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Abstract

We consider a system of ultracold atoms in an optical lattice as a quantum
simulator for electron-positron pair production in quantum electrodynamics
(QED). For a setup in one spatial dimension, we investigate the nonequilib-
rium phenomenon of pair production including the backreaction leading to
plasma oscillations. Unlike previous investigations on quantum link models,
we focus on the infinite-dimensional Hilbert space of QED and show that
it may be well approximated by experiments employing Bose-Einstein con-
densates interacting with fermionic atoms. Numerical calculations based on
functional integral techniques give a unique access to the physical param-
eters required to realize QED phenomena in a cold atom experiment. In
particular, we use our approach to consider quantum link models in a yet
unexplored parameter regime and give bounds for their ability to capture
essential features of the physics. The results suggest a paradigmatic change
towards realizations using coherent many-body states for quantum simula-
tions of high-energy particle physics phenomena.

Keywords:

Introduction. The creation of electron-positron pairs from the vacuum
of quantum electrodynamics in an external electric field is a longstanding
prediction that has not yet been directly observed [1, 2]. Upcoming ex-
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perimental laser facilities, such as the Extreme Light Infrastructure (ELI)
[3], start approaching the required critical field strength of Ec ∼ 1016 V/cm.
Theoretically, the non-linear interplay of the produced many-body states and
the applied field represents a remarkable challenge with important links to
a wide range of elusive phenomena such as Unruh and Hawking radiation or
string-breaking in quantum chromodynamics (QCD) [4–6].

Whilst the critical field strength Ec = M2/e is determined by the elec-
tron/positron mass M and the absolute value of the electric charge e in
QED, the pair-production phenomenon essentially depends on the dimen-
sionless ratio E/Ec & 1 for an applied electric field E. In principle, physical
systems with very different characteristic scales can thus be used to realize
the underlying phenomenon. It has recently been suggested to employ a
system of ultracold atoms in an optical lattice to study the physics of pair
production and string breaking [7, 8]. Even though the implementation of a
gauge symmetry in an atomic setup is demanding in general [9–11], it may
provide a unique way of answering crucial open questions, such as regard-
ing the nonequilibrium dynamics of the strong and electroweak sector of the
standard model of particle physics probed in heavy-ion collision experiments
or early-universe cosmology [12, 13].

Many proposals concentrate on quantum link models [14] rather than
QED, or even QCD. Since the Hilbert space of a quantum link model is
finite-dimensional, the mapping to atomic systems is expected to be greatly
facilitated. However, it is a crucial question how much of the physics of
the infinite-dimensional representation corresponding to QED may be cap-
tured in practice. Theoretical estimates based on diagonalization or matrix
product states techniques are typically limited to low-dimensional represen-
tations [15–17]. Recently, powerful functional integral (FI) techniques have
been employed to simulate the real-time dynamics of pair production and
string-breaking directly in QED on a one-dimensional lattice [18–20], and in
three dimensions [21]. This progress has become possible since strong bosonic
fields can be efficiently sampled from coherent classical fields while keeping
the full quantum nature of fermions [18, 22].

In this work, we exploit this observation and start from the infinite-
dimensional representation of the QED gauge group, pointing out that it
may be well approximated by experiments using Bose-Einstein condensates
interacting with fermionic atoms. For the first time, by using FI techniques
we can estimate the physical parameters required to describe the QED phe-
nomenon of pair production in a cold atom setup and we discuss the exper-
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imental realization. For this paradigmatic example, numerical studies using
the FI approach are still feasible and serve as an important benchmark for
future quantum simulation experiments in numerically inaccessible regimes.
In particular, we use our approach to consider quantum link models in a yet
unexplored parameter range and to give bounds for the dimensionality of the
employed representation in order to capture essential features of strong-field
QED in those formulations [16].

While the FI techniques can also be applied in higher dimensions and
non-Abelian gauge theories [21], we focus here on the conceptually important
example of QED in one spatial dimension [23, 24]. Since there are no spatial
plaquette terms in this case, angular momentum conserving atomic scattering
processes can be used to directly implement the U(1) gauge symmetry [14].
From a phenomenological point of view, this theory shares key properties
with QCD as, e.g., dynamical string breaking, and hence provides valuable
insights into nonequilibrium aspects of the theory of strong interactions.

Cold atom gauge theory. We start with the Hamiltonian formulation of
lattice QED using the staggered fermion discretization [24]. To this end,
the spinors are decomposed such that particle and antiparticle components
separately reside on two neighboring sites of the lattice. Introducing the
operators for the fermion field ψn, the link Un being connected to the gauge
potential An and the electric field En, the Hamiltonian reads

HQED =
∑
n

{a
2
E2
n +M(−1)nψ†nψn

− i

2a

[
ψ†nUnψn+1 − ψ†n+1U

†
nψn

]}
, (1)

where a is the lattice spacing and g the gauge coupling. The dynamical
variables of QED fulfill [En, Um] = gδnmUm. The Gauss-law operator Gn =
En − En−1 − gψ†nψn commutes with the Hamiltonian [Gn, HQED] = 0. The
last relation manifests local gauge invariance.

To make contact with quantum link models, we approximate QED by
another theory, which is still gauge invariant and allows for an experimental
realization with cold atoms [14, 25]. We substitute En → gLz, Un → [`(` +
1)]−1/2L+,n, where (Lx,n, Ly,n, Lz,n) are quantum spin operators which obey
[Li,n, Lj,m] = iδnmεijkLk,n, and the raising operator is L+,n = Lx,n + iLy,n.
The performed substitution renders the dimension of the local Hilbert space
finite-dimensional. Consequently, the QED relation [Un, U

†
m] = 0 is no longer
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valid but is replaced by [L+,n, L−,m] = 2δnmLz,m. Remarkably, local gauge
invariance is not affected.

The Schwinger representation of the angular momentum operators allows
us to express the quantum spins by bosonic degrees of freedom bn and dn [26]:
L+,n = b†ndn, L−,n = d†nbn and Lz,n = (b†nbn − d†ndn)/2, with the constraint
b†nbn + d†ndn = 2`. Here, ` denotes the spin magnitude fixing the number of
bosonic atoms. In this representation, the Hamiltonian describing the cold
atom (CA) system becomes

HCA =
∑
n

{g2a
4

[b†nb
†
nbnbn + d†nd

†
ndndn] +M(−1)nψ†nψn

− i

2a
√
`(`+ 1)

[
ψ†nb

†
ndnψn+1 − ψ†n+1d

†
nbnψn

]}
(2)

and depends on two species of bosonic operators bn, dn living on links and
fermionic operators ψn located on lattice sites. The parameters are deter-
mined by the basic physical quantities of the cold atom system, such as the
gauge coupling g given by the on-site scattering processes of the bosons and
the spin-changing collisions between the fermionic and bosonic atoms.

Employing the density-phase representation with bn =
√
`+ δρb,ne

iθb,n

and dn =
√
`+ δρd,ne

iθd,n , one finds HCA = HQED +O(δρ/`). Therefore, the
number of bosonic atoms per site, 2`, controls the approximation and allows
to tune from the quantum link formulation to lattice QED by increasing `.

In previous work, the Hamiltonian (2) was studied for ` ∼ O(1) via
diagonalization or matrix product states methods [8, 15–17, 27]. Here we
consider for the first time the dynamics in the regime ` � 1 to approach
lattice QED. From an experimental point of view, this regime corresponds
to putting Bose-Einstein condensates on the links rather than single bosonic
atoms.

Functional integral approach. To study the strong-field regime of QED,
the field strength needs to be of the order of the critical field Ec = M2/g.
The corresponding cold atom setup is characterized by Ec = g|Nb−Nd|/2 ∼
M2/g, where Nb, Nd denote the number of atoms in the Bose-Einstein con-
densates. For Nb, Nd ∼ O(`) � 1, the FI approach of Refs. [18, 20–22, 28]
allows us to study the dynamics in this regime.

To this end, we denote the bosonic fields collectively by φn =
(
b†n, bn, d

†
n, dn

)
and define the generating functional for correlation functions in the presence
of sources Jn =

(
Jb,n, J

∗
b,n, Jd,n, J

∗
d,n

)
by Z[J ] = Tr{ρ0TCeiJ ·φ}. Here, ρ0 is the
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initial density matrix, J · φ =
∑

n

∫
t
Jn(t) · φn(t) with t the time coordinate

along the closed time path C, and TC denotes time-ordering along C. Em-
ploying the coherent state basis, the matrix element of the density operator
at initial time is 〈+| ρ0 |−〉, where |+〉 and |−〉 are the first coherent states
on the forward and backward contour, respectively. The FI representation
of the generating functional is

Z[J ] =

∫
[dφ][dψ†dψ] 〈+| ρ0 |−〉 eiS+iJ ·φ (3)

with the action

S =

∫
t

∑
n

(ψ†ni∂tψn + b†ni∂tbn + d†ni∂tdn)−HCA . (4)

We analytically perform the Gaussian integral for the fermions and then
expand to first order in the bosonic response field φ̃n, which arises from
the Keldysh rotation φn = φ̄n + sgnC φ̃n. Disregarding higher-order terms,
i.e. neglecting subleading corrections in bosonic occupancies [21] that are
suppressed by N−1b , N−1d � 1, leads to the self-consistent set of equations

i∂tbn =
g2a

2
b†nbnbn + i

dnFn+1n

4a
√
`(`+ 1)

,

i∂tdn =
g2a

2
d†ndndn − i

bnFnn+1

4a
√
`(`+ 1)

,

i∂tFnm =
∑
n′

[
hCA
nn′Fn′m − Fnn′hCA

n′m

]
. (5)

Here, Fnm = 〈[ψn, ψ†m]〉 is the fermion equal-time correlation function, whose
evolution is governed by

hCA
nm =

i[d†n−1bn−1δn−1m − b†ndnδn+1m]

2a
√
`(`+ 1)

+M(−1)nδnm.

The equations (5) preserve the Gauss law, ∂tGn = 0, if initialized accordingly.
A similar derivation for the QED Hamiltonian (1) gives

∂tEn =
g

2a
Re[Fn+1nUn],

∂tUn = igaEnUn ,

i∂tFnm =
∑
n′

[hQED
nn′ Fn′m − Fnn′hQED

n′m ] , (6)
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Figure 1: Time evolution of the fermion number density in the cold atom system for
different numbers of atoms ∼ ` as compared to the QED result (`→∞). The straight line
corresponds to the Schwinger formula, which neglects the backreaction of the produced
fermions on the applied field.

with

hQED
nm =

i

2a
[U∗n−1δn−1m − Unδn+1m] +M(−1)nδnm .

In fact, by taking the time derivative of En → g(b†nbn − d†ndn)/2 and Un →
b†ndn and inserting the density-phase representation, one finds that (5) ap-
proximates (6) with a truncation error of O(δρ/`). In the following, we keep
` as a parameter to answer the question whether essential properties of QED
can be captured for finite `.

Pair production. The creation of electron-positron pairs in a uniform elec-
tric field E may be viewed as a quantum process in which virtual electron-
positron dipoles can be separated to become real pairs once they gain the
binding energy of twice the rest mass energy. This QED process has been esti-
mated [1, 2] neglecting the backreaction of the produced pairs on the applied
field, and the analytic result for the rate ṅ = M2E/(2πEc) exp(−πEc/E) is
depicted in Fig. 1.

This estimate should be valid at sufficiently early times and provides an
important benchmark for any simulation method. Therefore, we consider
a spatial lattice of length Na with periodic boundary conditions and leave
more refined estimates taking into account specific trap geometries of cold
atom systems for further studies. We first compute the real-time evolution
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Figure 2: Dynamics of the homogeneous electric field as represented by the bosonic species
population imbalance of the atomic system for different values of ` as in Fig. 1. The plasma
oscillations arise from the backreaction of the produced pairs on the applied field.

according to (5) for g/M = 0.1 and aM = 0.005 in the limit ` → ∞,
where it agrees to QED described by (6). Here N determines the number of
fermionic atoms, and we checked that for the largest employed lattices with
N = 512 no significant volume dependence can be observed and our results
are insensitive to changes in the lattice spacing. Accordingly, employing a
standard definition of the particle number density [18, 21] the simulation
result for QED (` = ∞) as shown in Fig. 1 agrees well with the Schwinger
formula at early times. At later times the backreaction of the produced pairs
on the applied field is seen to give the expected sizable corrections [18, 19].

Of course, in the corresponding cold atom system no particles are pro-
duced as the number of atoms is fixed. However, since two neighboring
fermions are considered as particles and antiparticles in the staggered formu-
lation, pair production is encoded in the hopping of atoms between odd and
even sites of the optical lattice. This generates correlations, whose time evo-
lution describe the corresponding phenomenon of pair production as shown
in Fig. 1. The results demonstrate the convergence of the atomic system’s
dynamics to the QED behavior as the number of bosonic atoms is increased.
For ` = 2500 we still observe considerable deviations from the QED result,
whereas the difference becomes small for ` = 5000.

In Fig. 2 the time evolution of the cold atom analogue of the electric
field, E = g(Nb − Nd)/2, is given for different values of `. As for Fig. 1, we
start with a bosonic species imbalance Nb−Nd = 2M2/g2 > 0 corresponding
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Figure 3: Momentum distribution of the produced fermions at tM = 25 (dotted), tM = 75
(dashed) and tM = 175 (solid) for ` = 104 such that the QED result is well described.

to the critical electric field strength in QED, and the analogue of the Dirac
vacuum or ‘Fermi sea’ with the lowest N/2 energy eigenstates occupied. By
comparison to Fig. 1, we observe a decrease of the electric field as the fermion
number increases due to pair production. The correlated hopping of fermions
reduces the bosonic species imbalance until it becomes zero and even changes
its sign with Nb − Nd < 0 giving rise to plasma oscillations [18, 21, 29]. At
times when the corresponding electric field drops below a critical level, par-
ticle creation effectively terminates as reflected in the characteristic plateaus
in the particle number density.

The plasma oscillations are caused by the production and subsequent
acceleration of particle-antiparticle pairs, which can be observed from their
momentum distribution [18, 21] as shown in Fig. 3 for ` = 104 such that the
QED result is well reproduced. The homogeneous electric field dominantly
produces fermions around zero momentum, and accelerates the particles to
higher momenta during the subsequent evolution. As the electric field de-
creases due to energy conservation, the production amplitude around zero
momentum drops as well. At a time tM ∼ 175, the fermions reach their
maximum momentum along with a vanishing net electric field. Subsequently,
the fermionic current results in a further decrease of the electric field to neg-
ative values along with a deceleration of the produced particles leading to
the observed plasma oscillations.

The limiting experimental resources enforce a study of the dependence
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Figure 4: Time evolution of the electric field for different total numbers of fermionic atoms,
N = 32 (dotted), N = 128 (dashed) and N = 512 (solid) with ` = 104.

on the total number N of fermionic atoms. Fig. 4 shows the electric field
for different N with fixed ` = 104. We observe a reasonable description of
the QED results for a full oscillation period employing a total number of
fermionic atoms down to about N = 128, with sizable deviations occurring
at later times. For N = 512 accurate descriptions are achieved for the entire
range of times we considered.

Experimental realization. The physics of QED pair production in one
spatial dimension may already be realized with available experimental tech-
niques [8, 14, 30, 31]. Here we point out how the relevant regime of large
` may be efficiently implemented and manipulated experimentally with the
help of coherent many-body states.

Regarding the bosonic degrees of freedom, we confine two substates of
one hyperfine manifold of bosonic atoms in a one-dimensional geometry via
an external potential. Further, we employ a red detuned laser to generate
an optical lattice such that the atoms are localized and the nearest neighbor
hopping is suppressed. Already this construction allows us to realize meso-
scopic bosonic gases with two components (bn and dn) per site which can be
described by the one axis twisting Hamiltonian [32] corresponding to the
first two terms of (2). The preparation of the bosonic atoms mimicking the
electric field can be achieved by a magnetic field or homogeneous two-photon
microwave coupling, which produces a coherent spin state between the two
components with a non-vanishing population difference.
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Concerning the fermionic degrees of freedom, we again trap two substates
of one hyperfine state manifold of fermionic atoms in a one-dimensional ge-
ometry. The aforementioned optical lattice is blue detuned for the fermions.
Consequently, the fermions are located between the bosonic links, which is
an essential ingredient of (2). In addition, we superimpose a second optical
lattice with double lattice spacing in order to generate the staggered struc-
ture of the fermions. The frequency of this laser is tuned closer to resonance
with respect to the fermions than to the bosons, such that the second lattice
does not affect the latter ones. The staggered structure leads to a mini-gap
in the dispersion relation of the fermions such that the initial state of the
fermions corresponds to a fully filled lowest mini-band [33]. The detection of
the fermions can be achieved by exploiting the band mapping technique [34].

The overlap of neighboring bosonic and fermionic atoms makes the hop-
ping of one fermion from one site to the next possible via spin changing
collisions. This modifies the internal state of the boson, i.e., species b be-
come d or vice versa. This interaction induced hopping process implemented
by boson-fermion spin-exchange collisions locally preserves the total spin [35].
In particular, the detuning of this process that is experimentally controlled
by the external field corresponds to the mass term in (2). The dynamics
of the system is initiated with a quench of the mass term from being far
off-resonant.

Conclusion. Simulating high-energy physics by experiments with ultra-
cold atoms may be achieved with coherent many-body states rather than
single atoms. Our findings of the required resources in terms of atom num-
bers and protocols may already be realized with available experimental tech-
niques. This opens new possibilities to resolve questions in the strong-
coupling regimes of gauge theories, where no alternative real-time simulation
techniques are known so far. Together with recent experimental proofs of
concept in strongly interacting systems [36], one may hope to realize the old
dream of solving complex problems in quantum field theory by experiment.

We thank M. Dalmonte, E. Demler, A. Frishman, T. Gasenzer, J. Göltz,
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