, and 𝑁 is the particle
number.

In numeric simulations, it is useful to translate this equation containing physical units into a
purely numeric version. This makes the interpretation of the results easier and avoids problems
with very small numbers that might be limiting due to the finite precision of the software.

To this end, one can first define a natural length scale𝐿 fromwhichmost other transformations
follow. In the case of BECs, the typical extensions are a few to several tens of micrometers, so
we choose 𝐿 = 1 μm. This determines an energy scale

𝐸u� = ℏ2

𝑚𝐿2 = 2.915 × 10−31 J = ℎ ⋅ 440Hz (5.33)

with the particle’s mass 𝑚 chosen for sodium. Dividing both sides of Equation 5.32 gets rid of
the energy unit, leaving all energy scales in units of 𝐸u�.

The term on the left-hand side of Equation 5.32 then reads

𝑖ℏ u�
u�u�

𝐸u�
= 𝑖𝑚𝐿2

ℏ𝜏
𝜕
𝜕 ̃𝑡

, with a time scale 𝜏 = ℏ
𝐸u�

(5.34)

and ̃𝑡 the time in units of 𝜏 .
For the remaining terms of the right-hand side of Equation 5.32, one gets the expression

ℏ2

2𝑚𝐸u�

𝜕2

𝜕𝑥2 = 𝐿2

2
𝜕2

𝜕𝑥2 = 1
2

𝜕2

𝜕 ̃𝑥2 , (5.35)
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with ̃𝑥 as the scaled spatial coordinate. The potential is also expressed in 𝐸u�:

𝑉 (𝑥)
𝐸u�

= ̃𝑉 ( ̃𝑥) (5.36)

In the numerics, the wavefunction is normalized to 1, therefore the whole expression for the
nonlinearity, depending on the particle number 𝑁 and the scattering length 𝑎 will be expressed
by one parameter 𝜂, in units of 𝐸u�.

With these substitutions, the numbers for the conversion are:

𝑥 = 1 μm × ̃𝑥 (5.37)
𝑡 = 0.36ms × 𝜏 (5.38)

𝐸 = 2.915 × 10−34 J ⋅ ̃𝐸 = 2𝜋 ⋅ 440Hz ⋅ ̃𝐸 (5.39)

To get a realistic simulation, the trap parameters and particle numbers are adjusted in the
numerics in such a way that the scaled extension and chemical potential are close to the
experimental realization, i. e. in dimensionless units a BEC Fermi radius of about 5, and a
chemical potential on the order of 5, corresponding to 5 μm and 2.2 kHz, typical numbers for
our experiment.

For all numeric simulations here, we make use of the very flexible GPElab code [3, 4]. This
toolbox for the Matlab software allows both the numerical calculation of ground state wave
functions as well as the dynamics of arbitrary states in 1, 2, or 3 dimensions. Here, only a small
part of the possibilities is used to find the ground state for a scalar BEC, and the dynamics for
a spinor BEC with spin coupling. As in the formulation of the GPE above in Equation 5.32,
the potential is assumed to be time-independent, as well as the Zeeman shift. A drift of the
magnetic field in the experiment could easily be implemented by adding it to a time-dependent
potential.

5.2.1 Ground State Calculation

The first step for the simulations is the calculation of the ground state for only one component.
This copies the experimental ansatz of producing a BEC at given field and trap frequencies
and then applying the coupling pulse, which is thought of being instantaneous. This leads to a
quench of the system into a non-equilibrium state and induces the dynamics.

This ground state is calculated using the imaginary time method [1], also called projected
gradient method [7], which is implemented in the GPElab software.

Since this thesis is experiment-based, only a one dimensional simulation was done, which
can be calculated fast enough on a regular personal computer to allow a quick qualitative
comparison to the experimental results.

To be able to compare the results as good as possible, the chemical potential and trapping
frequencies were chosen in a way that after the scaling shown above, they are on the order of
the real experimental data. The most interesting point for a numerical simulation is not directly
the coherent oscillation dynamics, as these can be calculated analytically in the SMA, but mostly
in the multimode behaviour and the phase separation, as these cannot easily be described by
the analytic solutions. Therefore, especially the cases of a high chemical potential are most
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interesting here, since the small spin healing length starts to induce spatial dynamics of the
different spin states.

The following code shows the full Matlab input needed to get the ground state computation
using the GPElab code.

1 %% Setting the method and geometry
Computation = 'Ground'; Ncomponents = 1; Type = 'BESP';

3 Deltat = 1e-1; Stop_time = []; Stop_crit = {'MaxNorm',1e-9};
Method = Method_Var1d(Computation, Ncomponents, Type, Deltat,

Stop_time, Stop_crit);
5 xmin = -18; xmax = 18; Nx = 2^8+1;

Geometry1D = Geometry1D_Var1d(xmin,xmax,Nx);
7 Potential = @(Z) Z.^2/2;

Delta = 1; Beta = 1;
9 Physics1D = Physics1D_Var1d(Method, Delta, Beta);

Physics1D = Potential_Var1d(Method, Physics1D, Potential);
11

aB = 5.29e-11; a2 = 52*aB; a0 = 46*aB; N = 1; eta = 8e8;
13 lambda_s = 4*pi*N*(a0+2*a2)/(3)*eta;

Nonlinearity = @(Psi,Z) lambda_s*abs(Psi).^2;
15 Physics1D = Nonlinearity_Var1d(Method, Physics1D, Nonlinearity);

%% Setting the initial data
17 InitialData_Choice = 1;

Phi_0 = InitialData_Var1d(Method, Geometry1D, Physics1D,
InitialData_Choice);

19 %% Setting informations and outputs
Outputs = OutputsINI_Var1d(Method);

21 Printing = 1;
Evo = 15;

23 Draw = 1;
Print = Print_Var1d(Printing,Evo,Draw);

25 %-----------------------------------------------------------
% Launching computation

27 %-----------------------------------------------------------
[Phi_1, Outputs] = GPELab1d(Phi_0, Method, Geometry1D, Physics1D,

Outputs, [], Print);

5.2.2 Preparing the Dynamics

As mentioned above, the dynamics are induced experimentally by a short coupling pulse. For
the numerics, this is simulated by initializing the dynamic calculation with a three component
spinor. The side modes are populated with 27.5% each, with 45% in the |1, 0⟩ mode, as is
experimentally observed, instead of the (0.25 0.5 0.25) population which would result from a
clear 𝜋/2 pulse. As the experimental realization starts in |1, 1⟩, the spinor phase is

𝜗 = 𝜗1 + 𝜗−1 − 2 ⋅ 𝜗0 = 0, (5.40)

therefore no additional phase offset has to be given to the initial state.

117



5 Spin Dynamics

However, for comparison to the case starting in |1, 0⟩, a 𝜋/4 pulse leads to a spinor phase
𝜗 = 𝜋 which can be distributed to the |1, 0⟩ mode or the side modes. This phase also determines
the initial dynamics, i. e. an increase or decrease of the |1, 0⟩ mode.

The quadratic Zeeman shift is taken into account by adding a constant 𝑞 to the potential for
the side modes, the linear shift cancels in a homogeneous magnetic field.

Since the method is completely flexible, any magnetization, spinor phase, population and
potential can be investigated, also magnetic gradient fields which shift the outer parts of the
side modes due to the linear Zeeman shift.

Below is the code listing for the dynamic calculation. After setting the calculation method
and the parameters, the interaction Hamltonian (CoupledSpinNL) is defined. The initial
state preparation is performed by setting the three components of Phi_0 equal to the ground
state calculated above, Phi_1, times the population.

%% Setting the method and geometry for dynamics
2 Computation = 'Dynamic'; Ncomponents = 3; Type = 'Relaxation';

Deltat = 1e-2; Stop_time = 20; Stop_crit = [];
4 Method = Method_Var1d(Computation, Ncomponents, Type, Deltat,

Stop_time, Stop_crit);
xmin = -18; xmax = 18; Nx = 2^8+1;

6 Geometry1D = Geometry1D_Var1d(xmin,xmax,Nx);

8 Delta = 1; Beta = 1;
Physics1D = Physics1D_Var1d(Method, Delta, Beta);

10 Physics1D = Dispersion_Var1d(Method, Physics1D);

12 q = 0.1; %% homogeneous field
p = 0; %% gradient field

14 Potential = cell(3);
Potential{1,1} = @(t,Z) Z.^2/2 + q + Z.*p;

16 Potential{2,2} = @(t,Z) Z.^2/2;
Potential{3,3} = @(t,Z) Z.^2/2 + q - Z.*p;

18 Physics1D = TimePotential_Var1d(Method, Physics1D, Potential);

20 aB = 5.29e-11; a2_Na = 52*aB; a0_Na = 46*aB;
lambda_a = 4*pi*(a2_Na-a0_Na)/(3)*eta;

22 lambda_s = 4*pi*(a0_Na+2*a2_Na)/(3)*eta;

24 CoupledSpinNLCoupledSpinNL = cell(3);
CoupledSpinNL{1,1} = @(Psi, Z) (lambda_a+lambda_s)*(abs(Psi{1}).^2+

abs(Psi{2}).^2) + (lambda_s-lambda_a)*abs(Psi{3}).^2;
26 CoupledSpinNL{1,2} = @(Psi, Z) lambda_a*Psi{2}.*conj(Psi{3})

CoupledSpinNL{2,1} = @(Psi, Z) lambda_a*conj(Psi{2}).*Psi{3}
28 CoupledSpinNL{2,2} = @(Psi, Z) (lambda_a+lambda_s)*(abs(Psi{1}).^2+

abs(Psi{3}).^2) + lambda_s*abs(Psi{2}).^2;
CoupledSpinNL{2,3} = @(Psi, Z) lambda_a*conj(Psi{2}).*Psi{1};

30 CoupledSpinNL{3,2} = @(Psi, Z) lambda_a*Psi{2}.*conj(Psi{1});
CoupledSpinNL{3,3} = @(Psi, Z) (lambda_a+lambda_s)*(abs(Psi{3}).^2+

abs(Psi{2}).^2) + (lambda_s-lambda_a)*abs(Psi{1}).^2;
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32

Physics1D = Nonlinearity_Var1d(Method, Physics1D, CoupledSpinNL);
34 %% Setting the initial data, state preparation

load Phi_1
36 Phi_0{1} = Phi_1{1}*sqrt(0.275);

Phi_0{2} = Phi_1{1}*sqrt(0.45)*exp(i*pi);
38 Phi_0{3} = Phi_1{1}*sqrt(0.275);

%% Setting informations and outputs
40 Save = 0;

Output_function{1,1} = @(Phi,Z,FFTZ) sqrt(Geometry1D.dx)*sqrt(sum(
abs(Phi).^2));

42 Output_name{1} = 'L2-Norm␣';
Outputs = OutputsINI_Var1d(Method,1,1,Output_function,Output_name);

44 Printing = 1;
Evo = 100;

46 Draw = 1;
Print = Print_Var1d(Printing,Evo,Draw);

48 %-----------------------------------------------------------
% Launching computation

50 %-----------------------------------------------------------
[Phi, Outputs] = GPELab1d(Phi_0, Method, Geometry1D, Physics1D,

Outputs, [], Print);
52 Draw_Timesolution1d(Outputs,Method,Geometry1D,Figure_Var1d)

5.2.3 Single Mode Dynamics

The case where the single mode approximation is valid can be simulated by using a small
atom number, resulting in a small nonlinearity. Comparison with analytic results are then
benchmarking the simulations, and deviations can be attributed to multimode dynamics.

Figure 5.3 shows the results of this simulation run for different detunings 𝑞 by plotting the
time evolution of the |1, 0⟩ population. With an initial preparation of (0.275,0.45,0.275), this
setting is in the regime where for 𝑞 = 0 oscillations are expected, in contrast to the case of
𝜌0 = 0.5.

This is clearly visible, shown by the red curve. The initial feature is the increase in the
|1, 0⟩ mode, which can be intuitively understood as a negative amplitude. This amplitude then
increases, which means that the absolute value decreases, until it reaches zero for 𝑞 = 0.035.
From that on, the amplitude increases again and the oscillations become slower, until the critical
detuning is nearly reached around 𝑞 = 0.2. Above the critical point, the amplitude and period
decrease again, in accordance with the anayltical expectation.

A striking deviation, however, appears for a certain detuning regime, here shown for 𝑞 = 0.5,
where a clear multimode oscillation appears. Figure 5.4 shows the evolution of the density
distribution for this case. On the left-hand side, the side modes are shown, as |1, 1⟩ and |1, −1⟩
share the samewavefunction in this calculation. The right-hand side shows the |1, 0⟩ distribution.
The vertical axis is the spatial coordinate, while the abscissa shows the evolution time.

The deviation from the single spatial mode approximation is obvious already after two
oscillations, and the change in density and overlap of the components explains the deviation
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Figure 5.3: Numerically simulated dynamics of the |1, 0⟩ population. The initial population
preparation is (0.275,0.45,0.275). For 𝑞 = 0, a finite oscillation amplitude is visible,
with an increase of |1, 0⟩. The oscillation amplitude is reduced as 𝑞 goes to 0.035; from
this point on, the amplitude increases again until the 𝑞 = 0.2, close to the divergence,
corresponding to the critical 𝛿(𝐵u�). Above the divergence, period and amplitude of
the oscillations are reduced, as expected. For certain detunings, e. g. 𝑞 = 0.5, clear
multimode oscillations occur.

seen in Figure 5.3. Note that these spatial structures only appear in a certain range of detunings,
while for smaller and larger values the single mode approximation works very well.

To simulate the magnetic field dependence of the oscillation amplitude and period, several
numerical runs are executed and the resulting oscillations fitted with a sine curve. For 𝑞 close
to 𝛿(𝐵u�), this fit of course gets worse, since the functional form deviates strongly from a sine,
but still a measure for the important numbers can be extracted. The results of such scans are
shown in Figure 5.6, where the field dependence of the oscillations is plotted for different initial
populations of 𝜌0.

As expected from the analytic results, for 𝜌0 = 0.5, no oscillations happen at 𝑞 = 0, then the
amplitude increases while the period stays constant over a wide range of detunings. Only close
to the critical point, the oscillations become slower, ultimately diverging.

The divergence point depends on 𝜌0 and increses (decreases) with higher (lower) initial
population. For 𝜌0 ≠ 0.5, a finite oscillation appears even for 𝑞 = 0.

In the period in the graph on the right-hand side, the fit does not work if the amplitude is too
small, since no meaningful frequency can be fitted. The points that deviate from the expected
function are the ones with vanishing amplitude.
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Figure 5.4: Density distribution for the 𝑞 = 0.500 setting. Shown are the probability amplitudes
for the |1, ±1⟩ mode (left) and the |1, 0⟩ mode (right) vs. the evolution time. Already
after two oscillations, a clear spatial structure forms where the side modes are
separated from the |1, 0⟩ mode.
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Figure 5.5: Numerical simulation of an antiferromagnetic spinor gas with spinor phase 𝜗 = 𝜋.
For all detunings, the initial dynamics is an increase of the |1, 0⟩ mod.

5.2.4 Influence of the Spinor Phase and Magnetization

A change of the spinor phase is easily implemented in the numerics by changing the relative
phase of the spinor components. From the analytical solution, one finds that the critical field,
or rather the corresponding detuning 𝛿(𝐵u�), depends on the three parameters 𝜌0, 𝑚, 𝜗 and the
coupling strength 𝑐 = 𝑐2�̄� by

𝛿(𝐵u�) = 𝑐 ⋅ ((1 − 𝜌0) + √(1 − 𝜌0)2 − 𝑚2 cos𝜗. (5.41)

For the experiments, the magnetization was chosen to be zero, achieved by equally populating
the side modes, and the |1, 0⟩ population was set to 0.5. Equation 5.41 then takes the simple form
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Figure 5.6: Amplitude and period of a sine fit to numerically simulated spin changing collisions
in a near-single mode setting. For each simulation run, a sine is fitted to the |1, 0⟩
population to get a measure for the amplitude and period, although the exact form
deviates from a sine.

𝛿(𝐵u�) = 𝑐 ⋅ (0.5 + 0.5 ⋅ cos𝜗). (5.42)

Thus, for 𝜗 = 0, one gets the highest critical field, while for 𝜗 = 𝜋, the frequency diverges at
𝐵 = 0. This behaviour is shown in Figure 5.7, where the spinor phase is changed from zero to
𝜋 and above; due to the periodicity of the cosine, the setting of 𝜗 = 1.2𝜋 equals 𝜗 = 0.8𝜋. The
data clearly reproduce the expected scaling, and also show that for larger spinor phases the
resonance peak does not only shift, but also broadens. The exact shape of the curve deviates
from the analytic calculations especially for large periods, since the fit with a sine then is not
good enough; also, small deviations from the SMA start to play a role for these cases.
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Figure 5.7: Amplitude and period of a sine fit to numerically simulated spin changing collisions
in a near-single mode setting. Here, the influence of the spinor phase is shown, as it
is varied from 𝜗 = 0 to 𝜗 = 𝜋. For the latter case, the oscillation period diverges for
𝑞 → 0.
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For a fixed populiton of |1, 0⟩ of 0.5, one can investigate the effect of the magnetization.
(Of course any other population can be chosen, too.) The most interesting feature here is for
a magnetization of 𝑚 = 0.5: In this case, only the |1, 0⟩ and |1, 1⟩ states are populated, but
still spin dynamics appear. This clearly shows that the seeding does not have to be in both
sidemodes; in the case where all atoms are in |1, 0⟩, however, no dynamics happen, as expected.
Figure 5.8 shows the field dependence of the oscillations for different values of 𝑚.
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Figure 5.8: Numerically simulated effect of the magnetization on the spin oscillations. For all
data, the initial population of |1, 0⟩ was 0.5. Larger magnetization leads to a reduction
of the critical detuning, according to the analytical result for 𝛿(𝐵u�).

123



5 Spin Dynamics

5.2.5 Multimode Dynamics

The term multimode here shall here be used for any spatial dynamics that deviate strongly from
the initial ground state preparation. This can be deviations from the initial BEC mode, complete
separation of the |1, 0⟩ and side modes, up to a seemingly chaotic distribution where numerous
small islands of the phases develop.

An interesting case of the spatial deviation is shown in Figure 5.9, where the dynamics
initially looks close to single mode, but after reachig a certain density of the |1, 0⟩ population, a
spatial separation happens, followed by ongoing oscillations.
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Figure 5.9: One dimensional simulation of spin changing collisions showing multimode dynam-
ics after some evolution time of near-single mode oscillations.

Since the single mode approximation depends on the ratio of spin healing length 𝜉u� and the
condensate extension, a simple way to show strong multimode behaviour is to increase the
atom number. This leads to a smaller 𝜉u�, while the condensate size increases. Figure 5.10 shows
this in a dramatic manner: For the same settings as in Figure 5.4, where a separation of both the
|1, 0⟩ mode and the side modes showed up, the atom number here is increased by a factor of ten.

The behaviour gets very complex, and no clear oscillation structure can be seen. This setting
shows dramatically, why an experimental setting where the single mode approximation is valid
is important for the observation of coherent oscillations. However, if the imaging resolution
of an experimental realization is high enough, the diverse spatial structure offers interesting
physics per se.

As a final graphic representation, Figure 5.11 shows the influence of a gradient on the side
modes. Without a surprise, the side mode evolves into the direction of the gradient, where the
energy is minimized. If any damping or dissipation was implemented in the simulation, the
separation would be the final state, as is observed in the spin domain formation experiments.
Here, however, the dynamics remain coherent, and the probability distrubution evolves back
into the trap center.
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5.2 Numerical GPE Simulation

Figure 5.10: Density distribution for the 𝑞 = 0.500 setting with larger atom numbers.
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Figure 5.11: One dimensional simulation of spin changing collisions showing clear phase sepa-
ration, with a finite magnetic field gradient.
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5.3 Experimental Results of Homonuclear SCC

This sectionwill present, summarize, and explain the observed spin dynamics in the homonuclear
cases. Several different cases ware studied that lead to qualitatively different behaviour:

• Large sodium BEC. Here large refers to a high atom number in a rather strong confinement,
at high temperatures. Therefore, the thermal part of the cloud can play a role. Also the
single spatial mode approximation is not valid as the spin healing length is smaller than
the Thomas-Fermi radius in at least one direction.

• Small sodium BEC. Cooled to lower temperatures with smaller atom numbers in a shal-
lower trap, the thermal part can be neglected. The requirements for the single mode
approximation are met better.

• Thermal cloud of sodium. The atoms’ temperature is close to, but above the critical
temperature, in a tighter trap setting, without detectable condensate fraction.

• Condensed ⁷lithium, which has ferrogmagnetic interaction properties, in contrast to the
antiferromagnetic interaction in sodium. In this case, sodium can act as a passive bath,
meaning that it only cools the external degree of freedom, while not influencing the
internal spin evolution, if it is in the correct hyperfine state.

5.3.1 Non-Seeded Case of a Sodium BEC Evoling Into Equilibrium

One of the first experiments done to observe spin dynamics in Bose-Einstein condensates [99]
was the preparation of a pure |1, 0⟩ state at a high offset field. Then, the magnetic field was
ramped down to different offset fields, and the spin-distribution was observed.

We dub these measurements non-seeded since no population was put into the side modes
deliberately. However, no special cleaning was done to ensure that no atoms are in the side
modes which might be present due to a non-ideal preparation of the |1, 0⟩ mode. This is in
contrast to experiments with a better atom number detection and cleaning, where the seed
might contain just a few atoms. For our case, seeded always means a macroscopic number and
a large relative population in the corresponding modes.

The rate and final offset of this decay depends on the magnetic offset field; the endpoint is
given by the equilibrium state of the antiferromagnetic sample. For these measurements, the
spatial degree of freedom could not be resolved, so no information is available about phase
separation or similar effects, as will be presented below.

But already at this point it should be mentioned that the ground state of an antiferromagnetic
spinor gas in a homogeneous magnetic field is the |1, 0⟩ state. So the observations can only be
explained by assuming a magnetic field gradient over the cloud. This will become more obvious
below, where data with spatial resolution are discussed.

The inset shown in Figure 5.12 is a small reminder of the process taking place, where the three
lines correspond to the Zeeman levels, with |1, +1⟩ on the left side with the lowest energy, |1, 0⟩
in the middle and the |1, −1⟩ state which shifts upwards in a magnetic field. The spheres indicate
the population of the states; a large sphere means a large occupation. The arrows indicate the
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Figure 5.12: Decay of the |1, 0⟩ mode of sodium without seeding for different magnetic fields.
Only the |1, 0⟩ mode population is shown; the side modes are always symmetric as
far as our imaging can resolve them. The trend clearly shows a suppression of the
spin relaxation for higher magnetic fields; altogether the process is very slow and
saturates at different finite populations for different magnetic fields. In the legend,
the offset field and the corresponding 𝑞Na are listed.

flow of population. All datasets in the remainder of this chapter will be supplemented with these
sketches, which will be helpful especially in the combined homo- and heteronuclear dynamics.

Since for the very long hold times shown here the trap losses play an important role, one
has to rule out that the relative increase of the side modes is not just due to a reduction of the
signal and increased relative noise – without any atoms left, the calculated population in all
states would be equal! Therefore Figure 5.13 shows the total atom numbers for the 621mG case,
where the strongest increase in the side modes occurs. For better visibility, the side modes have
been magnified by a factor of ten.

During the first about 2 s, a clear increase in the total number of atoms in the side modes is
seen, while the |1, 0⟩ mode strongly decreases; after that, the total losses dominate and all states
loose atoms. Still, the |1, 0⟩ mode has the strongest losses, which leads to the further relative
increase of the side modes.

For the losses, one has to take care about the condensate fraction: Since the atom numbers in
the side modes are small, only the |1, 0⟩ mode stays condensed, while the outer modes become
thermal. The lower density of this thermal cloud reduces the three-body losses, so that the final
state equilibrium overestimates the side modes.

5.3.2 Large Sodium BEC

For the following experiments, a large Bose-Einstein Condensate of around 8 × 105 atoms
was prepared in a rather tight dipole trap with trapping frequencies in the order of �̄� =
(212, 183, 341)Hz, with the mean trapping frequency of 236Hz.

Considering the single spatial mode approximation, one has to estimate the spin healing
length as introduced in Equation 5.29. For the numbers mentioned above, the mean density of
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Figure 5.13: Absolute atom numbers durin the decay of the |1, 0⟩ mode. The side modes are
multiplied by 10 for better visibility. Overall, a clear total decay is visible due
to the lifetime in the trap and three-body losses. This decay is the same for all
magnetic fields and indicates that the spin relaxation is not the main cause for
the losses, which would be field-dependent. The shown case for 621mG gives the
larges increase in the side modes, but a clear signal is visible for all fields.

the BEC is �̄� = 1.4 × 1014 cm−3 with a maximum density at the center of 𝑛0 = 3.5 × 1014 cm−3.
The Thomas Fermi radii are

𝑟TF,u� = 10 μm, 𝑟TF,u� = 12 μm, 𝑟TF,u� = 6.5 μm. (5.43)

The spin healing length depends on the difference of the 𝑎2 and 𝑎0 scattering lengths, which
we take here to be 𝑎2 = 54.54 𝑎u� and 𝑎0 = 48.91 𝑎u�, as results from the improved NaNa
Feshbach spectrum and Coupled Channels calculations by [53]. This gives

𝜉u� = 2𝜋ℏ
√2𝑚|𝑐2|𝑛

= 10.6 μm (5.44)

with 𝑐2 = 4𝜋ℏ2 ⋅ (𝑎2 − 𝑎0)/3𝑚 = 5.5 × 10−13 Hz/cm3. This indicates that we are in an
intermediate regime where the spin healing length is similar, smaller, and larger than the
different Thomas-Fermi radii. But since the important number is rather the diameter than the
radius, one would expect that the single mode approximation is not valid at the outer parts
of the condensate. Therefore, a clear oscillatory behaviour is not visible, but in this regime
one can rather study the phase separation dynamics as the system tends into its ground state
equilibrium.

Figure 5.14 shows the time evolution of a large Bose-Einstein condensate, prepared from the
|1, 1⟩ state via a 𝜋/2 pulse into a superposition with equal side mode population. The |1, 0⟩
mode does not show an occupation of 50%, which can either indicate detuning or additional,
very fast dynamics that cannot be resolved, which drives the system from the (0.25,0.5,0.25)
preparation quickly into the observed (0.3,0.4,0.3) state. A similar effect was measured for
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5.3 Experimental Results of Homonuclear SCC

the smaller BEC, see for example Figure 5.22. Therefore we assume that the initial dynamcs
already happened before the mapping could resolve any effects, and the RF pulse did prepare
50% in |1, 0⟩.
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Figure 5.14: SCC of a large Na condensate of 0.6 × 106 to 1.2 × 106 atoms at 𝑞 = 21Hz, 𝐵 =
307(3)mG, showing phase separation. The short-time evolution shows no popula-
tion changes, while after longer times the |1, 0⟩ mode population clearly increases.
The insets show absorption images of the atoms after short time of flight, revealing
partially the in-situ distribution. The upper pictures show the |1, 0⟩ mode, the lower
pictures are typical examples of the side mode populations. For this scan, atoms
were prepared in |1, −1⟩ before the 𝜋/2 pulse.

The plot shows two distinct features: First, on a long time scale of over 150ms (right-hand
side), there is a clear rise of the |1, 0⟩ mode to a large population of about 60% to 80%, while the
side modes are equally populated with 10% to 15%.

On a much shorter time scale, starting directly after the coupling pulse (as well as resolved
here) to 150ms, there is no visible change of the |1, 0⟩ population, shown on the left-hand side.
This is in direct contrast to the expected oscillations, but also in contrast to any non-coherent
decay which describes the slow drift into the equilibrium state for longer times, as discussed
above.

Of great importance here are the insets showing the absorption pictures of the |1, 0⟩ and the
side modes, here |1, 1⟩ as example. For the short time scales, nothing obvious can be seen, as
the clouds have the standard appearance after the Stern Gerlach mapping: No additional spatial
structure or displacement can be seen. This is true for all pictures up to the 150ms time mark.
After this, there is a very clear spatial structure on the atoms: The |1, 0⟩ mode typically shows a
bit smaller extension in the left-right direction.

The side modes, on the contrary, show a clear separation in the same direction, with nearly
complete extinction in the middle. This is true for both side modes; further examples are shown
in the insets of Figure 5.16.

This phase separation cannot be understood for a homogeneous magnetic field, as an an-
tiferromagnet with zero magnetization is miscible and does not show any phase separation.
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5 Spin Dynamics

However, magnetization or – important for our setup – a magnetic field gradient will lead to a
lower free energy if the phases separate, where the |1, 1⟩ and |1, −1⟩ phase are miscible. This
has been shown in early experiments, also in sodium, by Stenger et al. [99]

The long-time dynamics show the system relaxing into its ground state. The free energy

𝐾 = ∫ d𝑟3𝑛 (𝑉 + 1
2

𝑐0𝑛 + 1
2

𝑐24 ⟨F⟩2 + 𝐸u� − 𝑝0 ⟨𝐹u�⟩) (5.45)

has to be minimized for this, where the kinetic terms are neglected due to the Thomas-Fermi
approximation. 𝑉 is the external potential and 𝐸u� the Zeeman energy; 𝑝0 is a Lagrange
multiplier accounting for the spin conservation.

The spin-dependent part of the free energy can be minimized and leads to a spin domain
diagram as sketched in Figure 5.15 for the antiferromagnetic case.
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Figure 5.15: Spin domain diagram for an antiferromagnet (𝑐2 > 0). Shown is the spin config-
uration that minimizes the free energy depending on the quadratic Zeeman shift
and the parameter 𝑝, see text. Changing 𝑐 leads to a change of the borders. Inside
the lines, the |1, 0⟩ state is the ground state; outside, it is |1, 1⟩ or |1, −1⟩. In the
shaded region, mixing of the side modes is possible, where the ratio of populations
is given by 𝜌1/𝜌−1 = (2𝑐 + 𝑝)/(2𝑐 − 𝑝). For the parameters 𝑐u� and 𝑐u� and the
vertical line see explanations in the text.

A systematic investigation of the phase separation and population dynamics depending on
the density is presented in Figure 5.16. From the left upper to the lower right subfigure, the
final trap depth of the cooling ramp is reduced. This leads to a coupling of different effects, as a
lower final power of the horizontal laser beam means:

• lower trap frequencies
• lower atom numbers
• higher condensate fraction due to lower temperature
• lower densities for equal condensate fraction
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Figure 5.16: Preparation of a sodium BEC for different final trap depths; the mean frequencies
are given in the graphs. 𝑞Na = 26Hz, 𝐵 = 307(3)mG. For all settings, a clear phase
separation is visible at least after 250ms, while for the lower trap setting (lower left)
already after 125ms a separation occurs. The absorption pictures shown are taken
after 300ms for 247Hz, 250ms for 242Hz, 200ms for 236Hz and 150ms for 182Hz
(top left to bottom right).

Comparing the total atom numbers, however, shows that the effect of further evaporative
cooling on the atom number is rather small since the scattering of the numbers for one setting is
mostly stronger than the difference between the different trap setting, with 7(2) × 105 atoms for
the largest power and 4(1) × 105 for the lowest one. A list of the trap frequencies, the calculated
Thomas-Fermi radii, mean density, interaction parameter 𝑐 and the spin healing length 𝜉u� for
all trap settings above is shown in Table 5.1 for comparison.

The first observation to be made in Figure 5.16 is that the overall structure is the same for all
trap parameters: For the first about 100ms to 250ms no oscillations can be observed. But the
|1, 0⟩ population decreases slowly, until it reaches about 33%, where all three states are equally
populated. From this point on, the phase separation starts, in the same manner as in Figure 5.14,
and the spin population increases in the |1, 0⟩ mode.

It is a coincidence that the timing steps were chosen narrower up to 200ms (25ms steps) and
wider after that (50ms steps). The experimental sequence was exactly the same for the data
taken for the shorter and the longer times. No connection can be made between the time steps
and the increase in |1, 0⟩.

The phase separation shows a distinctly different behaviour for the various trap settings; for
a stronger confinement, the side mode population after the phase separation stays rather high,
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5 Spin Dynamics

Table 5.1: Condensate parameters for the trapping frequency scans. Listed are the trap frequency
settings, the calculatedThomas-Fermi radii, the mean density, the parameter 𝑐 = 𝑐2 ⋅�̄�
and the spin healing length.

̄𝜈 [Hz] 𝑟TF; 𝑥, 𝑦, 𝑧 [μm] �̄� [1013

cm3 ] 𝑐 ⋅ ℎ [Hz] 𝜉u� [μm]

247 (10,11,6) 13 71 11
242 (10,11,6) 13 69 11
236 (10,11,6) 12 67 11
218 ( 9,12,6) 10 56 12
182 ( 8,17,6) 8 45 14

at roughly 30%. The data for the longest hold time even suggest that the side modes rise above
the |1, 0⟩ mode after 800ms. For the weaker confinement, the population of |1, 0⟩ atoms rises
strongly, until for the weakest confinement the side modes vanish nearly completely, but also
the data scatter very strongly.

Finally, the weakest confinement settings show a reversal of the flow into the |1, 0⟩ mode:
After about 250ms, the side mode population rises again, so that overall this looks like an
oscillation. The time scale and initial phase of this oscillation, however, show that it cannot
be the coherent dynamic expected for a single-mode BEC, but that a completely different
description is needed.

Comparing these results with the findings of [99], we conclude that the system is not yet in
its equilibrium state, but that still some dynamics are happening. The time scales do not fit to
any other known time scale of the experiment, though; neither the trapping frequencies nor
the lifetime in the dipole trap are on the same order.

An important information is that in very few cases the |1, 0⟩ mode shows a depletion in the
middle, which does not fit into the description for the ground state. An example of this is shown
in the upper right absorption picture in Figure 5.16. Also, the spatial distribution of the side
modes varies strongly from shot to shot, which should not happen for the equilibrated state.
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Figure 5.17: Preparation of a sodium BEC for different final trap depths. Here, the same scans
are shown as in Figure 5.16, with the total atom numbers. Although the data scatter
strongly, the basic features are also visible in the absolute numbers.
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5.3.3 Small Sodium Condensate

The preparation of small BECs was done by simply lowering the trap depth of the dipole trap
further down which realized lower temperatures, a higher condensate fraction and lower atom
numbers. Here, the term small of course has to be taken relative to the samples shown above
where around 1 × 106 atoms were prepared; the following data still contained more than 1 × 105
atoms. This ist a rather large number, stemming from the fact that the machine was built and
optimized for the production of large BECs and is less stable for smaller atom numbers. Also,
the detection is not suitable and optimized for small atom numbers – the imaging turned out to
be detuned, which was not obvious from the pictures of the large clouds. One reason for this is
that the BECs with higher atom numbers required longer time of flights to reduce their optical
density; after this expansion, the curvature of the density is lower and thus the lensing effect
caused by the refraction is weaker. For the small BEC after short time of flight, the lensing
has a strong effect. Still, the pictures are useful to determine the relative atom numbers in a
meaningful way.

However, the reduction of the atom number allowed to study at least the initial dynamics
further than in the denser cloud, with signs of low-multimode oscillations for certain settings.
Another important difference and one of the reasons why we differentiate here between the
large and small cases is that in these small BECs no spatial structure was observed, in contrast
to the results presented above.

One of the first observations of spin population oscillations were done in ⁸⁷Rb [18], where
also the spin mixing was investigated. In contrast to our case, the preparation was not done
with a Rabi coupling, but with an incoherent population preparation integrated in the cooling
scheme. Still, as the system was not prepared in its equilibrium, some oscillations could be
observed.
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Figure 5.18: SCC of a small Na condensate of 1 × 105 to 5 × 105 atoms at 𝑞Na = 107Hz, 𝐵 =
621(3)mG. Clearly visible is the initial coherent dynamics. After around 10ms, the
population of the |1, 0⟩ state rises, while the data scatter more strongly, and settles
again at around 80% in the |1, 0⟩ mode. The green sine curve is discussed in the
text. Mean trapping frequency is �̄� = 2𝜋 × 122𝐻𝑧, 𝑐 = 𝑐2�̄� = 43Hz.
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The typical behaviour for the lower trap parameters and atom numbers is shown in Figure 5.18
where the sample was prepared at 621(3)mG.

The dynamics here can be split into three time scales: For short times, one can see a clear
decrease of the |1, 0⟩ mode, while the side modes rise equally, followed by the reverse process.
This very much resembles at least the beginning of an oscillation as is expected from the single
mode approximation picture.

The green sine curve is not a fit, but a guide to the eye, containing several assumptions: First,
the RF preparation was done with a frequency calculated from a precise spectroscopy of the
field. Therefore it is highly unlikely that the coupling is detuned so strongly that the initial
|1, 0⟩ population is far below 50%. Therefore, we assume that the initial dynamics are too fast
to be covered by our readout, and thus the maximum of the sine starts at 0.5.

After one cycle of sinusoidal behaviour, the population of |1, 0⟩ stays rather constant for
several milliseconds, which reminds of the results for the large BEC. At this point, one can
make the connection, assuming that in the large BEC the initial dynamics were even faster than
here and could not be monitored at all, leaving the flat line as the first observable feature.

Longer time scales also show the same evolution as the large condensate, where the |1, 0⟩
mode rises strongly above the initial level and an equilibrium population is reached after about
50ms. This rise above 50% is important, since for coherent spin changing collisions of an
antiferromagnet with initial spinor phase 𝜗 = 0, the |1, 0⟩ population should not go above the
initial preparation.

Note that this scale for the rise is now faster, but also at a higher magnetic field of 620(3)mG
instead of the 307(3)mG discussed above. Therefore, the detuning is higher and one would
expect faster dynamics for the same densities.

Very similar behaviour can be seen at other magnetic offset fields, with more or less clear
initial structure. At 512(3)mG, for example, a single sine curve can still be laid over the data
with rather low deviations from the |1, 0⟩ population, as shown in Figure 5.19
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Figure 5.19: SCC of a small Na condensate of 0.5 × 105 to 2.5 × 105 atoms at 𝑞Na = 73Hz, 𝐵 =
512(3)mG. Clearly visible are the initial coherent dynamics while after 8ms the
population of the |1, 0⟩ state rises above the initial preparation.
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Here again, the population stagnates for several milliseconds at 50% of |1, 0⟩ population and
then increases.

The same behaviour for a lower magnetic field of 470mG can be seen in Figure 5.20, with
higher statistics. For this detuning, the initial decrease of the |1, 0⟩ mode is somewhat slower,
but the overall structure very similar.
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Figure 5.20: SCC of a small Na condensate of 0.5 × 105 to 2.5 × 105 atoms at 𝑞Na = 61Hz, 𝐵 =
470(2)mG. Around 5ms, deviations frmo the single-mode sinusoidal behaviour
appear, indicating a second oscillation mode.

The initial dynamics can be even more rich in features, as is shown by the data in Figure 5.23,
presenting spin dynamics in a Bose-Einstein condensate at 407(3)mG. While the long time
dynamics show the same evolution into the |1, 0⟩ state, the short time shows two minima,
indicating oscillations with several frequencies.

To understand the signal and estimate a number for the oscillation period, three curves are
added to the data in Figure 5.23: The green and red curve are sine functions with frequencies of
63Hz and 95Hz, respectively. They aim to fit two different features: The green curve indicates
an oscillation given by the initial decrease and increase after 12ms, assuming that the minimum
has been cut by damping or multimode dynamics, while the red curve fits the faster dynamics
at the beginning, but strongly deviates after that.

Damping of the spin oscillations has been discussed theoretically in [25]; the details are
highly complex and far beyond the scope of this thesis. As the exact experimental parameters
are not yet under full control (especially regarding magnetic field gradients, but also a thermal
cloud that influences the BEC dynamics and possibly external disturbances), the damping will
not be further investigated here.

A fit to the data using two sine functions with all parameters free is shown in the blue curve,
resulting in two sine functions with 104Hz and 66.4Hz, respectively. Due to the number of free
parameters, the error bars are huge, so this fit is also rather a guide to the eye. It is obvious that
this function, too, cannot reproduce the data very well, indicating that the real dynamics are
much more complex than just the addition of two or even more sine curves. All this makes it
hard to estimate an oscillation period for the comparison with theory.
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Figure 5.21: SCC of a small Na condensate of 0.9 × 105 to 4.0 × 105 atoms at 𝑞Na = 13Hz, 𝐵 =
218(3)mG. The fast damping makes it hard to fit a reliable curve. As the order
of magnitude for the frequency can be estimated from the theoretical prediction
for the single mode, the fit was chosen with a large amplitude, assuming that the
damping cuts already after less than quarter an oscillation period. The data at
the very beginning were taken before the RF pulse was applied to cover the full
dynamics. Therefore, atoms are still in |1, 1⟩ in these shots.

Slow Oscillations
At a rather low magnetic field of only 97(3)mG, corresponding to 𝑞Na = 2.6Hz, the slowest
oscillation-like structure could be resolved, shown in Figure 5.24.

This is the only dataset so far where the initial dynamics is not a steep slope, but the slow
exponential growth could be observed. The first minimum is clearly resolved, while after that
the data are not stable enough to clearly detect further oscillation cycles. Again, a sine fit is laid
over the data to indicate the oscillation period here, a maximum population of 45% in the |1, 0⟩
mode definitely is the best choice.

To justify the use of a sine although the initial dynamics deviates from that, Figure 5.25 shows
the same dataset with a numerical simulation superimposed. The red curve is calculated as
detailed in section 5.2. This simulated curve has been scaled and phase-shifted to fit the data.

This procedure does not give quantitative information, as it is neither a fit nor a calculation
with the corresponding atom number. The intention here is to show the expected oscillation
structure of a single-mode BEC, which does not depend critically on the exact parameters. With
this curve added, the second minimum in the data seems more convincing, as all data points are
lying close to the simulation.

The sine deviates for initial dynamics: As the phase is determined by the dynamics between
20ms and 70ms, it would show an initial increase of the |1, 0⟩ mode, which is not in accordance
with the theory. The data scatter by several percent, which allows no clear distinction between
increase, decrease or nearly constant |1, 0⟩ population. Still, the oscillation period for both the
simulation and the sine are the same, which justifies to use a sine for the estimation of the
periodicity. Therefore, although all other data sets show only one minimum, the sine gives a
rough measure for the time scale.
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Figure 5.22: SCC of a small Na condensate of 0.5 × 105 to 2.0 × 105 atoms at 𝑞Na = 25Hz, 𝐵 =
300(2)mG. Data at the very beginning are again taken before the pulse.

Influence of Trapping Frequency
The spin dynamics obvioulsy depend on the density of the atoms, therefore, for the same number
of atoms, on the trapping frequencies. Unfortunately, our preparation scheme leads to a direct
coupling of atom number and trapping frequencies, since the final number of remaining atoms
depends – as the frequency – on the laser powers. In Figure 5.26, three different trap parameters
are shown with the effect on the spin dynamics.

While the mean trapping frequency is changed by a factor of 1.7, the mean atom numbers
changed by roughly a factor of 4, so the main effect indeed is in the atom numbers. Thus
the density changes strongly, with calculated mean densities of �̄� = 2.3, 5.7, 7.5 × 1013cm−3,
respectively. The corresponding 𝑐 = 𝑐2�̄� are 13Hz, 32Hz, 40Hz.

The tendency here is very clear: A lower trap potential leads to lower atom numbers, and
allows a clearer onset of the dynamics. From the calculated coupling strengths 𝑐, one can infer
the magnetic field where the resonant behaviour appears, from 𝑞res = 𝑐2 ⋅ �̄�, which is for the
three cases shown in Figure 5.26 a field of 420mG, 370mG, and 240mG for the case of the
weakest confinement.

As the measurements were done at 343mG, this means that only the lowest trap setting was
done below the resonance. It is not sure if there is a physical reason that the oscillation is less
damped in this case or if the expected larger amplitude is the only reason that the signal is
clearer than in the other cases.

Summary of the Results of the Small Condensate
Table 5.2 lists the results of the small condensate preparation for different fields. The listed
frequency is the one of the sine curves shown in the single measurements; it is important to
keep in mind that these are neither fits to the data nor the correct functional dependence. Still,
they give a time scale for the oscillation period which is the relevant information here.

As the functional form of the oscillation period is known from the analytic solution for
the SMA and could be reproduced by the numeric simulation, one can compare the observed
dependence on the magnetic field with the results of a simulation run. This is shown in the
right-hand side plot in Table 5.2, where the oscillation period of all scans presented above are
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Figure 5.23: SCC of a small Na condensate of 1.5 × 105 to 4 × 105 atoms at 𝑞 = 45Hz, 𝐵 =
407(3)mG. The short-time evolution shows two minima, indicating oscillations
with several modes. After the second minimum, the system drifts to the equilibrium
with 80% in |1, 0⟩ again. The red and green sine curves are guides to the eye; the
blue curve is a fit of two sines onto the data up to 12ms. Further explanations are
given in the text.

plotted. The blue curve shows a simulation and was scaled to fit the points. This is rather a
guide to the eye, but the data are in accordance with the expected form.

For a quantitative comparison, one has to calculate the coupling strength for these settings,
which gives the critical field 𝐵u� where the divergence of the oscillation is expected. Since the
atom numbers scatter rather strongly in all measurements, an estimate of the coupling strength
𝑐 = 𝑐2�̄� is difficult. For the given trap settings, one can calculate the parameter for 0.5 × 105,
1 × 105, 2 × 105 and 4 × 105, where 1 × 105 is about the mean number in the measurements.
The corresponding values for 𝑐 are listed below the plot in Table 5.2.

The minimum and maximum values of 𝐵u�, 211mG and 321mG, are added in the plot in
Table 5.2 as vertical black lines; the calculated divergence point for the oscillation should
therefore lie in the red-shaded area between the lines.

Obviously this contradicts the data, since the two data points in this region show a short
period. The red line is a scaled numeric simulation which shows that a shift of the peak cannot
reproduce the rest of the data set. This leaves as only explanation that the density is strongly
overestimated, maybe due to a smaller condensate fraction than assumed, lower trap frequencies,
or a badly calibrated imaging.

Another possible explanation for the low 𝐵u� would be that the constant 𝑐2 is smaller then
expected; but as the values of 𝑐2 reported in [77] and, from a completely independend method,
in [53], agree well, we exclude that our observation would correct this value by a factor of 2.

Finally, if the spinor phase were greater than zero, this could also shift the critical field to
lower values due to the cot𝜗 dependence of 𝛿(𝐵u�), as shown in Figure 5.7. This was the case
for the experiments of [9], where a small population of 2% in the |1, −1⟩ state is mentioned as
an explanation for an observed 𝜗 = 0.5(3). We cannot exclude such a population due to the
imaging quality, but our preparation scheme with the initial trapping in |2, 2⟩ and the transfer
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Figure 5.24: SCC of a small Na condensate of 0.25 × 105 to 2.5 × 105 atoms at 𝑞Na = 2.6Hz, 𝐵 =
97(3)mG. During the first about 15ms, only a slow dynamic occurs, while from
20ms to 60ms half an oscillation is visible. At 125ms and 200ms, further minima
of the |1, 0⟩ state might be present.
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Figure 5.25: Comparison of experimental data as shown in Figure 5.24, with a numerical 1D
simulation and a sine function. The simulated data are shifted and scaled to fit the
data. For longer times, the simulation shows spatial dynamics and thus deviates
from the sine.

to |1, 1⟩ should provide a very clear preparation as compared to the cooling in the |𝐹 = 1⟩
manifold as in [9]. The Rabi pulse itself cannot produce a spinor phase other than 𝜗 = 0, as
shown in subsection 2.3.3. This leaves the overestimated density as the most likely explanation
so far. A greater set of data points of course could clarify the situation.

140



5.3 Experimental Results of Homonuclear SCC

0 2 4 6 8

0.3

0.4

evolution time [ms]

po
pu

la
tio

n
of

|1
,0

⟩

0 2 4 6 8
0

1

2

3

⋅105

evolution time [ms]

at
om

nu
m
be

rs
120Hz
176 Hz
202 Hz

Figure 5.26: For the same magnetic field, a change in the trap parameters can have a tremen-
dous effect on the frequency, but especially on the visibility and damping of
the oscillations. The data show only the |1, 0⟩ population and were taken at
𝑞Na = 33Hz, 𝐵 = 343(3)mG, at �̄� = 2𝜋 ⋅ 120Hz, 176Hz, 202Hz. Only at the
lowest mean trapping frequency, a clear minimum can be observed. For higher
frequencies, the damping is strong and leads to a fast equilibration.
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5 Spin Dynamics

Table 5.2: Summary of observed spin dynamics in the small Na condensate case. From the
calibrated magnetic field, the 𝑞Na value is calculated. The listed frequencies are given
by the sine curves shown in the graphs. The three bottom entries are for the same
field, but different trap settings. On the right-hand side, the oscillation periods are
plotted against the magnetic field for these measurements. The blue curve is a numeric
simulation scaled to fit the data to show the expected behaviour. The critical field 𝐵u�,
with 𝑐2𝑛 = 𝑞(𝐵u�), depends on the density and therefore the atom number. Since
these fluctuate strongly, a list of 𝐵u� for different atom numbers is given below the plot.
1.0 × 105 is an average atom number for most scans; the corresponding oscillation
period is plotted in red.

field [mG] 𝑞Na [Hz] freq [Hz]

97 2.6 14
218 13 40, damped
300 25 60
343 33 –
407 46 63
470 61 70
512 73 100
620 107 140

̄𝜈 [Hz]

343 120 75
343 176 200
343 202 280
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atom number 𝑐2 ⋅ �̄� [Hz] 𝐵u� [mG]

0.5 × 105 12 211
1.0 × 105 16 243
2.0 × 105 22 279
4.0 × 105 29 321
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5.3.4 Thermal Sodium Gas

As described in subsection 5.1.5, also a cold thermal gas can show coherent oscillations in the
spin degree of freedom.

Since our experimental apparatus is optimized for the production of a large BEC, the prepara-
tion of a cold, but not condensed sample is challenging and needs some changes in the sequence.
The cooling scheme with the dimple condensation leads to a strong increase of the phase space
density for all trapped atoms. So either the atoms are very cold and dense – thus at least partly
condensed – or they are not yet trapped in the dimple and remain in the waveguide.

To overcome these limitations, several changes in the sequence were implemented, aiming at
a thermal gas with still rather large atom numbers. These changes included:

• Reduction of the MOT loading time down to 2 s instead of 4 s to reduce the initial atom
numbers.

• Much deeper MW knife cooling down to 1777.95MHz instead of 1779.3MHz.
• Final cooling in the crossed dipole trap only to 2𝜋 × (212, 200, 356)Hz.
• Ramping up the horizontal dipole beam in 100ms to heat the sample, with final trapping
frequencies of 2𝜋 × (212, 316, 465)Hz, with a mean trapping frequency of �̄� = 2𝜋 ×
464Hz.

• Stern-Gerlach mapping with only 4ms time of flight and current control set to full value
in the gradients to separate the thermal clouds as clearly as possible.

A thermal sample could also be produced by shortening the MOT loading time even further,
but this approach is unstable since the MOT only gives reliable atom number stability after a
certain loading time when it starts to saturate. Therefore, the shortest time that still produces
acceptable atom number fluctuations was chosen.

Further reduction of the atom number was done with the decreased MW knife frequency,
as the deeper cut does not lead to an increased phase space density at the end: The lower
temperature is increased again by the dipole trap loading, so that the main effect in this regime
of the MW knife is just removing atoms. This approach is much more stable than a further
reduction of the MOT loading time. Also, the stronger three-body losses in the |2, 2⟩ state
decrease the atom number, while also compensating to a small degree for fluctuations, since
larger samples also suffer from stronger losses.

Still, due to fluctuations in the atom numbers, a small condensate fraction could occur due
to a shot with more than the average atom number. This small condensate fraction could not
be monitored during the SCC measurements and might be one cause for damping or reduced
visibility of any fringes.

Some results of a thermal gas preparation are shown in Figure 5.27, at a magnetic field of
343mG, corresponding to 𝑞Na = 33Hz. The solid line is a guide to the eye, given by a sine with
a frequency of 57.3Hz. While the first decrease of the |1, 0⟩ mode is convincing, the data scatter
strongly after the first minimum. As mentioned above, this might be caused by a non-vanishing
condensate fraction, but also again by magnetic field gradients or other uncontrolled influences.

At lower magnetic fields, it was not possible to see clear oscillations, but again hints at
oscillatory behaviour could be shown, presented in Figure 5.28. At these fields, the lower
detuning leads to slower oscillations with a larger amplitude. Still, as the data scatter strongly,
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Figure 5.27: Spin Changing Collisions in a thermal Bose gas at 𝑞Na = 33Hz, 𝐵 = 343(3)mG.
The sine is a guide to the eye with a frequency of 50.9Hz.

no simple fit to the data can be obtained. Additionally challenging is a drift into the side modes
that occurs even before one full oscillation cycle.

The data for 197(3)mG on the left-hand side of Figure 5.28 show a small increase of |1, 0⟩ for
very short times directly after the coupling pulse, which could not be explained. We assume an
artefact from the imaging, where it is difficult to clearly distinguish the thermal clouds after
time of flight due to their fast expansion.
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Figure 5.28: SCC in a thermal Bose gas at 𝑞 = 10.8Hz, 𝐵 = 197(3)mG (left) and 𝑞 =
5.4Hz, 𝐵 = 139(3)mG (right). The solid lines are guides to the eye, consisting of a
sine with a frequency of 12Hz and 11Hz, respectively, and a linear slope to include
the drift into the side modes.

Summary of Thermal Spin Dynamics
In summary, the investigation of thermal spin dynamics was the most successful given that
several oscillation periods could be observed. However, the data quality is still very bad and
the data scatter strongly after the first minimum for all data sets. This might be related to the
unstable preparation process leading to varying temperatures and atom numbers. Also, the
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Figure 5.29: SCC in thermal sodium at different magnetic offset fields. The corresponding
𝑞 parameters are 𝑞Na = 10.8Hz; 20.6Hz; 37.5Hz. Again, sine curves are laid in
as guide to the eye and rough estimates of oscillation frequencies. The plotted
frequencies are 24Hz, 42Hz and 90Hz, respectively.

mapping was not optimized for thermal clouds, therefore the read out was suboptimal and can
be improved.

Table 5.3 shows a summary of the results, mainly the estimated frequency given by the sine
curves in the plots, as for the BEC case in Table 5.2.

In contrast to the BEC case, two points with longer oscillation periods are available, which
makes the comparison with the theory somewhat easier: These two data points could be around
the resonance peak, while the data at higher fields are already above the resonance, where the
oscillation frequency quickly rises.

Table 5.3: List of observed spin dynamics in the thermal sodium gas. The offset fields are
calibrated within the experimental error of 3mG; the corresponding 𝑞Na is calculated.
Frequencies listed here are taken from the sine curves that are laid into the data. The
plot shows the corresponding oscillation period depending on the magnetic field. For
the coupling parameter and the verticall lines in the plot see discussion in the text.

field [mG] 𝑞Na [Hz] freq [Hz] 2𝑐2�̄� [Hz]

139(3) 5.4 11 5.6
197(3) 10.8 12 5.8
218(3) 13.2 24 6.2
301(3) 25.1 42 5.7
343(3) 32.6 51 6.9
406(3) 45.7 90 7.0 0 100 200 300 400
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For a quantitative comparison, from each scan the mean number is taken and the mean density
of the gas calculated for this value. The trapping frequencies for all cases are𝜔u�,u�,u� = 2𝜋 × (212, 408, 561)Hz.
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From the mean density, the coupling parameter (remember to include the factor 2 for the thermal
case) 2 ⋅ 𝑐2�̄� is calculated and listed in the last column of Table 5.3.

In the plot, the critical field 𝐵u� for the extreme cases of the coupling parameters of the table
are indicated by the vertical lines, with 𝛿(𝐵u�) = 2 ⋅ 𝑐2�̄�.

As in the case of the BEC oscillations, two curves are laid over the data: The blue one is
adapted to fit the data points without restrictions regarding 𝐵u�, while the red one shows the
dependence for the maximum calculated 𝐵u�. Both curves fit the data very nicely, taking into
account that the estimation of the oscillation period was done only very roughly. The exact
position of 𝐵u� of course depends on too many unknown factors, but the function dependence
and order of magnitude for the critical field seem to agree very well with the expectations.
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5.3.5 ⁷Lithium

As in sodium, also bosonic lithium can show homonuclear spin dynamics. The ratio of scat-
tering lengths is even more favourable than in sodium, but the sign of the coupling is negative,
therefore ferromagnetic behaviour is expected. For the scattering lengths of the coupled |𝐹 = 0⟩
and |𝐹 = 2⟩ channels for the |𝑓1 = 𝑓2 = 1⟩ manifold, coupled channels calcuations give values
of 𝑎0 = 23.9 𝑎u�, 𝑎2 = 6.8 𝑎u�. [95]

This gives for the parameters 𝑐0 and 𝑐2:

𝑐2 ≈ 6 × 10−12 Hz/cm3 (5.46)
𝑐0 ≈ 1.2 × 10−11 Hz/cm3 (5.47)

which gives a coupling constant 𝑐2 about 10 times larger than the one for sodium. For this
ratio of scattering lengths, the single mode approximation is not valid anymore.

While using the upper hyperfine manifold is experimentally challenging due to the negative
scattering length, the hyperfine ground state offers a convenient system to work with.

In our system, we have an additional degree of freedom since we can choose to perform
experiments on ⁷Li without any sodium background, or to add sodium in different hyperfine
states. By choosing a state where spin changing collisions between the species are energetically
forbidden, the sodium can just provide a cold bath for the lithium atoms without changing the
internal spin dynamics.

Dynamics in ⁷Li have only been investigated with a large population in the |1, 0⟩ state instead
of coherent coupling as in the sodium case. Figure 5.30 shows the results of such a preparation
after different waiting times. This is in close analogy to the measurements done with sodium,
as shown in Figure 5.12.
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Figure 5.30: Homonuclear spin changing collisions of ⁷Li while Na is present in the |1, −1⟩ state
(full circles) compared to no sodium background (empty circles). The data without
sodium have been shifted by 0.02 s for better visibility. All coils were off, giving an
offset field of 477.6mG, where 𝑞Li = 140Hz.
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The dominant feature in these data is the very rapid decrease of the |1, 0⟩ mode. In the case
of sodium background present, the main dynamics happen during the first 250ms, and after
that only a small further drift into the side modes can be seen. Without sodium, this process
seems to be slower; this might be caused by a higher temperature of the sample: The RF pulse
which populates the |1, 0⟩ state heats up the sample, and the sodium can act as a cooling bath,
therefore increasing the density of the ⁷Li atoms, leading to faster dynamics.

While for sodium the spatial structure of the single components could be resolved, the ⁷lithium
imaging is not good enough to observe any spatial features. Thus possible phase separations or
changes in the cloud’s form could not be monitored.
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Figure 5.31: Spin domain diagram for an ferromagnet (𝑐2 < 0). Shown is the spin configuration
that minimizes the free energy depending on the quadratic Zeeman shift and the
parameter 𝑝. Inside the lines, (right side) pure |1, 0⟩ domains can form; the same
is true for |1, 1⟩ or |1, −1⟩ outside the shaded region. Inside the shaded regions,
|1, 0⟩ is mixed mostly with only one of the side modes. All states are miscible in all
regimes; the boundaries are not sharp. The parameters for the plot are given in the
text.

As for the antiferromagnetic case, a spin domain diagramm for the ferromagnetic behaviour
can be calculated, and the structure is shown in Figure 5.31. In contrast to the antiferromagnet,
all spin states are always miscible, indicated by the smooth boundaries between the regions.
Pure domains exist in the white regions, for the |1, −1⟩ (above the shaded regions), for |1, 0⟩
(around the 𝑥-axis for high fields) and for |1, 1⟩ (below the shaded region). The shaded areas
show a regime where the |1, 0⟩ component mixes with one of the side modes, while the other
side mode has only a small population.

Using the mean atom number of about 5(1) × 104 atoms and calculating the 𝑐2 parameter
using the scattering lengths 𝑎2 = 6.8 aB, 𝑎0 = 23.9 aB, the coupling parameter is 𝑐 = 𝑐2�̄�/2 =
442Hz and the corresponding magnetic field is 850mG. The date shown above were taken at a
smaller field, indicating that the atoms are well in the miscible regime. This might explain the
fast decay into the equal distribution of the substates.
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Since there is no change in the overall magnetization, meaning that the number of atoms in
the side modes is symmetric within the experimental uncertainty, there is no interspecies spin
exchange, unlike the measurements presented in the next section.

5.4 Results Heteronuclear SCC

As in many other aspects of ultracold atomic gas experiments, the addition of a second species
does not increase the complexity of the system linearly, but many additional challenges have
to be overcome. That is one of the reasons why the extension of any effect shown in a single
species experiment takes several years to be ported onto a mixture experiment.

In the case of Feshbach resonances, this process took six years, from the very first observation
of Feshbach resonances in sodium [46] to the first two-species observations in the ⁶lithium-
sodium mixture. [97]

For spin dynamics, this is true as well, and just recently the first coherent spin-exchange
dynamics between two heteronuclear bosonic species has been reported by Li et al. [62] in
the sodium-rubidium system. This system shows very favourable scattering properties and
allows the authors to observe several coherent oscillation periods of spin exchange between the
species.

In our setup, the Bose-Bose case was also studied, but only as a preliminary effort to enable
the investigation of the Fermi-Bose mixture, which imposes very demanding requirements
on the experimental setup. The following sections will present our findings in both mixture
systems and will detail their limitations and future possibilities.

5.4.1 Bose-Bose Mixture ⁷Li-Na

While the fermionic lithium discussed below shows no dynamics without sodium, the bosonic
lithium shows a rather rich variety of spin dynamics since the homo- and heteronuclear collisions
can influence each other.

On the other hand, this combination prevents us from seeing a clearly heteronuclear influence
alone. There are two possible start points for the 𝑀u� = +1 channel, namely Li in |1, 1⟩ and Na
in |1, 0⟩ (denoted again as |1, 1; 1, 0⟩), or the other way, |1, 0; 1, 1⟩. Both cases suffer from the
strong intraspecies dynamics shown in the last sections.

Due to the usual approach of our apparatus to treat lithium as an impurity, we chose the
preparation of |1, 0; 1, 1⟩, since the lithium density should be smaller than the sodium density.
Figure 5.32 shows this preparation and the time development of the ⁷Li populations.

The sketched insets show the dominating process, where the red-shaded one is for ⁷Li, and
the blue-shaded one for Na.

Clearly visible are the initial dynamics of ⁷Li where the |1, 0⟩ atoms tend into the side modes
for about 500 s. But, after this time, a clear imbalance between the |1, −1⟩ and |1, 1⟩ state in
lithium are observed, which can only be due to the influence of sodium. This is in contrast to
the data shown in Figure 5.30 where sodium is in the |1, −1⟩ state.

In the latter case, the process |1, 0; 1, −1⟩ ⇒ |1, −1; 1, 0⟩ is energetically forbidden and thus
only the ⁷Li homonuclear dynamics is observed. But for the case of |1, 0; 1, 1⟩ ⇒ |1, 1; 1, 0⟩
energy is released, allowing the ⁷Li atoms to change their total magnetization.
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Figure 5.32: Homo- and heteronuclear spin dynamics in ⁷Li at 820mG. Sodium atoms are present
in |1, 1⟩; Na atoms in |1, 0⟩ are not detectable. ⁷Li is prepared in |1, 0⟩ and shows a
rather fast dynamic into the side modes, which after about 1 s becomes strongly
imbalanced as the population of |1, 1⟩ rises. This violation of the magnetization can
only be explained by the influence of Na.

Unfortunately, the strong atom number imbalance does not allow to detect any changes of
state population in sodium which could give an important check to exclude any other external
influences on the lithium magnetization.

This type of measurement is similar to the domain formation during the equilibration of
the single-species setups, since the whole system can evolve into its ground state with spin-
conserving processes.

The second type of experiments, aiming at the observation of coherent oscillations, was done
by starting in the |1, 1; 1, 1⟩ state and coupling to a superposition of |1, 0⟩ and |1, 1⟩ for both
species. This is directly analog to the mesurements in the NaRb case of [62]. A typical result of
such a measurement is shon in Figure 5.33.

The only feature indicating heteronuclear oscillations in the initial decrease of |1, 1⟩ and
corresponding increase of |1, 0⟩ in ⁷Li. Again, the large imbalance of more than a factor of ten
does not allow to verify this on the sodium populations. Also, the data scatter very strongly, so
no clear statement about the spin exchange can be made here.

A problematic feature in this dataset is also the evolution of the |1, −1⟩ state in both species:
While for ⁷Li, a small increase in the relative population can be observed, for Na this increase is
very strong. This increase is on a time scale that is in accordance with the observations during
the spin domain formation discussed above. Basically this means that one has to look for faster
heteronuclear oscillations to reduce the effects of the relaxation into the homonuclear spinor
equilibrium states.
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Figure 5.33: Heteronuclear spin dynamics starting from a coherent superposition of both species.
⁷Li shows for about 100ms an increase in the |1, 0⟩ mode with corresponding
decrease in |1, 1⟩. In sodium, |1, 0⟩ decreases, but also the |1, −1⟩ mode increases,
which should not take part in the heteronuclear process. Mean sodium number
is 1.3 × 106, mean ⁷Li number 9.1 × 104. The strong imbalance does not allow to
resolve possible influence of the ⁷Li onto the Na atoms.
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5.4.2 Fermi-Bose Mixture ⁶Li-Na

One of the main challenges in the study of Fermi-Bose spin interactions is the very high energy
scale of the differential linear Zeeman shift compared to all other relevant energy scales. While
the linear shift cancels in both homonuclear and heteronuclear systems with the same total
spin, it does not in the Fermi-Bose mixture. This is due to the different 𝑔 factors, as detailed
in . Note again that it is not just the difference of the nuclear 𝑔u� factors, which is the case for
the heteronuclear bosonic case, but that due to the different total spin the 𝑔u� factor contains
different numbers.

As a reminder, Figure 5.34 shows again the energy difference of several spin exchange
channels. The scale now is suited to fully show the ⁶LiNa channel; for comparison, all other
channels for the bosonic combinations are also shown.
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NaNa |1, −1⟩ ⇒ |0, 0⟩
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RbNa |−1, 0⟩ ⇒   |0, −1⟩
⁷LiNa |−1, 1⟩ ⇒ |1, −1⟩
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⁷LiNa |0, 1⟩ ⇒ |1, 0⟩
⁶LiNa |−1/2, 1⟩ ⇒ |1/2, 0⟩

Figure 5.34: Energy differeneces of spin combinations for high fields. As in Figure 5.2, a negative
value in the graph means an exotherm process. Note the energy scale which is
now in MHz instead of Hz! For the ⁷LiNa mixture, there is a zero-crossing in
the |1, −1; 1, 1⟩ channel at 16.1G. This could be an interesting point to study the
exchange of Δ𝑚u� = 2.

Similarly to the heteronuclear bosonic case, there are two magnetic fields where the spin
combinations are energetically degenerate: At zero field, trivially, but also at higher field, where
the differential Zeeman shifts cancel again. This offers another possibility to study the spin
dynamics; however, at the required field of about 70.2G, there is no comercially available sensor
with the required resolution, and also the field stabilization at this high offset is difficult. Also,
the scattering properties are not given anymore by the low-field scattering lengths, which could
make the small coupling even smaller at high fields.

Due to these reasons, the Fermi-Bose mixture was studied at low fields and the main reason
for the extension of experimental tools to use the very low offset fields below 10mG. Only in
this range, the detuning gets close to the homonuclear cases, where the spin dynamics could be
investigated successfully.
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5.4 Results Heteronuclear SCC

Spin Dynamics with Differen Sodium Backgrounds
Figure 5.35 shows the time development of a spin mixture where spin relaxation is possible (full
circles) compared to the case where the process is suppressed both energetically as well as due
to spin conservation. The second case therefore acts as the reference where no dynamics should
happen and shows the state preparation reliability as well as the stability over time.

In the spin combination that allows SCC, Na is prepared in the ground state |1, 1⟩, while Li is
transferred by a RAP into the |1/2, −1/2⟩ energetically higher state. In the forbidden case, Li is
prepared in the same state, while Na is in |1, −1⟩. Since then Na is in the energetically highest
state in the |𝐹 = 1⟩ manifold, Li cannot transfer energy inelastically. Also, there is no allowed
spin transfer possible due to spin conservation.
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Figure 5.35: Heteronuclear Fermi-Bose spin dynamics at 302.95(85)mG, scanning the hold time.
Closed circles indicate Na in |1, 1⟩ (left case of the population sketches), while open
circles indicate Na in |1, −1⟩ after a 45 μs RF pulse with 212.8 kHz. Only after about
5 s of hold time, the data sets can be clearly distinguished. The absorption pictures
show ⁶Li atoms after time of flight with Stern-Gerlach mapping (upper pictures)
and Na in-situ (lower left) and after Stern-Gerlach mapping (lower right). The latter
picture was taken for a preparation of Na in a superposition, see below for details.

Due to the very small population of Li in the |1/2, 1/2⟩ state, great care has been taken to
prevent any systematic errors. Therefore, the sequence for lithium was always identical, with
the same hold time, while the Na atoms were removed in-situ with a resonant light pulse which
was also used to image the atoms. This procedure makes it impossible to track the sodium spin
development over the time as the in-situ imaging is not spin-dependent.

The real space images show the spin mapping of sodium and lithium; the left pictures
correspond to removal of Na directly after the final field is reached. The in-situ Na pictures
clearly show a large remaining thermal part which is not trapped in the dimple, but stays in the
waveguide. These atoms are lost during the hold time, only leaving the atoms in the dimple.
The hole in the middle indicates an optically dense sample where no sufficient amount of light
reaches the camera.
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The right-hand pictures show the mapping of Li and Na after the full interaction time, where
also sodium is spin-mapped. The presented data show sodium in a distribution over all three
spin states, as the Na seeding was scanned, too. The results of these data are shown below.
An important information here is the comparison with the sodium evolution to equilibrium
discussed above, which happens on a similar time scale. This process does not seem to have an
impact on the heteronuclear processes here.

The effect of any spin changes that might be caused by lithium cannot be resolved in sodium,
also not in a clear state preparation, since the imaging sensitivity for Na is not sufficient, as it
was designed for high atom numbers so far.

The lithium picture clearly shows the small population in the lower hyperfine state, which
seemsmore convincing than the small counted number. The color scales are chosen to emphasize
small atom numbers.

Coherent Coupling of Sodium
As can be seen by the example picture, not only the pure |1, 1⟩ state preparation of sodium
causes spin dynamics in lithium, but also mixtures of sodium states. Further investigations of
this are presented in Figure 5.36, where sodium is driven with Rabi pulses of different length to
populate all accessible spin combinations from purely |1, 1⟩ over all mixtures to a pure |1, −1⟩
state. See Figure 3.18 as reference for the spin populations and magnetization during the 3-level
Rabi coupling.

This dataset shows two important features: The more obvious is that the lithium spin can
change only if there is a sufficient amount of sodium atoms in the two lower states, since
both the processes |1/2, −1/2; 1, 1⟩ ⇒ |1/2, 1/2; 1, 0⟩ and |1/2, −1/2; 1, 0⟩ ⇒ |1/2, 1/2; 1, −1⟩ are
possible, conserving the spin and releasing energy. Therfore, up to about 25 μs coupling pulse,
where the |1, 1⟩ and |1, 0⟩ states dominate, the Li populaton in |1/2, −1/2⟩ rises by roughly a
constant amount. For larger populations of |1, −1⟩ of Na, the Li population in the lower state is
reduced, since less possible spin exchange partners are available.

The second feature regards the seeding: For both Na and ⁷Li the seeded spin changing
collisions show a much faster dynamics than any process without seeding. This is consistent
with the theoretical description, where the spin flip rate rises with the final state population.

For the data of ⁶LiNa, there is no corresponding observation, if only Na is seeded: Since |1, 0⟩
is one possible final state for the dynamics, the population in this state should influence the
spin flips. But this is not observed, of course, since the sodium |1, 0⟩ population is only one
part of the seeding, similar to the homonuclear case if a spinor (00.50.5) would be prepared:
The second part of seeding is missing, thus suppressing the spin exchange. Therefore, ⁶Li would
have to be seeded simultaneously so that a superposition of |1/2, 1/2; 1, 0⟩ and |1/2, 1/−2; 1, 1⟩
would pe present.

Forbidden Spin Population
The influence of the final state population of ⁶Li was studied by populating both states in
different parts. The results of this are plotted in Figure 5.37, where the lithium atoms were
transferred to the different state populations using an RF sweep of varied duration.

A full transfer of lithium from the |1/2, 1/2⟩ initial state to the upper |1/2, −1/2⟩ state was
achieved with an adiabatic sweep of 2000 μs from 2.223MHz to 2.623 MHz . Reducing this
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Figure 5.36: Heteronuclear Fermi-Bose spin dynamics at 302.95(85)mG. Hold time for all data
was 5.5 s. Na atoms were driven with 212.8 kHz for Rabi coupling. As long as a
sufficient amount of Na atoms in either |1, 1⟩ or |1, 0⟩ are present, spin exchange
can be seen. The seeding of Na does never increase the spin exchange rate.

sweep time leads to Landau-Zehner tunnelling, leaving atoms in the ground state. This transfer
was done at a higher magnetic offset field of 2.6G, before the field was ramped to the final
settings, leaving the Li atoms in interaction with sodium for about 200ms. We assume that the
state coherence of the ⁶Li states then is already decayed due to spin-conserving collisions with
sodium and a non-coherent, thermalized mixture of the ⁶Li states is prepared.

The case of a full transfer to the upper state is depicted with the full circles in Figure 5.37 and
shows the same behaviour as in the data presented above. For a faster sweep of 375 μs, only
around 80% of the atoms are transferred. The observed behaviour is similar, but the difference in
populations is larger, which could be interpreted as an amplification of the spin change process.

However, for an even faster sweep with 250 μs and only 60% state transfer, the dynamics
show an unexpected behaviour: For 2 to 3 s, the population of the excited state decreases, but
increases afterwards, reaching nearly the same value as the preparation. But here one has to
take the error bars into account which are also consistent with a strictly constant population.

The most striking feature therefore appears for the shortest sweep time of 125 μs, where the
excited state population increases for longer interaction times. This is also observed in the case
of no RF sweep (0 μs). Here it is important to keep in mind that the ⁶Li hold time was the same
for all points, just the removal time of Na changed. These two lower lines therefore have to be
interpreted in the way that the immersion of ⁶lithium in the sodium condensate for over 4 s
leads to a rise of the |1/2, −1/2⟩ population, while without sodium the initial population stays
constant.

This observation raises several questions, since the process |1/2, 1/,2; 1, 1⟩ ⇒ |1/2, −1/2; 1, 𝑥⟩
to any sodium state with 𝑥 = 0, ±1 is energetically forbidden and violates spin conservation.
This double-forbidden process therefore requires further investigation.

To exclude systematic misinterpretation of the data, Figure 5.38 shows the absolute atom
numbers detected in the two states. These numbers clearly reproduce the trends seen in
Figure 5.37, especially the increase of atoms in the upper state for the ground state preparation
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Figure 5.37: Heteronuclear spin dynamics at 302.95(85)mG, scanning the hold time. Lithium
is prepared in different populations; the preparation is done with an RF sweep of
the indicated length. Sodium is present in the |1, 1⟩ state, allowing lithium atoms
to undergo spin relaxations into the |1/2, −1/2⟩ state. The Na atoms are removed
at the indicated times; hold time for Li is always 5 s. The striking feature is the
increase of Li in the upper state after a few seconds interaction time.

(diamondmarkers). However, the strongly fluctuating sum of atoms due to unstable performance
of the experiment makes it necessary to always look at the relative populations, for example
the case of 125 μs sweep (triangle markers) where for the last time step, the population in both
states increases. It is interesting to note that only in two cases there is a significant amount
of losses of total atom number, which is the case of no transfer (starting with all atomn in the
ground state, diamond markers) and full transfer (all atoms in the upper state, cirle markers).
The latter one makes sense if one assumes that each spin flip of a lithium atom releases about
77 kHz of energy, leading to possible trap losses. In the former case of ground state preparation,
there is no obvious reason for stronger losses.

First, one has to check the sodium state preparation. As detailed in subsection 3.4.3, we
observe a not well understood transfer of sodium into other states during the hold time without
any obvious reason. This is attributed to stray RF fields in the lab that could not be isolated.
For the presented date here, we observe a sodium population of the |1, 0⟩ state after the full
interaction time of up to 10% , independent of the lithium populations. The total sodium atom
numbers are between 1 × 105 to 3 × 105 atoms, which is about 3 to 5 times the lithium atom
number.

Unfortunately, the sodium state population cannot be tracked during the hold time, in the
same scan as the in-situ imaging again is not state-dependent. Therefore it cannot be detected
whether the |1, 0⟩ state population was present from the beginning or was influenced by any
lithium spin flips.

The population of |1, 0⟩ atoms in sodium would allow the observed rise of lithium atoms in
the upper state, following the spin-conserving process |1/2, 1/2; 1, 0⟩ ⇒ |1/2, −1/2; 1, 1⟩. The
energy that is necessary for this process could partly be taken from the Fermi energy: A lithium
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Figure 5.38: Heteronuclear Fermi-Bose spin dynamics at 302.95(85)mG. Same dataset as above,
showing the absolute lithium numbers of the upper (right) and lower (left) state.
For the case of ground state preparation (diamond markers), a clear increase in the
atom number of the excited state can be seen; also the increase in the measured
ground state population for the preparation in |1/2, −1/2⟩ (cirle markers) is visible.
This shows that the observed effects in the relative population are not just due to a
relative loss.

atom from above the Fermi edge could reduce its total energy by changing the internal degree
of freedom and undergoing a transition to a low-lying motional state, as sketched in Figure 5.39.

Figure 5.39: Sketch for the explanation of the energy conservation for a spin flip due to large
Fermi energy.

The scattering length between the ⁶Li |1/2, 1/2⟩ and |1/2, −1/2⟩ is less then 1 aB for 𝐵 < 1G
[112], therefore the interaction does not add a large energy scale; for higher magnetic fields, the
interaction could lead to a blockade as the energy of the lowest motional state would be raised
by the interaction with the large Fermi sea.
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5.5 Remaining Challenges and Opportunities

The main goal of this thesis was the preparation of investigations of coherent heteronuclear
spin changing collisions in the Fermi-Bose mixture. This challenging task was tackled in several
steps, according to this roadmap:

Coherent oscillations in a thermal Bose gas Although presented in a different order in
this thesis, the thermal oscillations were the first scans that really showed oscillatory behaviour.
Comparison of the oscillation period with the predicted dependence on the magnetic field shows
a qualitative and quantitative agreement.

Coherent oscillations in a BEC of sodium For the second step, the most important
change was going to a condensate with lower particle numbers and very low trap frequencies,
getting closer to the single mode approximation, so that at least the initial dynamics could
be observed. Again, taken the sine curves as indicators for the oscillation period, at least a
qualitative agreement with the expected behaviour could be observed. Also multimode dynamics
were observed in the oscillations.

Coherent oscillations in a BECof ⁷lithium In ⁷Li, it was not possible to observe coherent
dynamics, as it was not extensively studied. In principle, ⁷Li is an interesting candidate for
studies of spin changing collisions due to the large difference in the 𝐹 = 0 and 𝐹 = 2 scattering
length with a small total value of both.

Coherent oscillations in the ⁷Li-Na mixture In the ⁷LiNa mixture, no coherent oscilla-
tions could be observed, but a definite incoherent spin exchange. This system is a very hard
choice since the intraspecies couplings are much stronger than the interspecies coupling. A
careful choice of magnetic field, densities of both species and controlled overlap might allow to
observe oscillations. An important point here is the positive heteronuclear scattering length
which leads to a repulsion of the ⁷Li out of the Na cloud. A thermal gas in one of the components
can increase the overlap; this was also the ansatz for the successful bosonic heteronuclear NaRb
spin oscillations. [62]

Coherent Oscillations in the ⁶Li-Na mixture As for the bosonic mixture, in ⁶LiNa no
coherent oscillations could be observed. However, in this case the simultaneous coupling of
both species was not yet achieved. The overlap is less limiting for ⁶LiNa due to the negative
scattering length.

Without the coherent coupling, only a slight drift of the populations due to heteronuclear
spin exchange could be observed and some additional, partly surprising effects, due to the high
Fermi energy and the parasitic coupling. All dynamics were observed on a time scale of several
seconds.

Coherent Superposition of ⁶Li and Na
This work paved the road for the final observation of ⁶LiNa oscillations by providing the most
important experimental features:
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• Reliable state read out
• Stable magnetic fields at very low offset (< 10mG)
• Coherent Rabi coupling at these fields for both ⁶Li and Na

Putting these techniques together might allow to observe coherent spin dynamics, since the
most promising setup was not yet realised: Both ⁶Li and Na in their mixture were prepared
in a coherent superposition individually, but no oscillations could be observed. However, in
analogy to the experiments by [62], one needs to prepare a coherent superposition of both
species simultaneously. This is also the reason why a very low magnetic field is needed, since
only when the differential linear Zeeman shift is smaller than the Rabi frequency of the driving,
it will be possible to produce this state combination with a single pulse, which is desirable for a
reliable coupling.
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Sich, nû hab ich dich gelêret,
des ich selber leider nie gepflac.
ungelücke mir verkêret,
daz ein sælic man volenden mac.

(Walther von der Vogelweide)6 Conclusion and Outlook to Possible
Future Experiments

This thesis has investigated the spin-dependend interactions in sodium and sodium-lithium
mixtures, and provided the experimental conditions for this.

The experimental work enabled the control of precise magnetic fields which allow the study
and possible application of Feshbach resonances. Spanning nearly six orders of magnitude,
also very low magnetic fields could be realized which are an important step for future studies
of the Fermi-Bose spinor mixtures. For the coupling of the states, an equal range of frequen-
cies for hyperfine transitions was realized, which allows the preparation of all relevant state
combinations.

In the last years, the improved Feshbach spetroscopy of sodium and lithium-sodium mixtures
allowed a more precise determination of the interaction potentials and thus a more rigorous
prediction for the coupling parameters which is needed for the spin dynamics.

The first observation of coherent spin dynamics in our system clearly shows the experimental
limitations that have to be overcome, but also opens the road to many interesting physical
models that can be realized in the different spinor mixtures. The homonuclear coherent spin
dynamics are already a well-studied process with a still very active field of further investigation,
but also application, especially in the prospect of quantum-enhanced metrology or precision
tests of fundamental constants.

Extending this field of spinor physics to the heteronuclear case can allow for more degrees
of freedom. Especially interesting is the Fermi-Bose case which could allow the production of
entangled states of fermionic and bosonic atoms. One possible prospect to use the heteronuclear
spin exchange is the simulation of one-dimensional dynamical gauge fields, as discussed in [50].

The realization of this sophisticated model requires a well-working combination of all experi-
mental tools developed so far in our experiment: First, the ultracold Fermi-Bose mixture has
to be produced, which is done routinely. Species-dependend lattices have already been used
successfully in previous experiments [83, 89].

Due to the new frequency source setup, the state preparation does not pose major challenges,
and the same is true for the magnetic field stabilization, where a cancelling of the gradient fields
is the remaining task.

The spin-exchange process has also been investigated, but for the Fermi-Bose case it is far
from the level of control needed for the implementation of the Schwinger model as introduced
in [50].

A final remark regarding possible future improvements in the experiment shall discuss the
change to another fermionic species instead of ⁶Li. Since the scattering properties in the ⁶LiNa
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system are not very fortune for neither interaction tuning nor strong spin exchange coupling, a
substitution of ⁶Li with ⁴⁰K might be an advantage: The ⁴⁰K²³Na mixture has a large difference
of singlet and triplet scattering lengths, promising for spin dynamics, and provides a broad
Feshbach resonance suitable for tuning and the production of fermionic molecules, as shown in
[110, 76]. The change to potassium would require a change in the oven design, since the mixing,
as done in our experiment so far, is not suitable for the K+Na mixture. [110]
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A Arduino & Electronics

A.1 Electronic Parts Used in the Microwave Setup

Table A.1: List of parts used in the microwave setup.

device function frequency limits

Arduino Due¹ Microcontroller 84MHz clock speed
AD9959/PCBZ² 4 channel DDS evaluation board 0.3MHz to 200MHz
AD9958/PCBZ² 2 channel DDS evaluation board 0.3MHz to 200MHz
FE 5680 A³ Rb atomic frequency standard 10MHz
E4421B⁴ MW source 0.25MHz to 3000MHz
EVAL-ADF4350EB2Z² Wideband PLL Synthesizer 137.5MHz to 4400MHz

KU PA BB 233 BBA⁵ 3W MW amplifier 500MHz to 2500MHz
ZHL-100W-52X⁶ 100W RF amplifier 50MHz to 500MHz
ZHL-3A⁶ (2*) 1W RF amplifier 0.4MHz to 150MHz
ZKL-2R5⁶ (2*) 20mW pre-amplifier 10MHz to 2500MHz

ZAPDQ-2-S⁶ Splitter/Combiner 90° 1000MHz to 2000MHz
ZX10Q-2-3-S+⁶ Splitter/Combiner 90° 220MHz to 470MHz
ZX05-C24-S+⁶ Level 7 mixoer 300MHz to 2400MHz
ZX05-1L-S+⁶ Level 3 mixer 2MHz to 500MHz
ZX10-2-252-S+⁶ Splitter/Combiner 0° 500MHz to 2500MHz
ZX10-2-12-S+⁶ Splitter/Combiner 0° 2MHz to 1200MHz
ANNE-50L⁶ 50Ω terminator 0GHz to 12GHz
SLP-250+⁶ Low pass 0MHz to 225MHz

ZASWA-2-50DR+⁶ RF swtich 0GHz to 5GHz

Manufacturers: ¹Arduino, ²Analog Devices, ³ Frequency Electronics, ⁴Agilent,⁵Kuhne Electronic,
⁶Minicircuits.
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A.2 Arduino Program Code

This section lists the Arduino Microcontroller
Codes for the magnetic field control, the mi-
crowave setup and the cooling water temper-
ature stabilization. Only relevant parts are
listed.

A.2.1 Microwave Setup

The code for the microwave setup is split into
several files for easier maintenance. The main
file defines the channel settings and variables
and initiates communication in the main loop.
The Interrupt Functions file contains the time
critical code which is executed after a trigger
pulse is received and controls the timing of the
chopped ramps.

Main File DDS_6channel.ino
const int P1 = 6; // C24

2 const int P2 = 7; // C23
const int P3 = 8; // C22

4
const int updatepin = 9; // C21

6 const int cs_dds_1 = 10; // C29/A28
const int power_down = 11; // D7

8 const int resetpin = 12; // D8
const int NOT_USED = 13; // B27

10
const int ext_tr_GND = 24; // A15

12 const int ext_trigger = 25; // D0
const int ext_trig2_GND = 34; // C2

14 const int ext_trig2 = 35; // C3
// not used = 36; // C4

16 // not used = 37; // C5
const int ext_50Hz_GND = 38; // C6

18 const int ext_50Hz = 39; // C7

20 const int switch1_GND = 40; // C8
const int switch1 = 41; // C9

22 const int calc_LED = 42; // A19
const int power_LED = 43; // A20

24 const int switch2_GND = 44; // C19
const int switch2 = 45; // C18

26 const int switch3_GND = 46; // C17
const int switch3 = 47; // C16

28 // not used = 48; // C15
const int CLK_GND = 49; // C14

30 const int CLK_ref = 50; // C13
const int MOSI_ref = 51; // C12

32 const int ref_clk_cs = 52; // B21
const int CLK_GND2 = 53; // B14

34
const double sys_clk = 500e6;

36 const double sync_clk = 0.25*sys_clk;
const int max_ramp = 400;

38 const double cut_time = 0.297;

40 //read in data from SDFF variables
int ramp_num = 0;

42 double freq_0[2][max_ramp], freq_1[2][max_ramp
], time_array[2][max_ramp];

unsigned long carrier[2][max_ramp], ampl_int[2][max_ramp
], phase_int[2][max_ramp];

44
// values for PLL frequency, initialized here, set in

setup()

46 int R0[2000], R1[2000], R4[2000];

48 //precompiled data to be written to the DDS
byte freq_0_c[2][max_ramp][4], freq_1_c[2][max_ramp

][4], freq_step[2][max_ramp][4];
50 byte ramp_t_step[2][max_ramp], phase_c[2][max_ramp

][2], ampl_c[2][max_ramp][2], bits;
int ch_select[max_ramp], switch_select[max_ramp],

switch_shift; // selects the DDS board and RF
switch to use

52 double time_array_c[2][max_ramp];
boolean rampdown_bool_c[2][max_ramp];

54
//variables for calculation

56 int ramp_parts_num[2][max_ramp], ramp_first_part[2][
max_ramp], ramp_last_part[2][max_ramp], k;

double freq_start, freq_end, rem_time, steepness,
start_time, end_time, cutted_time, minimum, multi,
temp = 0;

58 boolean finished, rampdown[2][max_ramp];
unsigned long multi_int = 0;

60
//byte caculation functions

62 const double min_t_step = 1/sync_clk;
const double freq_steps_possible = 4294967295.0;

64 const double min_freq_step = sys_clk/
freq_steps_possible;

const double inv_min_freq_step = freq_steps_possible/
sys_clk;

66 unsigned long min_ind, min_ind_index, freq_step_mult;
boolean found;

68 double delta_fges, min_t_slope, sweep_sync_step, slope,
f_wanted, f_dds, end_dds = 0, check[256] =
{999999};

double time_step_freq_step[5];
70

//min Index function
72 unsigned long min_index;

double min_value;
74

//phase function
76 unsigned long phase_bits;

78 //amplitude function
double f, norm, corrected_scaling_fac, A_des;

80
//trigger loop

82 volatile int all_ramps_counter = 0;
volatile int SDFF_ramp_counter = 0;

84 volatile int this_ramp_chop_counter = 0;
volatile int ramp_in_dds_buffer = 0;

86
// temporary variables for serial read

88 char ramp_num_char[2], tmpchar, mode;
String tmpstring;

90
//interrupt

92 boolean start_up = true;

94 // variable for selecting the slave DDS. Defaults to the
first one.

int cs_dds = cs_dds_1;
96

void setup(){
98 R0[ 175] = 0x8C0000; R1[ 175] = 0x8008011; R4[ 175] =

0xC5003C;
R0[ 200] = 0xA00000; R1[ 200] = 0x8008011; R4[ 200] =

0xC5003C;
100 R0[ 220] = 0xB00000; R1[ 220] = 0x8008011; R4[ 220] =

0xC501E4;
R0[ 230] = 0xB80000; R1[ 230] = 0x8008011; R4[ 230] =

0xC5003C;
102 R0[ 400] = 0xA00000; R1[ 400] = 0x8008011; R4[ 400] =

0xB501FC;
R0[ 410] = 0xA40000; R1[ 410] = 0x8008011; R4[ 410] =

0xB501FC;
104 R0[ 500] = 0xC80000; R1[ 500] = 0x8008011; R4[ 500] =

0xB5003C;
R0[ 850] = 0xAA0000; R1[ 850] = 0x8008011; R4[ 850] =

0xA5002C;
106 R0[ 851] = 0xAA0010; R1[ 851] = 0x8008029; R4[ 851] =

0xA5002C;
R0[1600] = 0xA00000; R1[1600] = 0x8008011; R4[1600] =

0x95002C;
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108 R0[1772] = 0xB10010; R1[1772] = 0x8008029; R4[1772] =
0x580005;

R0[1950] = 0xC30000; R1[1950] = 0x8008011; R4[1950] =
0x95003C;

110
// initialize serial communication at 115200 baud (yes

, we are that fast!)
112 Serial.begin(115200);

//Serial.println("Arduino Due; DDS_6channel, updated
around sept. 18 2015");

114 //SPI setup for DDS
SPI.begin(cs_dds_1);

116 SPI.setDataMode(cs_dds_1,SPI_MODE3);
SPI.setBitOrder(cs_dds_1,MSBFIRST);

118 SPI.setClockDivider(cs_dds_1,20);

120 SPI.begin(cs_dds_2);
SPI.setDataMode(cs_dds_2,SPI_MODE3);

122 SPI.setBitOrder(cs_dds_2,MSBFIRST);
SPI.setClockDivider(cs_dds_2,4);

124
//pinmode set, start output low

126 pinMode(ext_trigger, INPUT);
pinMode(ext_trig2, INPUT);

128 pinMode(ext_50Hz, INPUT);

130 pinMode(ext_tr_GND, OUTPUT); digitalWrite(ext_tr_GND
, LOW);

pinMode(ext_trig2_GND,OUTPUT); digitalWrite(
ext_trig2_GND, LOW);

132 pinMode(ext_50Hz_GND, OUTPUT); digitalWrite(
ext_50Hz_GND, LOW);

134 pinMode(power_down, OUTPUT); digitalWrite(power_down
, LOW);

pinMode(resetpin, OUTPUT); digitalWrite(resetpin,
LOW);

136 pinMode(P0, OUTPUT); digitalWrite(P0,
LOW);

pinMode(P1, OUTPUT); digitalWrite(P1,
LOW);

138 pinMode(P2, OUTPUT); digitalWrite(P2,
LOW);

pinMode(P3, OUTPUT); digitalWrite(P3,
LOW);

140 pinMode(updatepin, OUTPUT); digitalWrite(updatepin,
LOW);

pinMode(ref_clk_cs, OUTPUT); digitalWrite(ref_clk_cs
, HIGH);

142 pinMode(CLK_ref, OUTPUT); digitalWrite(CLK_ref,
LOW);

pinMode(CLK_GND, OUTPUT); digitalWrite(CLK_GND,
LOW);

144 pinMode(CLK_GND2, OUTPUT); digitalWrite(CLK_GND2,
LOW);

pinMode(MOSI_ref, OUTPUT); digitalWrite(MOSI_ref,
LOW);

146
pinMode(switch1, OUTPUT); digitalWrite(switch1,

LOW);
148 pinMode(switch1_GND, OUTPUT); digitalWrite(

switch1_GND, LOW);
pinMode(switch2, OUTPUT); digitalWrite(switch2,

LOW);
150 pinMode(switch2_GND, OUTPUT); digitalWrite(

switch2_GND, LOW);
pinMode(switch3, OUTPUT); digitalWrite(switch3,

LOW);
152 pinMode(switch3_GND, OUTPUT); digitalWrite(

switch3_GND, LOW);
pinMode(power_LED, OUTPUT); digitalWrite(power_LED,

HIGH);
154 pinMode(calc_LED, OUTPUT); digitalWrite(calc_LED,

LOW);

156 attachInterrupt(ext_trig2, interrupt_func, RISING);
attachInterrupt(ext_trigger, interrupt_func, RISING);

158
Serial.println("Arduino ready");

160
write_PLL(1950);

162 reset_DDS(); //reset DDS (both bords are reset)
}

164

void loop(){
166 if(Serial.available()>0){ // check for data available

in the buffer
delay(500); // wait for all data to

arrive
168 mode = Serial.read(); // set mode of operation

if(mode == 't'){ // single tone mode
170 cs_dds = 10;

read_in_freqdata(); //read in data from buffer
172 }

174 if(mode == 'r' ){ // start ramp mode
digitalWrite(calc_LED,HIGH);

176 read_in_rampdata(); // read in ramping data
from buffer

ramp_calculation(); // pre-calculate all
bytes to be written to the DDS during the
sequence

178 reset_DDS(); // reset DDS to bring it
into a defined state

write_PLL(carrier[0][0]);
180 cs_dds = ch_select[0]; // selects the DDS board

for the first ramp
switch_shift = switch_select[0];

182 ramp_write(0); //write first ramp to
the DDS

start_up = false;
184 digitalWrite(calc_LED,LOW);

}
186 }

}

Interrupt Functions
interrupt_stuff.ino
// -- start of help functions -- \\

2 //this function gets called by the interrupt on pin
ext_trigger (experiment control)

//it starts the first part of each ramp defined in the
SDFF, if the ramp is chopped the following

4 //parts are started by the timer interrupt
void interrupt_func(){

6 if(!start_up ){ //workaround (otherwise this
function runs when arduino is reset, due to all
pins high)

// the following means that D4.6 is low and the trigger
comes from the D3.26 channel only. By this, we
decide which pin triggered the interrupt!!

8 // why only one interrupt? reduces error probability
// the 2nd trigger is ~500µs slower. Issue with

different registers?
10 // But does not matter as we use this for the 50Hz

trigger anyways.

12 if(REG_PIOC_PDSR & 8){while(!(REG_PIOC_PDSR & 128))
{};};//delayMicroseconds(5000);}; // this adds a
delay. Find out what exactly by yourself.

TC_Stop(TC1, 0); //disable timer (if running)
14 SDFF_ramp_counter++; // FIXME: could be done

afterwards if implemented cleverly!
all_ramps_counter = ramp_first_part[0][

SDFF_ramp_counter]; //correct the
all_ramps_counter if necessary

16
REG_PIOD_ODSR &= ~1 << 7; // set Pin 11 LOW (power

up)
18 REG_PIOC_ODSR = 1 << 21; // set Pin 9 HIGH,

updatepin
// NOP;NOP; // wait for two

clock cycles (not needed)
20 REG_PIOC_ODSR = 00 << 22;

REG_PIOC_ODSR = 15 << 22;
22 REG_PIOC_ODSR = (9*(!rampdown_bool_c[1][

all_ramps_counter]) + 6*(!rampdown_bool_c[0][
all_ramps_counter])) << 22; // set SDIO Pins
low if necessary for down ramps

24 NOP;NOP;NOP;NOP;NOP;NOP;NOP;NOP;NOP;NOP;
REG_PIOC_ODSR = 1 << switch_shift; // set switch HIGH

26
PIOC->PIO_CODR = 1 << 21; //set Pin 9 LOW //

set updatepin low // FIXME: maybe not
necessary any more, set by REG_PIOC_ODSR = ...
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28
if(time_array[0][SDFF_ramp_counter] < 0.001){

30 delayMicroseconds(time_array[0][SDFF_ramp_counter
]*1e6-6);

PIOD->PIO_SODR=1<<7; //set Pin 11 HIGH //
power down if the ramp is not chopped, for
very short ramps/pulses!

32 REG_PIOC_ODSR = 0 << 9;
}

34
// REG_PIOC_ODSR = 1 << 21; // set Pin 9 HIGH //

set updatepin, brings data into active registers //
FIXME: test wether this is faster/slower/equal to
setting REG_PIOA_ODSR explicitely

36 /*
// TEST FOR DOUBLE PULSES // 230t500000f500000F1000aSz

38 REG_PIOD_ODSR = 1 << 7; // set Pin 11 HIGH (power down)
delayMicroseconds(100);

40 REG_PIOD_ODSR = 0 << 7; // set Pin 11 LOW (power up)
REG_PIOC_ODSR = 00 << 22; // set all SDIO pins low (

prepare)
42 REG_PIOC_ODSR = 15 << 22; // set all SDIO pins high (

start ramps)
REG_PIOC_ODSR = (9*(!rampdown_bool_c[1][

all_ramps_counter]) + 6*(!rampdown_bool_c[0][
all_ramps_counter])) << 22; // set SDIO Pins low
if necessary for down ramps

44 if(time_array[0][SDFF_ramp_counter] < 0.001){
delayMicroseconds(time_array[0][SDFF_ramp_counter
]*1e6-6); PIOD->PIO_SODR=1<<7;} //set Pin 11 HIGH
//power down if the ramp is not chopped, for very
short ramps/pulses!

// ********************
46 */

//start timer, which will start next part of chopped
ramp or turn off

48 startTimer(TC1, 0, TC3_IRQn, time_array_c[0][
all_ramps_counter]);

ramp_write(all_ramps_counter+1); //write next ramp
into buffer

50 }
}

52
//Black magic, do not mess with this

54 void startTimer(Tc *tc, uint32_t channel, IRQn_Type irq,
double wait_time){

pmc_set_writeprotect(false); // Enable or
disable write protect of PMC registers.

56 pmc_enable_periph_clk((uint32_t)irq); // Enable the
specified peripheral clock.

58 TC_Configure(tc, channel, TC_CMR_WAVE|
TC_CMR_WAVSEL_UP_RC|TC_CMR_TCCLKS_TIMER_CLOCK4);

uint32_t rc = VARIANT_MCK/128*wait_time;
60 TC_SetRA(tc, channel, rc/2);

TC_SetRC(tc, channel, rc);
62 TC_Start(tc, channel);

64 tc->TC_CHANNEL[channel].TC_IER = TC_IER_CPCS;
tc->TC_CHANNEL[channel].TC_IDR = ~TC_IER_CPCS;

66 NVIC_EnableIRQ(irq);
}

68
//called by timer interrupt, function name must not be

changed
70 void TC3_Handler(){

TC_GetStatus(TC1, 0);
72 TC_Stop(TC1, 0); //disable timer (or it will call this

function again)
all_ramps_counter++;

74 if(ramp_last_part[0][SDFF_ramp_counter] >
all_ramps_counter - 1){ // -1

//this is a fix, without this the ramp chopping does
/not/ work // FIXME: but - why?

76 for(int i=0;i<10000;i++){NOP;} // wait for 10000
clock cycles (120µs)

78 PIOC->PIO_SODR = 1 << 21; // set Pin 9 HIGH //
set updatepin, brings data into active
registers // FIXME: test wether this is faster/
slower/equal to setting REG_PIOA_ODSR
explicitely

NOP;NOP; // wait for two clock
cycles

80 REG_PIOC_ODSR = 00 << 22; // I/O Pins LOW
REG_PIOC_ODSR = 15 << 22; // I/O Pins HIGH

82 REG_PIOC_ODSR = (9*(!rampdown_bool_c[1][
all_ramps_counter]) + 6*(!rampdown_bool_c[0][
all_ramps_counter])) << 22; // set SDIO Pins
low if necessary for down ramps

84 PIOC->PIO_CODR = 1 << 21; //set Pin 9 LOW //
set updatepin low // FIXME: maybe not
necessary any more, set by REG_PIOC_ODSR = ...

REG_PIOC_ODSR = 1 << switch_shift; // turn on
switch

86 startTimer(TC1, 0, TC3_IRQn, time_array_c[0][
all_ramps_counter]);

ramp_write(all_ramps_counter+1); //write next ramp
into buffer

88 ramp_in_dds_buffer = all_ramps_counter+1;
}

90 else {
PIOD->PIO_SODR = 1 << 7; //set Pin 11

HIGH // power down
92 REG_PIOC_ODSR = 00 << switch_shift; // set switch

low

94 REG_PIOC_ODSR = 00 << 22; // set all SDIO pins low
(prepare) // appareantly necessary when working
with two boards!

cs_dds = ch_select[SDFF_ramp_counter+1];
// set the slave select to the

value for the next ramp
96 switch_shift = switch_select[SDFF_ramp_counter+1];

ramp_write(ramp_first_part[0][SDFF_ramp_counter+1]);
// write proper ramp into buffer // FIXME:
Changed place here instead of setting it on
start of ramp. Suppresses a 100µs delay. But
does it work reliably here?

98 write_PLL(carrier[0][SDFF_ramp_counter+1]);
// set the carrier to the value for

the next ramp
}

100 }

Frequency Ramps
ramp_freq_functions.ino
// -- start of help functions -- \\

2 //writes the bytes for a single ramp to the DDS (but no
I/O Update!)

void ramp_write(int ramp){
4 //select ch 1/2 for frequency and amplitude (MW)

// 0x00
6 SPI.transfer(cs_dds, B00000000,

SPI_CONTINUE);
SPI.transfer(cs_dds, B01100000,

SPI_CONTINUE);
8 //write frequency word 0 0x04 (lower frequency) //

for ch 1/2
SPI.transfer(cs_dds, B00000100,

SPI_CONTINUE);
10 SPI.transfer(cs_dds, freq_0_c[0][ramp][0],

SPI_CONTINUE);
SPI.transfer(cs_dds, freq_0_c[0][ramp][1],

SPI_CONTINUE);
12 SPI.transfer(cs_dds, freq_0_c[0][ramp][2],

SPI_CONTINUE);
SPI.transfer(cs_dds, freq_0_c[0][ramp][3], SPI_LAST)

;
14 //write frequency word 1 0x04A(higher frequency)

SPI.transfer(cs_dds, B00001010,
SPI_CONTINUE);

16 SPI.transfer(cs_dds, freq_1_c[0][ramp][0],
SPI_CONTINUE);

SPI.transfer(cs_dds, freq_1_c[0][ramp][1],
SPI_CONTINUE);

18 SPI.transfer(cs_dds, freq_1_c[0][ramp][2],
SPI_CONTINUE);

SPI.transfer(cs_dds, freq_1_c[0][ramp][3],
SPI_CONTINUE);

20 //set 0x06 amplitude control
SPI.transfer(cs_dds, B00000110,

SPI_CONTINUE);
22 SPI.transfer(cs_dds, B01010111,

SPI_CONTINUE);
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SPI.transfer(cs_dds, ampl_c[0][ramp][0],
SPI_CONTINUE);

24 SPI.transfer(cs_dds, ampl_c[0][ramp][1],
SPI_CONTINUE);

26 // ramp parameters for ch 1/2
if(rampdown_bool_c[0][ramp]){

28 // DOWNWARDS RAMP
//enable linear sweep 0x03

30 //enable no dwell when ramping up
SPI.transfer(cs_dds, B00000011,

SPI_CONTINUE);
32 SPI.transfer(cs_dds, B10000000,

SPI_CONTINUE);
SPI.transfer(cs_dds, B01000011,

SPI_CONTINUE);
34 SPI.transfer(cs_dds, B00000100,

SPI_CONTINUE);
//set 0x07 Linear Sweep Ramp Rate (time between

frequency steps)
36 SPI.transfer(cs_dds, B00000111,

SPI_CONTINUE);
SPI.transfer(cs_dds, ramp_t_step[0][ramp],

SPI_CONTINUE);
38 SPI.transfer(cs_dds, B00000001,

SPI_CONTINUE);
//set 0x08 Rising Delta Word (one large set because

must first ramp up before a ramp down is
possible)

40 SPI.transfer(cs_dds, B00001000,
SPI_CONTINUE);

SPI.transfer(cs_dds, B11111111,
SPI_CONTINUE);

42 SPI.transfer(cs_dds, B11111111,
SPI_CONTINUE);

SPI.transfer(cs_dds, B11111111,
SPI_CONTINUE);

44 SPI.transfer(cs_dds, B11111111,
SPI_CONTINUE);

//set 0x09 Falling Delta Word
46 SPI.transfer(cs_dds, B00001001,

SPI_CONTINUE);
SPI.transfer(cs_dds,freq_step[0][ramp][0],

SPI_CONTINUE);
48 SPI.transfer(cs_dds,freq_step[0][ramp][1],

SPI_CONTINUE);
SPI.transfer(cs_dds,freq_step[0][ramp][2],

SPI_CONTINUE);
50 SPI.transfer(cs_dds,freq_step[0][ramp][3],

SPI_CONTINUE);
}else{

52 // UPWARDS RAMP
//enable linear sweep 0x03 FOR THE NO DWELL BITS IN

RAMP UP
54 SPI.transfer(cs_dds, B00000011,

SPI_CONTINUE);
SPI.transfer(cs_dds, B10000000,

SPI_CONTINUE);
56 SPI.transfer(cs_dds, B11000011,

SPI_CONTINUE);
SPI.transfer(cs_dds, B00000000,

SPI_CONTINUE);
58 //set 0x07 Linear Sweep Ramp Rate (time between

frequency steps)
SPI.transfer(cs_dds, B00000111,

SPI_CONTINUE);
60 SPI.transfer(cs_dds, B00000001,

SPI_CONTINUE);
SPI.transfer(cs_dds, ramp_t_step[0][ramp],

SPI_CONTINUE);
62 //set 0x08 Rising Delta Word

SPI.transfer(cs_dds, B00001000,
SPI_CONTINUE);

64 SPI.transfer(cs_dds,freq_step[0][ramp][0],
SPI_CONTINUE);

SPI.transfer(cs_dds,freq_step[0][ramp][1],
SPI_CONTINUE);

66 SPI.transfer(cs_dds,freq_step[0][ramp][2],
SPI_CONTINUE);

SPI.transfer(cs_dds,freq_step[0][ramp][3], SPI_LAST)
;

68 }

70 //select ch 0/3 for frequency and amplitude (RF)

// 0x00
72 SPI.transfer(cs_dds, B00000000,

SPI_CONTINUE);
SPI.transfer(cs_dds, B10010000,

SPI_CONTINUE);
74 //write frequency word 0 0x04 (lower frequency) // for

ch 0/3
SPI.transfer(cs_dds, B00000100,

SPI_CONTINUE);
76 SPI.transfer(cs_dds, freq_0_c[1][ramp][0],

SPI_CONTINUE);
SPI.transfer(cs_dds, freq_0_c[1][ramp][1],

SPI_CONTINUE);
78 SPI.transfer(cs_dds, freq_0_c[1][ramp][2],

SPI_CONTINUE);
SPI.transfer(cs_dds, freq_0_c[1][ramp][3], SPI_LAST)

;
80 //write frequency word 1 0x04A(higher frequency)

SPI.transfer(cs_dds, B00001010,
SPI_CONTINUE);

82 SPI.transfer(cs_dds, freq_1_c[1][ramp][0],
SPI_CONTINUE);

SPI.transfer(cs_dds, freq_1_c[1][ramp][1],
SPI_CONTINUE);

84 SPI.transfer(cs_dds, freq_1_c[1][ramp][2],
SPI_CONTINUE);

SPI.transfer(cs_dds, freq_1_c[1][ramp][3],
SPI_CONTINUE);

86 //set 0x06 amplitude control
SPI.transfer(cs_dds, B00000110,

SPI_CONTINUE);
88 SPI.transfer(cs_dds, B01010111,

SPI_CONTINUE);
SPI.transfer(cs_dds, ampl_c[1][ramp][0],

SPI_CONTINUE);
90 SPI.transfer(cs_dds, ampl_c[1][ramp][1],

SPI_CONTINUE);

92 // ramp parameters for ch 0/3
if(rampdown_bool_c[1][ramp]){

94 // DOWNWARDS RAMP
//enable linear sweep 0x03

96 // enable no dwell when ramping up
SPI.transfer(cs_dds, B00000011,

SPI_CONTINUE);
98 SPI.transfer(cs_dds, B10000000,

SPI_CONTINUE);
SPI.transfer(cs_dds, B01000011,

SPI_CONTINUE);
100 SPI.transfer(cs_dds, B00000000,

SPI_CONTINUE);
//set 0x07 Linear Sweep Ramp Rate (time between

frequency steps)
102 SPI.transfer(cs_dds, B00000111,

SPI_CONTINUE);
SPI.transfer(cs_dds, ramp_t_step[1][ramp],

SPI_CONTINUE);
104 SPI.transfer(cs_dds, B00000001,

SPI_CONTINUE);
//set 0x08 Rising Delta Word (one large set because

must first ramp up before a ramp down is
possible)

106 SPI.transfer(cs_dds, B00001000,
SPI_CONTINUE);

SPI.transfer(cs_dds, B11111111,
SPI_CONTINUE);

108 SPI.transfer(cs_dds, B11111111,
SPI_CONTINUE);

SPI.transfer(cs_dds, B11111111,
SPI_CONTINUE);

110 SPI.transfer(cs_dds, B11111111,
SPI_CONTINUE);

//set 0x09 Falling Delta Word
112 SPI.transfer(cs_dds, B00001001,

SPI_CONTINUE);
SPI.transfer(cs_dds,freq_step[1][ramp][0],

SPI_CONTINUE);
114 SPI.transfer(cs_dds,freq_step[1][ramp][1],

SPI_CONTINUE);
SPI.transfer(cs_dds,freq_step[1][ramp][2],

SPI_CONTINUE);
116 SPI.transfer(cs_dds,freq_step[1][ramp][3],

SPI_CONTINUE);
}else{
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118 // UPWARDS RAMP
//enable linear sweep 0x03 FOR THE NO DWELL BITS IN

RAMP UP
120 SPI.transfer(cs_dds, B00000011,

SPI_CONTINUE);
SPI.transfer(cs_dds, B10000000,

SPI_CONTINUE);
122 SPI.transfer(cs_dds, B11000011,

SPI_CONTINUE);
SPI.transfer(cs_dds, B00000000,

SPI_CONTINUE);
124 //set 0x07 Linear Sweep Ramp Rate (time between

frequency steps)
SPI.transfer(cs_dds, B00000111,

SPI_CONTINUE);
126 SPI.transfer(cs_dds, B00000001,

SPI_CONTINUE);
SPI.transfer(cs_dds, ramp_t_step[1][ramp],

SPI_CONTINUE);
128 //set 0x08 Rising Delta Word

SPI.transfer(cs_dds, B00001000,
SPI_CONTINUE);

130 SPI.transfer(cs_dds,freq_step[1][ramp][0],
SPI_CONTINUE);

SPI.transfer(cs_dds,freq_step[1][ramp][1],
SPI_CONTINUE);

132 SPI.transfer(cs_dds,freq_step[1][ramp][2],
SPI_CONTINUE);

SPI.transfer(cs_dds,freq_step[1][ramp][3], SPI_LAST)
;

134 }

136 //phase offset for ch 0 and 1:
// 0x00 // channel 1 (MW)

138 SPI.transfer(cs_dds, B00000000,
SPI_CONTINUE);

SPI.transfer(cs_dds, B00100000,
SPI_CONTINUE);

140 //write offset to 0x05
SPI.transfer(cs_dds, B00000101,

SPI_CONTINUE);
142 SPI.transfer(cs_dds, phase_c[0][ramp][0],

SPI_CONTINUE);
SPI.transfer(cs_dds, phase_c[0][ramp][1],

SPI_CONTINUE);
144

// channel 0 (RF)
146 SPI.transfer(cs_dds, B00000000,

SPI_CONTINUE);
SPI.transfer(cs_dds, B00010000,

SPI_CONTINUE);
148 //write offset to 0x05

SPI.transfer(cs_dds, B00000101,
SPI_CONTINUE);

150 SPI.transfer(cs_dds, phase_c[1][ramp][0],
SPI_CONTINUE);

SPI.transfer(cs_dds, phase_c[1][ramp][1],
SPI_CONTINUE);

152
//select ALL channels again // FIXME: NOT needed (?)

154 SPI.transfer(cs_dds, B00000000,
SPI_CONTINUE);

SPI.transfer(cs_dds, B11110000, SPI_LAST)
;

156 }

158 //calculates the best possible frequency step size and
time between those steps

byte ramp_para(double sweep_time, double freq_0, double
freq_1, int para_select, int which_byte) {

160 //user sweep parameters
delta_fges = abs(freq_0-freq_1); //frequency

difference of the sweep
162 min_t_slope = min_t_step*delta_fges/sweep_time;

sweep_sync_step = sweep_time*sync_clk*min_freq_step;
164 found = false;

//in the loop for all 256 different time steps
possible the best fitting freq step is calculated

166 //then of all these ramps the one which ends most
closely to the desired end frequency is chosen

for (int i=1; i<256;i++){ // FIXME: double- and
triple check the result of this!!

168 f_wanted = i*min_t_slope;
f_dds = round(f_wanted*inv_min_freq_step);

170 end_dds = sweep_sync_step*f_dds/i; // 1/sync_clk =
min_t_step

check[i] = abs(end_dds-delta_fges);
172 }

min_ind = minIndex(check,256);
174 f_dds = round(min_ind*min_t_slope*

inv_min_freq_step)*min_freq_step;
freq_step_mult = round(f_dds*inv_min_freq_step);

176
// all return values, i.e. all bytes needed for one

ramp are stored in the global variable and read
directly after the function call

178 time_step_freq_step[0] = dec1bin(min_ind,1);
for (int i=1;i<5;i++){

180 time_step_freq_step[i] = dec4bin(freq_step_mult,i);
}

182 }
//============================

184 //read in data for ramping mode
void read_in_rampdata(){

186 int i = -1;
tmpchar = Serial.read();

188
while (!(tmpchar == 'z')){ // input is not finished

190 tmpstring = "";
if (tmpchar == 'R'){

192 i++;
ampl_int[0][i] = 1000; // standard: full power

194 ampl_int[1][i] = 1000; // standard: full power
phase_int[0][i] = -1; // standard: not defined,

will be overwritten later
196 tmpchar = Serial.read();

}
198 if (tmpchar == 't'){while(tmpchar = Serial.read()){

if (tmpchar < 58){tmpstring += tmpchar;} else {
time_array[0][i] = tmpstring.toInt()/1e6;
tmpstring = ""; break;}}}

if (tmpchar == 'f'){while(tmpchar = Serial.read()){
if (tmpchar < 58){tmpstring += tmpchar;} else {
freq_0[0][i] = tmpstring.toInt();
tmpstring = ""; break;}}}

200 if (tmpchar == 'F'){while(tmpchar = Serial.read()){
if (tmpchar < 58){tmpstring += tmpchar;} else {
freq_1[0][i] = tmpstring.toInt();
tmpstring = ""; break;}}}

if (tmpchar == 'a'){while(tmpchar = Serial.read()){
if (tmpchar < 58){tmpstring += tmpchar;} else {
ampl_int[0][i] = tmpstring.toInt();
tmpstring = ""; break;}}}

202 if (tmpchar == 'p'){while(tmpchar = Serial.read()){
if (tmpchar < 58){tmpstring += tmpchar;} else {
phase_int[0][i] = tmpstring.toInt();
tmpstring = ""; break;}}}

if (tmpchar == 'c'){while(tmpchar = Serial.read()){
if (tmpchar < 58){tmpstring += tmpchar;} else {
carrier[0][i] = tmpstring.toInt();
tmpstring = ""; break;}}}

204 }
ramp_num = i+1;

206 SDFF_ramp_counter = -1;

208 for (int i = 0; i < ramp_num; i++){ // post processing
if (abs(freq_0[0][i] - 1600e6) < 200e6) {carrier[0][

i] = 1600; ch_select[i] = cs_dds_1;} // MW mix
setting // take care that the right carrier is
used!!

210 if (abs(freq_0[0][i] - 1950e6) < 200e6) {carrier[0][
i] = 1950; ch_select[i] = cs_dds_1;} // MW mix
setting

if (abs(freq_0[0][i] - 850e6) < 200e6) {carrier[0][
i] = 850; ch_select[i] = cs_dds_1;} // MW mix
setting

212
// RF/no carrier

214 if (abs(freq_0[0][i] - 410e6) < 200e6) {carrier[0][
i] = 410; ch_select[i] = cs_dds_1;} // RF mix
setting

if (abs(freq_0[0][i] ) < 200e6) {carrier[0][
i] = 0; ch_select[i] = cs_dds_2;} // direct
RF setting

216
if (carrier[0][i] == 0){ // no mixer setup
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218 if (freq_0[0][i] > 20e6){switch_select[i] = 18;}
// D18, switch selection for RF (100W)
amplifier

// else {switch_select[i] = 16;}
// D16, switch select for direct RF: leave switch
low for DDS-connection, but it high for external HP
input.

220 else {if (freq_0[0][i] > 0.4e6) {switch_select[i]
= 15;} // D15, NOT CONNECTED!, switch select
for direct RF: leave switch low for DDS-
connection, put it high for external HP input
.
else {switch_select[i] = 16;} // D16,

switch select for direct RF: leave
switch low for DDS-connection, but it
high for external HP input.

222 }
phase_int[0][i] = 0; // phase relation for

direct RF - ATTENTION: ONLY SET ON ONE
CHANNEL due to poor implementation!

224 freq_0[1][i] = freq_0[0][i];
freq_1[1][i] = freq_1[0][i];

226 ampl_int[1][i] = ampl_int[0][i];
}

228
if (carrier[0][i] > 100){ // RF mixer setup

230 switch_select[i] = 18; // D18, switch selection
for RF (100W) amplifier

if (phase_int[0][i] == -1){ // no explicit phase
given

232 if (freq_0[0][i] > carrier[0][i]*1e6) {phase_int
[1][i] = 270;} else {phase_int[1][i] =
90;} // phase relation for RF channel

}
234 freq_0[1][i] = abs(carrier[0][i]*1e6 - freq_0[0][i

]);
freq_1[1][i] = abs(carrier[0][i]*1e6 - freq_1[0][i

]);
236 ampl_int[1][i] = ampl_int[0][i];

}
238

if (carrier[0][i] > 500){ // MW mixer setup
240 switch_select[i] = 9; // D9, switch selection

for MW
if (phase_int[0][i] == -1){ // no explicit phase

given
242 if (freq_0[0][i] > carrier[0][i]*1e6) {phase_int

[0][i] = 90;} else {phase_int[0][i] =
270;} // phase relation for RF channel

}
244 freq_0[0][i] = abs(carrier[0][i]*1e6 - freq_0[0][i

]); // change channel for MW
freq_1[0][i] = abs(carrier[0][i]*1e6 - freq_1[0][i

]);
246 freq_0[1][i] = 1; // set dummies for RF channels

freq_1[1][i] = 1;
248 }

}
250

for (int i=0;i<ramp_num;i++){
252 Serial.print("ramp i = "); Serial.println(i);

Serial.print("time = "); Serial.println(
time_array[0][i]*1000000);

254 Serial.print("carrier = "); Serial.println(carrier
[0][i]);

Serial.print("ch select = "); Serial.println(
ch_select[i]);

256 for (int j=0;j<2;j++){
Serial.print("channel j="); Serial.println(j);

258 Serial.println(freq_0[j][i]);
Serial.println(freq_1[j][i]);

260 Serial.println(ampl_int[j][i]);
Serial.println(phase_int[j][i]);

262 }
}

264 }

266 //calculate data for all ramps
void ramp_calculation(){

268 //precalculate all ramps to be written the DDS
for(int j=0;j<2;j++){// do everything twice for both

channel sets
270 //exchange frequencies if necessary: lower frequency

MUST be in register 0x04!

//for loop over all ramps given by control server
272 k = 0; // initialize loop variable

for(int i=0;i<ramp_num;i++){
274 if(freq_0[j][i]>freq_1[j][i]){

rampdown[j][i] = true; //upward or downward ramp
276 temp = freq_1[j][i];

freq_1[j][i] = freq_0[j][i];
278 freq_0[j][i] = temp;

}
280 //variables used in the while loop over a single

ramp
finished = false;

282 steepness = abs(freq_0[j][i]-freq_1[j][i])/
time_array[0][i]; //slope of frequency ramp

rem_time = time_array[0][i]; //length of
frequency ramp

284 start_time = 0;
end_time = time_array[0][i];

286 ramp_parts_num[j][i] = 0;
ramp_first_part[j][i] = k;

288
//In this loop ramps that are longer than cut_time

are chopped into several ramps
290 //with a maximum length of cut_time. This

increases the frequency accurancy.
while(!finished){

292 if(rampdown[j][i]){
//chop downward ramps

294 if(rem_time >= 1.3*cut_time){//remaing lenght
of ramp is greater than cut_time

start_time = end_time - cut_time;
296 freq_start = freq_0[j][i] + start_time*

steepness;
freq_end = freq_0[j][i] + end_time *

steepness;
298 cutted_time = cut_time;

rem_time -= cut_time;
300 end_time -= cut_time;

}else{//last part of the ramp
302 start_time = end_time - rem_time;

freq_start = freq_0[j][i] + start_time*
steepness;

304 freq_end = freq_0[j][i] + end_time *
steepness;

cutted_time = rem_time;
306 finished = true;

ramp_last_part[j][i] = k;
308 }

}else{
310 //chop upward ramps

if(rem_time >= 1.3*cut_time){//remaing lenght
of ramp is greater than cut_time

312 end_time = start_time + cut_time;
freq_start = freq_0[j][i] + start_time*

steepness;
314 freq_end = freq_0[j][i] + end_time *

steepness;
cutted_time = cut_time;

316 rem_time -= abs(cut_time);
start_time += cut_time;

318 }else{//last part of the ramp
end_time = start_time + rem_time;

320 freq_start = freq_0[j][i] + start_time*
steepness;

freq_end = freq_0[j][i] + end_time *
steepness;

322 cutted_time = rem_time;
finished = true;

324 ramp_last_part[j][i] = k;
}

326 }
//all the data that will be written to the

arduino during this sequence
328 ramp_para(cutted_time, freq_start,freq_end, 1,

0);
for (int m=0;m<4;m++){

330 freq_0_c[j][k][m] = frequency(freq_start, m
+1);

freq_1_c[j][k][m] = frequency(freq_end, m
+1);

332 freq_step[j][k][m] = time_step_freq_step[m
+1];

}
334 for (int m=0;m<2;m++){
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ampl_c[j][k][m] = amplitude(ampl_int[j][i
],(freq_start+freq_end)/2, m+1);

336 phase_c[j][k][m] = phase(phase_int[j][i], m
+1);

}
338 time_array_c[j][k] = cutted_time;

rampdown_bool_c[j][k] = rampdown[j][i];
340 ramp_t_step[j][k] = time_step_freq_step

[0];//ramp_para(cutted_time, freq_start,
freq_end, 0, 1);

k++; //saving position of each ramp in the
arrays above

342 ramp_parts_num[0][i]++;
} // while chopper loop end (over one ramp)

344 } // for loop over all ramps given by control
server

}
346 } // end of ramp_calculation()

Clock and PLL
set_clock_and_PLL.ino
//this function resets the DDSs, sets phase autoclear

and programms the reference clock
2 void reset_DDS(){

//reset DDS
4 digitalWrite(resetpin, HIGH); delayMicroseconds(10);

digitalWrite(resetpin, LOW); delayMicroseconds(10);
6 //set 0x02, function register 2 (all channels auto

clear phase accumulator)
SPI.transfer(cs_dds_1, B00000010, SPI_CONTINUE);

8 SPI.transfer(cs_dds_1, B00100000, SPI_CONTINUE);
SPI.transfer(cs_dds_1, B00000000, SPI_LAST);

10 delayMicroseconds(10);
SPI.transfer(cs_dds_2, B00000010, SPI_CONTINUE);

12 SPI.transfer(cs_dds_2, B00100000, SPI_CONTINUE);
SPI.transfer(cs_dds_2, B00000000, SPI_LAST);

14
//I/O Update

16 delayMicroseconds(1);
digitalWrite(updatepin, HIGH);

18 delayMicroseconds(1);
digitalWrite(updatepin, LOW);

20 }

22 // preparing the reference clock
void write_PLL(int freq){

24 ref_clk_spi(R0[freq]); // R0
ref_clk_spi(R1[freq]); // R1 // same for all but

1772, so we have to add this
26 ref_clk_spi(0x4042); // R2 // same for all

ref_clk_spi(0x4B3); // R3 // same for all
28 ref_clk_spi(R4[freq]); // R4

ref_clk_spi(0x580005); // R5 // same for all
30 }

32 // ultra high speed interface to the clock, allowing to
set the clock in 60µs (!!)

void ref_clk_spi(unsigned int data) { // SPI tranfer out
function begins here

34 PIOB->PIO_CODR = 1 << 21; // sets slave select
channel LOW

for(int i=1;i<33;i++) { // setup a loop of 32
iterations, one for each bit

36 if (data > 2147483647){PIOC->PIO_SODR = 1 << 12;} //
sets data channel HIGH

else {PIOC->PIO_CODR = 1 << 12;}
// sets data channel LOW

38 PIOC->PIO_SODR = 1 << 13; // sets CLK_ref HIGH
data = data << 1; // shift data to next bit

40 PIOC->PIO_CODR = 1 << 13; // sets CLK_ref LOW
}

42 PIOB->PIO_SODR = 1 << 21; // sets slave select
channel HIGH

}

A.2.2 Magnetic Field Control With
Passbank

1 boolean INT_HIGH_var = LOW;

static int GND = 14; // Logic Ground
3 static int CLK = 13; // Serial Clock Line
static int DIN = 11; // Master Out Slave In

Line
5 static int SYNC = 10; // SYNC
static int SYNC_POTI = 9; // sync signal for digital

poti to control total gain
7 static int INT_OPTO_P = 7;
static int INT_OPTO_GND = 6;

9
static int input = 3; // digital input pin

11 static int optocoupler_plus = 4;
static int optocoupler_gnd = 2;

13
static long int maximum = 1048575;

15 static long int halfval = 500000;

17 int i=0;
char buffer[8];

19 long int voltage = 0;
long int starttime = 0;

21 long int nowtime = 0;
long int val = 0;

23 long int ramptovalue = 0;
float valtime = 0;

25
int rampphase = 0;

27 long int value = 0;
long int PPvalue = 0;

29 int prepulselength = 0;
boolean num[46];

31
static byte Poti_byte1 = 6150 >> 8;

33 static byte Poti_byte2 = 6150;
byte byte_1, byte_2, byte_3, Poti_byte3, Poti_byte4;

35
int potival = 0;

37
float downtime = 5000.0;

39 long int potival_afterdown = 441;

41 #include <SPI.h>
// Due to the Optocopplers all SPI signals must be

inverted!
43 void setup(){

Serial.begin(115200); Serial.flush();
45 SPI.begin();

SPI.setBitOrder(MSBFIRST);
47 SPI.setDataMode(SPI_MODE0);

SPI.setClockDivider(SPI_CLOCK_DIV2);
49 // preparing Pin Modes

pinMode(GND, OUTPUT); pinMode(CLK, OUTPUT);
51 pinMode(DIN, OUTPUT); pinMode(SYNC, OUTPUT);

pinMode(SYNC_POTI, OUTPUT);
53

pinMode(INT_OPTO_P, OUTPUT); pinMode(INT_OPTO_GND,
OUTPUT);

55 digitalWrite(INT_OPTO_P,LOW); digitalWrite(
INT_OPTO_GND,LOW);

57 pinMode (optocoupler_plus, OUTPUT); pinMode (
optocoupler_gnd, OUTPUT);

pinMode (input, INPUT);
59 digitalWrite(optocoupler_plus,HIGH); digitalWrite(

optocoupler_gnd,LOW);

61 digitalWrite(SYNC_POTI,LOW);

63 // initialize with most negative value
digitalWrite(SYNC,HIGH);

65 SPI.transfer(~B00100000);
SPI.transfer(~B00000000);

67 SPI.transfer(~B00010000);
digitalWrite(SYNC,LOW);

69 set_voltage(0);
}

71
void rampup(unsigned long int value, float time){

73 starttime = micros();
val = 0; // loop variable

75 ramptovalue = value - 1000;
valtime = (ramptovalue-halfval)/time;

77 if (valtime < 1){valtime = 1;}
while (val < ramptovalue){
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79 val = valtime*(micros()-starttime) + halfval;
byte_1 = lowByte(val >> 16); // first Byte

81 byte_2 = lowByte(val >> 8); // 2bd Byte
byte_3 = lowByte(val); // 3rd Byte

83
byte_1 = B00010000 ^ byte_1; // set command to

write to DAC register
85

PORTB = B0100; // sets SYNC HIGH
87 SPI.transfer(~byte_1); SPI.transfer(~byte_2);

SPI.transfer(~byte_3); PORTB = B0000;
89 }

set_voltage(value);
91 }

93 // function for setting the digital poti that controls
the total gain

void set_poti(int poti_val){
95 SPI.setDataMode(SPI_MODE2);

SPI.setClockDivider(SPI_CLOCK_DIV2);
97 digitalWrite(SYNC_POTI,HIGH);

SPI.transfer(~Poti_byte1);
99 SPI.transfer(~Poti_byte2);

digitalWrite(SYNC_POTI,LOW);
101 digitalWrite(SYNC_POTI,HIGH);

Poti_byte3 = poti_val + 1024 >> 8;
103 Poti_byte4 = poti_val + 1024;

SPI.transfer(~Poti_byte3);
105 SPI.transfer(~Poti_byte4);

digitalWrite(SYNC_POTI,LOW);
107 SPI.setDataMode(SPI_MODE0);

SPI.setClockDivider(SPI_CLOCK_DIV2);
109 }

111 // input value must be between 0 and 2^20-1 = 1 048 575
int set_voltage(unsigned long val){

113 byte_1 = lowByte(val >> 16); // first Byte
byte_2 = lowByte(val >> 8); // 2bd Byte

115 byte_3 = lowByte(val); // 3rd Byte

117 byte_1 = B00010000 ^ byte_1;

119 PORTB = B0100; // sets SYNC HIGH
SPI.transfer(~byte_1); SPI.transfer(~byte_2);

121 SPI.transfer(~byte_3); PORTB = B0000;
}

123
void loop(){

125 if (digitalRead(input)){
delayMicroseconds(2000); // long pulse for writing,

short pulses for triggering!
127 if(digitalRead(input)){ // identify first pulse for

reading.
value = 0;

129 delay(30); // wait until program pulse is over
for (int i = 1; i < 21; i++){

131 num[i] = digitalRead(input); delay(10);
}

133 rampphase = 1;
digitalWrite(SYNC,HIGH);

135 SPI.transfer(~B00100000);
SPI.transfer(~B00000000);

137 SPI.transfer(~B00010000);
digitalWrite(SYNC,LOW);

139 }
else{

141 switch (rampphase) {
case 1: // start ramp up

143 set_poti(884);
rampup(value,10000.0);

145 set_poti(potival-30);
delay(1);

147 for (int i = potival-50; i > 441 ; i = i - 14){
set_poti(i);

149 delayMicroseconds(500);
}

151 set_poti(441); // good value for stable
reglutaion

delay(10);
153 rampphase = 2;

break;
155 case 2: // start ramp down

set_voltage(value-1200);//576400);
157 delayMicroseconds(5);

rampdown(value-1600,downtime);
159 delay(500);

set_poti(1000);
161 delay(1000);

set_voltage(halfval);
163 rampphase = 1;

break;
165 }

};
167 };

}
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