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We report on the experimental realization of an internal bosonic Josephson junction in a Rubid-
ium spinor Bose-Einstein condensate. The measurement of the full time dynamics in phase space
allows the characterization of the theoretically predicted π-phase modes and quantitatively confirms
analytical predictions, revealing a classical bifurcation. Our results suggest that this system is a
model system which can be tuned from classical to the quantum regime and thus is an important
step towards the experimental investigation of entanglement generation close to critical points.
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Bifurcation occurs when a small smooth parameter
change in a dynamical system leads to a sudden qual-
itative or topological change in its behavior. In classi-
cal nonlinear systems bifurcations are frequently encoun-
tered and are strongly related to critical phenomena and
chaotic behavior [1]. This relation is less obvious in the
quantum regime due to the intrinsic uncertainty of the
quantum states. However, macroscopic quantum systems
exist which can be well described by classical theories ex-
hibiting bifurcation phenomena [2–6]. It has been theo-
retically shown that such a bifurcation can be used for
the creation of highly entangled and nontrivial quantum
states [3, 7–9]. An exemplary system with these charac-
teristics is the bosonic Josephson Junction [10–14] which
has so far been observed in weakly linked reservoirs of
Helium [15] and Bose-Einstein condensates [16–18].

We report on the realization of a Josephson Junction in
a Bose-Einstein condensate with internal i.e. spin degrees
of freedom [19] allowing the access of parameter regimes
around the bifurcation point which have not been experi-
mentally addressable yet. Since the experimental control
of the tunneling coupling is realized via electromagnetic
radiation the well developed techniques of precision spec-
troscopy can be employed to map out the full phase space
i.e. dynamics of canonical conjugate variables, with high
accuracy.

An internal Josephson junction is realized by N parti-
cles coherently distributed between two internal states |a〉
and |b〉. These states are linearly coupled with resonant
two-photon radiofrequency-microwave radiation and ex-
perience coherent nonlinear interaction due to s-wave
scattering between the atoms (see Fig. 1). Assuming
that both states are in the same spatial mode the dy-
namics is well described in the N particle two mode model

with the Hamiltonian H = χĴ2
z − ΩĴx, where ~̂J is the

Schwinger pseudo spin representation of the N atom sys-
tem. Ĵz describes quantum mechanically the population
difference between the two modes and Ĵx and Ĵy are cor-
responding coherences. Since the time evolution is given
only by rotations in configuration space with the total
number of particles conserved the dynamics can be visu-
alized on a generalized Bloch sphere [20] (see Fig. 1b).
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FIG. 1. (color online) Interacting many particle system as a
model system for bifurcation physics. (a) 87Rb offers two hy-
perfine states |a〉 (blue), |b〉 (red) which are linearly coupled
via a two photon transition with Rabi frequency Ω and which
allow for adjusting the inter particle interaction χ via a Fes-
hbach resonance. (b) The many particle state is represented
on a generalized Bloch sphere and its uncertainty area for
our experimental parameters is shown revealing that a mean
field description is adequate. Points on the sphere represent
population difference z (z-direction) and relative phase φ be-
tween the two internal states in the same spatial mode. (c)
Trajectories on the Bloch sphere below and above the bifur-
cation value of the ratio Λ = χN/Ω. The typical supercritical
pitchfork bifurcation scenario occurs i.e. a stable fixed point
bifurcates in two new stable fixed points while the original
becomes unstable. The arrows indicate the direction of flow
close to these points.

The parameters χ and Ω describe the nonlinearity due to
atom-atom interaction and the linear coupling strength
respectively. It is interesting to note that this many par-
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ticle Hamiltonian is a special case of the more general
Lipkin-Meshkov-Glick model [21] developed as a model
system for theoretical studies in the context of nuclear
physics.

In our experiments we investigate the dynamics of a
macroscopic number of particles (N = 500) and thus
a mean field description is justified. This becomes ob-
vious by comparing the uncertainty area of a coherent
spin state – on the order of 1/N – to the surface of
the Bloch sphere which is normalized to 4π (Fig. 1b).
The corresponding classical Hamiltonian is obtained by
substituting the quantum mechanical operators by com-
plex numbers such that H = Λ

2 z
2 −
√

1− z2 cosφ where
z = na−nb

N is the normalized population difference and φ
corresponds to the relative phase between the two inter-
nal states. The system parameters have been absorbed
into the single parameter Λ = χN

Ω [22].
The equations of motion are given by:

ż(t) = −
√

1− z2(t) sinφ(t)

φ̇(t) = Λz(t) +
z(t)√

1− z2(t)
cosφ(t).

Depending on the experimentally tunable parameter Λ,
this system leads to qualitatively different dynamical be-
havior i.e. Rabi versus Josephson dynamics [23]. This
becomes obvious by a classical fixed point analysis (ż =
0, φ̇ = 0) which reveals the underlying topological change
of phase space. For Λ < 1, the Rabi regime, the linear
coupling is governing the time evolution and two fixed
points F0 = (z, φ) = (0, 0) and Fπ = (0, π) character-
ize the dynamics. The trajectories are indicated by the
solid lines in Fig. 1c. For vanishing interaction between
the particles, Λ = 0, this corresponds to resonant Rabi
oscillations of N independent particles. The situation
changes drastically for Λ > 1 since the Fπ fixed point
undergoes a supercritical pitchfork bifurcation implying
that Fπ becomes unstable while two new stable fixed

points F± = (±
√

1− 1
Λ2 , π) are formed (Fig. 1c). For

our system this implies that a single trajectory around
Fπ splits up in two distinct trajectories around the new
fixed points F± which are delimited by a separatrix.

For a quantitative experimental study of the bifurca-
tion phenomenon we study the temporal mean imbalance
for two fixed initial preparations. In the Rabi regime
(Λ < 1) initial preparations with φ = π and z = ±z0

corresponding to points north/south of the equator (see
inset Fig. 2) lead to dynamics with a vanishing tem-
poral mean population imbalance. This results from the
fact that both preparations share the same trajectory i.e.
no separatrix exists. This is distinct to the Josephson
regime where initial preparations that are enclosed by
the separatrix lead to different trajectories resulting in
non vanishing mean imbalances. This is demonstrated
quantitatively in Figure 2 where the resulting tempo-
ral mean imbalances for the initial preparation points
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FIG. 2. (color online) Direct observation of the symmetry
breaking in the dynamics due to the bifurcation. Two initial
states symmetric in the upper and lower hemisphere (see in-
set) lead to qualitatively different dynamics in the Rabi and
Josephson regime respectively. In the Rabi regime both ini-
tial states share the same trajectory around the stable fixed
point Fπ and the temporal mean imbalance vanishes in both
cases. By increasing Λ exceeding the critical value a sepa-
ratrix is formed and the chosen initial preparations lead to
two distinct trajectories separated by this separatrix. The
dynamical modes are characterized by a non-vanishing mean
population imbalance. The solid line represents the theoreti-
cal prediction.

(±0.454, π) are shown. The experimental data clearly re-
veals the topological change in the system’s phase space.
It is in quantitative agreement with the analytical pre-
dictions (solid lines) [22] calculated using independently
measured parameters (see [24]).

To put this bifurcation measurement in a more gen-
eral context we examine the whole phase portrait of the
system for characteristic values of Λ across the Rabi to
Josephson transition. The nonlinear interaction χ is set
by a Feshbach resonance at 9.1 G [25] and is kept constant
for all experiments. Different regimes of Λ are explored
by changing the linear coupling strength Ω adjusted by
the intensity of the radio frequency radiation. We check
the resonant coupling condition by regular reference mea-
surements [24]. The measurement of the dynamics with
shot noise limited precision is feasible in our experiment
since we prepare the initial condition on the quantum me-
chanical uncertainty level i.e. coherent spin states [26].
The initial state preparation is done in a two step pro-
cess. The population imbalance z(t = 0) is controlled by
the duration of a short two photon pulse applied to the
particles in state |a〉. The dynamics is initiated by a non-
adiabatic change of the radio frequency radiation phase
of φ(t = 0) = φ0 and simultaneous attenuation of the ra-
diation. After an evolution time t either the population
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FIG. 3. (color online) Experimentally observed phase por-
traits of the dynamics showing all possible types of trajecto-
ries . The experimental data for three different Λ are com-
pared to the theoretical model with no free parameter (solid
lines). The theoretical curves are shown additionally on the
Bloch spheres. (a), Phase portrait in the Rabi regime for
Λ = 0.78. Plasma- (blue) and π-oscillations (red) can be
clearly identified. The deformation relative to non-interacting
Rabi-oscillations due to the interaction is clearly visible on the
Bloch sphere. (b), The Josephson regime is entered by reduc-
ing the coupling strength Ω (Λ = 1.55). Here the bifurcation
leads to new stable solutions showing macroscopic quantum
self trapping with mean phase π. This is verified by the ex-
perimental data (green squares and green crosses). The black
solid line on the Bloch sphere corresponds to the separatrix
defining the green shaded area of macroscopic quantum self
trapping. (c), For Λ > 2 the separatrix encloses the two poles
and self trapped trajectories with running phase behavior are
found experimentally for Λ = 3.1 (orange squares and circles).
These trajectories resemble the ac-Josephson effect found in
superconducting Josephson-junctions.

difference z(t) of the final state is directly measured or
the phase φ(t) is mapped onto an observable population
imbalance by applying a short π/2-pulse before imaging.
This last pulse is applied with two phases differing by
90◦ to get a well defined phase measurement over the full
interval 0 to 2π. By repeated experiments we are able
to measure both observables allowing the mapping out
of the phase portrait.

Figure 3a shows the result in the Rabi regime, where
the linear coupling is dominating. The dynamics is char-

acterized by two fixed points however the corresponding
trajectories around these are differently distorted. In the
literature the motion around F0 is known as plasma os-
cillations already experimentally observed [17, 18] while
the trajectories around Fπ known as π-oscillations, have
not been demonstrated so far. By reducing the linear
coupling the Josephson regime is entered. The tran-
sition is marked by the bifurcation of Fπ as seen in
Figure 3b and the dynamics corresponding to the new
fixed points is known as macroscopic quantum self trap-
ping. This describes the physical fact that the temporal
mean population imbalance is non zero. These modes
(green shaded area in Fig. 3b and 3c) are separated in
phase space by the separatrix from the plasma and π-
oscillations which are characterized by vanishing tempo-
ral mean 〈z〉 = 0. By further increasing Λ the topology
does not change anymore but the trajectories start to
encircle the north/south poles of the sphere. This im-
plies that the phase evolution runs without bound and
connects the observed dynamics with the phenomenon of
ac-Josephson effect found in superconductors [27]. It is
important to note that the full analogy is not given due to
the spherical topology arising from particle number con-
servation. In superconductors charge neutrality implies
that the chemical potential difference is kept constant
and thus the dynamics is rather constraint to a cylinder.
However the analogy is given best for large Λ and small
absolute imbalance |z| [28].

The full time dynamics i.e. particle number difference
and phase difference, is depicted in Fig. 4. The shaded
areas represent the theoretical expectations without free
parameters but including experimental uncertainties of
5% in Λ. In the limit of vanishing interaction (Λ = 0)
plasma and pi oscillations are not distinguishable. For fi-
nite Λ but still in the Rabi regime (Fig. 4a) the difference
between plasma and π oscillations manifests itself most
pronouncedly in the modified oscillation frequency which
is reduced in the case of π-oscillations and enhanced for
plasma oscillations [22]. Crossing the critical value of Λ
i.e. in the bifurcated regime, the new dynamical mode,
known as macroscopic quantum self trapping is observed
(Fig. 4b and 4c). In the Josephson regime, but close to
the critical value (1 < Λ < 2) all self trapping modes
have an oscillating phase difference (Fig. 4b), while for
Λ > 2 also running phase self trapping modes exist (Fig.
4c).

In this work we demonstrate the experimental real-
ization of a quantum mechanical many particle system
exhibiting a classical bifurcation. This opens up a new
experimental route for generating non-trivial collective
quantum states. It has been theoretically discussed that
a general feature of the realized system is the potential
for fast generation of macroscopic entanglement at the bi-
furcation point or close to the separatrix [7]. The demon-
strated high level of experimental control together with
the ability of precise measurement of conjugate collec-
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FIG. 4. (color online) Exemplary time dynamics of popula-
tion imbalance and relative phase. (a) Plasma- (blue) and
π-oscillations (red) in the Rabi regime (Λ = 0.78). The dy-
namics around the two fixed points is qualitatively the same.
However, the oscillations with mean phase π are slower than
their counterparts with vanishing mean phase. In the former
case the atom interaction counteracts, whereas in the latter
it assists the linear coupling . The shaded area corresponds
to the theoretical prediction including the experimental un-
certainty in Λ. (b) Macroscopic quantum self trapping for
Λ = 1.55. Going beyond the critical value Λ for bifurcation
the Josephson regime is entered. Time traces show oscilla-
tions around the northern fixed point F+ while the mean
phase varies around π. (c) Running phase mode found at
Λ = 3.1. The system is prepared on a trajectory that encir-
cles the north pole of the sphere. Dynamics in the population
imbalance is similar to (b) but the phase runs without bound
as it is the case for the ac-Josephson effect in superconductors.

tive variables [26] makes our system a model system for
these kinds of investigations and allows the generation
as well as the study of nontrivial many particle quan-
tum dynamics in the macroscopic regime. Furthermore,
the possibility to scale the effective Planck’s constant, i.e.
the uncertainty area of a coherent spin state by adjusting
the total atom number makes this a unique experimental
system for studying of the cross over from classical and
quantum physics [9].
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Hänsch, and I. Bloch, Phys. Rev. Lett., 92, 160406

mailto:bifurcation@matterwave.de
http://dx.doi.org/10.1038/nature08396
http://dx.doi.org/10.1103/PhysRevA.71.042303
http://dx.doi.org/10.1103/PhysRevA.71.042303
http://dx.doi.org/10.1103/PhysRevLett.74.1538
http://dx.doi.org/10.1103/PhysRevLett.74.1538
http://dx.doi.org/10.1103/PhysRevLett.94.027005
http://dx.doi.org/10.1103/PhysRevLett.94.027005
http://dx.doi.org/10.1103/PhysRevA.67.013607
http://dx.doi.org/10.1103/PhysRevA.67.013607
http://dx.doi.org/10.1140/epjd/e2006-00103-6
http://arxiv.org/abs/1001.2120
http://dx.doi.org/10.1103/PhysRevLett.57.3164
http://dx.doi.org/10.1103/PhysRevA.66.013602
http://dx.doi.org/10.1103/PhysRevA.66.013602
http://dx.doi.org/10.1103/PhysRevE.74.056608
http://dx.doi.org/10.1103/PhysRevLett.95.010402
http://dx.doi.org/10.1103/PhysRevLett.95.010402
http://dx.doi.org/10.1038/nature06186
http://dx.doi.org/10.1103/PhysRevA.59.R31
http://dx.doi.org/10.1103/PhysRevA.12.1019
http://dx.doi.org/10.1103/PhysRevA.12.1019
http://dx.doi.org/DOI: 10.1016/0029-5582(65)90862-X
http://dx.doi.org/DOI: 10.1016/0029-5582(65)90862-X
http://dx.doi.org/10.1103/RevModPhys.73.307
http://dx.doi.org/10.1103/PhysRevLett.92.160406


5

(2004); M. Erhard, H. Schmaljohann, J. Kronjäger,
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