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We consider the stability and dynamics of multiple dark solitons in cigar-shaped Bose-Einstein condensates
(BECs). Our study is motivated by the fact that multiple matter-wave dark solitons may naturally form in such
settings as per our recent work [Phys. Rev. Lett.101, 130401 (2008)]. First, we study the dark soliton inter-
actions and show that the dynamics of well-separated solitons (i.e., ones that undergo a collision with relatively
low velocities) can be analyzed by means of particle-like equations of motion. The latter take into regard the
repulsion between solitons (via an effective repulsive potential) and the confinement and dimensionality of the
system (via an effective parabolic trap for each soliton). Next, based on the fact that stationary, well-separated
dark multi-soliton states emerge as a nonlinear continuation of the appropriate excited eigensates of the quan-
tum harmonic oscillator, we use a Bogoliubov-de Gennes analysis to systematically study the stability of such
structures. We find that for a sufficiently large number of atoms, multiple soliton states may be dynamically
stable, while for a small number of atoms, we predict a dynamical instability emerging from resonance effects
between the eigenfrequencies of the soliton modes and the intrinsic excitation frequencies of the condensate.
Finally we present experimental realizations of multi-soliton states including a three-soliton state consisting of
two solitons oscillating around a stationary one.

PACS numbers:

I. INTRODUCTION

Dark solitons, namely localized density dips on top of a stable continuous-wave background (or a background of finite extent)
with a phase jump across their density minimum, are fundamental envelope solitons supported in nonlinear dispersive media.
These nonlinear waves emerge in media with a positive (negative) group-velocity dispersion and defocusing (focusing)nonlin-
earity, with a proper model describing their evolution being the so-called defocusing nonlinear Schrödinger (NLS) equation [1].
Dark solitons have been studied extensively in the field of nonlinear optics (from which the term “dark” was coined) [2], but
they have also been observed in diverse physical contexts, including liquids [3], mechanical systems [4], magnetic films [5], and
so on.

More recently, dark solitons have attracted much attentionin the physics of Bose-Einstein condensates (BECs) [6, 7], where
they appear as fundamental macroscopic nonlinear excitations of BECs with repulsive interatomic interactions [8, 9].It is,
therefore, not surprising that experimental work onmatter-wave dark solitonsstarted as early as ten years ago [10, 11, 12, 13, 14]
and, very recently, continued even more intensively [15, 16, 17, 18, 19]. These important “new age” experiments highlighted
various salient features of dark solitons, verified previous theoretical predictions and offered motivation for further investigations.
A pertinent example is the creation of more than one matter-wave dark solitons [17, 18] (see also Ref. [15]) in cigar-shaped
condensates, which were allowed to interact. This invites arevisiting of the topic of dark solitons and especially of their
interactions in the particular context of BECs; the latter has a number of particularities including e.g., the confinement that is
routinely used to trap and cool the atomic cloud [6, 7].

Multiple dark soliton solutions of the defocusing NLS equation were first obtained in Ref. [1] by means of the inverse
scattering method. Later, an analytical form of a solution of the NLS equation composed of two dark solitons of differentdepths
and velocities was found [20] (see also the more recent works[21, 22]), and it was shown that the interaction between dark
solitons is repulsive. Subsequent theoretical studies focused on the interactions and collisions of dark solitons in the context
of nonlinear optics [23, 24, 25] and later in BECs [26], whilerelevant experimental results (see Refs. [27] for optical dark
solitons and [14, 17] for atomic dark solitons) also examined the interaction between two dark solitons. However, following the
recent experimental methodology of Ref. [18], it is in principle possible to generate multiple (in fact, in principle, an arbitrary
number of) dark solitons: this can be done by releasing a BEC from a double-well potential into a harmonic trap within the
experimentally accessible, so-called, dimensionality crossover regime between one-dimension (1D) and three-dimensions (3D)
[18]. In such a case, it is clear that a study of multiple matter-wave dark solitons, and their interactions, should be performed in
a theoretical framework that takes into regard basic features of the pertinent experiment, such as the effect of dimensionality and
the corresponding effective confinement of the condensate.

In this work, our scope is to analyze this problem, namely thestatics and dynamics of multiple matter-wave dark solitons
in cigar-shaped condensates. Based on the fact that recent atomic dark soliton experiments were performed at extremelylow
temperatures and with sufficiently large number of atoms, wemay safely adopt a mean-field theoretical approach. In particular,
we will perform our analysis in the framework of the effectively 1D Gross-Pitaevskii (GP) equation with a non-cubic nonlinearity
that was first presented in Ref. [28] and later was also derived and tested in Refs. [29] [this is a distinguishing feature of our work
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with respect to most of the above references which considered dark soliton interactions in the standard homogeneous defocusing
cubic NLS setting]. Our analysis starts by considering the dynamics of multiple dark solitons which is studied as follows. First,
we consider the weakly-interacting limit of the non-cubic GP equation (namely the traditional defocusing NLS model) and, in
the absence of the trap, we derive an effective repulsive potential for the interaction between two solitons. It is shownthat this
potential can successfully be used to describe the interactions between “low-speed” solitons (with velocities less than the half of
the speed of sound). Such solitons are, “well-separated” inthe sense that they always can be identified as distinguishable objects,
even at the collision point. Then, using this potential, we obtain a set of equations of motion for the coordinates of an arbitrary
number of solitons. Our approach, is finally applied to the full problem under consideration (with the non-cubic nonlinearity and
the external harmonic trap), upon incorporating an effective harmonic potential with a corresponding characteristicfrequency:
this is actually the eigenfrequency of the first anomalous mode of the system [7], corresponding to the oscillation frequency
of a single dark soliton in the trap (see relevant results in Refs. [30] and [31] for the purely-1D and dimensionality-crossover
regimes). Such anad hocdecomposition of the principal physical mechanisms affecting the solitons was first introduced in Ref.
[18] (for the case of two symmetrically interacting dark solitons), and will be validateda posterioriherein, by means of direct
numerical simulations.

The above methodology for the study of multiple atomic dark solitons is directly connected to the Bogoliubov-de Gennes
(BdG) spectrum of excitations of stationary dark soliton states. The latter are obtained when linearizing around the nonlinear
counterparts of the respective linear states (corresponding to the eigenmodes of the quantum harmonic oscillator) [32] and their
properties are studied by means of the well-known BdG equations [7]. Such an analysis reveals that the spectrum of then-th
excited state consists of one zero eigenvalue,n double eigenvalues (accounted for by the presence of the harmonic trap), and
infinitely many simple ones. In the nonlinear regime, one of the eigenvalues of each double pair possesses a topological property
of, so-called,negative energy(in the physical literature) [33] ornegative Krein signature(in the mathematical literature) [34];
practically, this means that it becomes structurally unstable, i.e., it becomes complex, upon collision with other eigenvalues. The
eigenvalues with negative Krein signature are actually associated with the anomalous modes [7] appearing in the BdG spectrum.
In our case of multiple dark solitons, the number of anomalous modes in the excitation spectrum equals to the number of dark
solitons [35], which is in agreement with the fact that the number of eigenvalues with negative Krein signature equals tothe
number of the nodes of the stationary state [36]. More generally, we conjecture (based on the results below for the cases of
two- and three-solitons) that in the case of ann-dark soliton sequence (pertinent to ann-th order nonlinear state), the anomalous
modes of the system correspond to the excitation of the normal modes of the “dark-soliton lattice”.

The paper is organized as follows. In section II we present the model and make some general remarks on the theoretical setup.
Section III is devoted to the dynamics of multiple solitons.In particular, first we analyze the homogeneous weakly-interacting
case, and derive the effective repulsive potential for two solitons undergoing a symmetric collision. Then, we generalize these
results to include the cases of asymmetric collisions and multiple solitons, as well as to tackle the full problem, taking into regard
the external harmonic trap and the dimensionality of the condensate. In section IV we study the stability of the stationary multi-
soliton states via a BdG analysis. We analyze, in particular, the pertinent Bogoliubov spectra, paying special attention to the
anomalous modes of the system. We illustrate how these anomalous modes correspond to ”normal modes” of the “dark-soliton-
lattice”, e.g., in-phase and out-of-phase oscillating dark soliton states. We also predict the onset of dynamical instabilities due to
resonance between the eigenfrequencies of these normal modes and the excitation frequencies of the background condensate. We
illustrate under what conditions such instabilities may beobserved in future experiments. In Section V we present experimental
realizations of multi-soliton states including a three-soliton state consisting of two solitons oscillating around astationary one.
Section VI concludes the paper, summarizing our findings andpresenting some directions of future study.

II. THE MODEL AND THEORETICAL SETUP

We consider a BEC confined in a highly elongated trap, with longitudinal and transverse confining frequencies (denoted by
ωz andω⊥, respectively) such thatωz ≪ ω⊥. In this case, it can be found [28, 29] that use of the adiabatic approximation, in
combination with a variational approach for determining the local transverse chemical potential, leads to the following effectively
1D GP equation,

i~
∂ψ

∂t
=

[

− ~
2

2m

∂2

∂z2
+ Vext(z) + ~ω⊥

√

1 + 4α|ψ|2
]

ψ, (1)

whereψ(z, t) is the longitudinal part of the condensate’s wave function normalized to the number of atoms, i.e.,N =
∫ +∞
−∞ |ψ|2dx, α is the s-wave scattering length,m is the atomic mass, andVext(z) is the longitudinal part of the external

trapping potential, assumed to take the standard harmonic form Vext(z) = (1/2)mω2
zz

2. As demonstrated in Refs. [29], Eq.
(1) provides accurate results in the dimensionality crossover and the Thomas-Fermi limit, thus describing the axial dynamics of
cigar-shaped BECs in a very good approximation to the 3D Gross-Pitaevskii (GP) equation. Notice that in the weakly-interacting
limit, 4a|ψ|2 ≪ 1, Eq. (1) is reduced to the usual 1D GP equation with a cubic nonlinearity, characterized by an effective 1D
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coupling constantg1D = 2a~ω⊥. Equation (1) can be expressed in the following dimensionless form,

i
∂ψ

∂t
=

[

−1

2

∂2

∂z2
+

1

2
Ω2z2 +

√

1 + 2|ψ|2
]

ψ, (2)

whereΩ ≡ ωz/ω⊥ is the normalized trap strength. In Eq. (2), the density|ψ|2 is measured in units of2aN , while length, time
and energy are measured, respectively, in units of the transverse harmonic oscillator lengthα⊥ ≡

√

~/mω⊥, ω−1
⊥ , and~ω⊥.

Exact analytical dark soliton solutions of Eq. (2) are not available. However, following the lines of Ref. [37] where a NLS
equation with a generalized defocusing nonlinearity was considered, dark soliton solutions can be found in an implicitform (via
a phase-plane analysis) or in an approximate form (via the small-amplitude approximation). On the other hand, exact analytical
dark soliton solutions are available in the above mentionedweakly-interacting limit (2|ψ|2 ≪ 1), and in the absence of the
external potential, i.e., for the cubically nonlinear defocusing NLS model. A single dark soliton solution on top of a background
with constant densityn = n0 = µ (with µ being the chemical potential) has the form [1],

ψ(z, t) =
√
n0 [iν +B tanh(η)] exp(−iµt), (3)

whereη =
√
n0B(z − √

n0νt), the parameterB ≡
√

1 − ν2 sets the soliton depth,
√
n0B, while the parameterν sets the

soliton velocity,
√
n0ν. Note that forν = 0 the dark soliton becomes a stationary kink (alias “black” soliton), while for ν = 1

the dark soliton solution (3) becomes the background solution. Multiple dark soliton solutions are also available [1, 20, 21]. In
the simplest case of a two-soliton solution, with the two solitons moving with equal velocities,ν1 = −ν2 = ν, the wave function
can be expressed as [21] (see also [22]):

ψ(z, t) =
F (z, t)

G(z, t)
exp(−iµt), (4)

whereF = 2(n0−2nmin) cosh(T )−2n0ν cosh(Z)+i sinh(T ),G = 2
√
n0 cosh(T )+2

√
nmin cosh(Z), whileZ = 2

√
n0Bz,

T = 2
√

nmin(n0 − nmin)t, andnmin = n0 − n0B
2 = n0ν

2 is the minimum density (i.e., the density at the center of each
soliton). This equation will be useful for the analysis of dark soliton interactions (see next section).

Generally, the single dark soliton, as well as all higher-order dark soliton states, can be obtained in a stationary formfrom the
non-interacting(linear) limit of Eq. (2), corresponding toN → 0. In this case, Eq. 2 is reduced to a linear Schrödinger equation
for a confined single-particle state, and this problem becomes the equation for the quantum harmonic oscillator; the latter, is
characterized by discrete energy levels and correspondinglocalized eigenmodes described by the Hermite-Gauss polynomials
[38]. Then, in theweakly-interactingcase, where Eq. (2) becomes the cubic NLS equation, all theseeigenmodes exist for the
nonlinear problem as well [32], describing an analytical continuation of the linear modes to a set of nonlinear stationary states.
Additionally, recent analysis and numerical results [39] suggest that there are no solutions of Eq. (2) without a linearcounterpart.
In fact, the effect of interactions (i.e., the effect of nonlinearity) transforms all higher-order stationary modes into a sequence of
parabolically confined dark solitons [32]. From the physical point of view, the higher-order stationary modes exist dueto the fact
that the repulsion between dark solitons [20, 21, 23, 24, 25]is counter-balanced by the restoring force induced by the trapping
potential.

Below, we are going to analyze the stability of nonlinear modes (namely stationary multi-dark-soliton states) of Eq. (2) by
means of the BdG equations. In particular, first we identify anumerically exact (up to a prescribed tolerance), stationary soliton
state,ψDS(x), using a fixed point algorithm (e.g., a Newton-Raphson method). Then, considering small perturbations of this
state of the form,

ψ(z, t) =
[

ψDS(z) +
(

u(z)e−iωt + υ∗(z)eiω∗t
)]

e−iµt, (5)

(where∗ denotes complex conjugate), we derive from Eq. (2) the following BdG equations:

[Ĥ − µ+ f ]u+ gυ = ωu, (6)

[Ĥ − µ+ f ]υ + gu = −ωυ, (7)

whereĤ = −(1/2)∂2
z + (1/2)Ω2z2 is the single particle operator,µ is the chemical potential and the functionsf andg are

given byf = g +
√

1 + 4nDS, andg = 2ψ2
DS/

√
1 + 4nDS (with nDS ≡ |ψDS|2). Then, solving Eqs. (6)-(7), we are going to

find the eigenfrequenciesω ≡ ωr + iωi and the amplitudesu andυ of the normal modes of the system. Note that due to the
Hamiltonian nature of the system, ifω is an eigenfrequency of the Bogoliubov spectrum, so are−ω, ω∗ and−ω∗. Notice that a
linearly stable configuration is tantamount toωi = 0, i.e., all eigenfrequencies being real.

The stability of nonlinear modes has already been considered in several works [40, 41, 42] in the framework of the 1D GP
equation. According to Ref. [40] stable nonlinear modes exist, but results of Ref. [42], obtained near the non-interacting limit,
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appear to contradict those of Ref. [40]. In fact, in Ref. [42]it was claimed that, apart from the first one, all higher-order nonlinear
modes are unstable for repulsive BECs (but can be stabilizedby using anharmonic traps). The mechanism of this instability can
be interpreted as follows: in the non-interacting (linear)limit, the excitation spectrum of then-th mode possessesn equidistant
(due to the harmonic trap) double eigenvalues. Then, passing into the nonlinear interacting regime, the negative energy of one
member of each of these double eigenfrequency pairs practically leads to structural instability, i.e., each pair and its opposite
split into a complex quartet of eigenfrequencies.

Below we will show that the above mentioned instability of higher-order nonlinear modes occurs near the non-interacting
limit, but will cease to exist sufficiently deep inside the nonlinear regime (i.e., for sufficiently large condensates with large
numbers of atomsN ). In fact, considering both the second- and the third-ordernonlinear mode of Eq. (2), we will demonstrate
that they are initially (i.e., for a small number of atoms, sufficiently close to the linear limit) linearly unstable. Nevertheless,
numerical continuation of the corresponding waveforms to larger values ofN , reveals a critical value of the number of atoms
(depending on the anisotropy of the external harmonic trap)which, if exceeded, all the eigenfrequencies become real and, thus,
the nonlinear stationary state becomes linearly stable.

III. DYNAMICS OF MULTIPLE DARK SOLITONS

A. Multiple soliton interactions – The homogeneous case

Let us consider, at first, the simplest possible multi-soliton state, namely a pair of dark solitons located atz = ±z0, and
moving with opposite velocities, i.e.,ν1 = −ν2 = ν. Then, in the framework of the weakly-interacting limit of Eq. (2) (and in
the absence of an external potential), we may derive an equation for the trajectory of the soliton coordinate,z0, as a function of
time. This can be done upon identifying the soliton coordinate as the location of the minimum density, and using the equation
∂|ψ|2/∂z = 0, with ψ(z, t) given in Eq. (4), to obtain the result:

cosh(2
√
n0Bz0) =

√

n0

nmin
cosh(T ) − 2

√

nmin

n0

1

cosh(T )
(8)

(recall thatT = 2
√

nmin(n0 − nmin)t). Then, Eq. (8) can be used for the determination of the distance2z∗0 between the two
solitons at the point of their closest proximity (corresponding tot = 0):

z∗0 =
1

2
√
n0 − nmin

cosh−1

(√

n0

nmin
− 2

√

nmin

n0

)

. (9)

This equation shows that the closest proximity distance becomes zero fornmin/n0 = ν2 = 1/4. Physically, this means that
there exists a critical value of the soliton velocity, namely νc = 1/2, which separates two different regimes: in the first regime,
“high-speed” solitons withν > νc are transmittedthrough each other [their high kinetic energy overcomes theinterparticle
repulsion], while in the second regime, “low-speed” solitons withν < νc arereflectedby each other [their lower kinetic energy
in this regime is insufficient to overcome the interparticlerepulsion]. In fact, as seen in the panels of Fig. 1, the wave function
of the low-speed (high-speed) solitons exhibits two separate minima (a single non-zero minimum) at the collision point, namely
|ψ(z∗0 , t = 0)|2 = 0 (|ψ(z∗0 , t = 0)|2 6= 0). Note that in the case of the critical velocityνc = 1/2, the two-soliton wave
function exhibits a single zero minimum at the collision point. The above analysis underscores the fact that low-speed solitons
are actually “well-separated” solitons, in the sense that they can always be characterized by two individual density minima even
at the collision point (the point of their closest proximity). On the contrary, the high-speed solitons completely overlap at the
collision point and, thus, are not distinguishable during the collision. Thus, well-separated solitons appear to be reflected by each
other and can safely be regarded as hard-sphere-like particles that interact through an effective repulsive potential(although, as
we will see quantitatively, the description below will be surprisingly accurate even in the non-well-separated case).

To further elaborate on the above, let us consider the limiting case of extremely slow solitons, namelyn0/nmin = ν2 ≪ 1/4,
for which the soliton separation is large for every time, i.e., the closest proximity distance isz∗0 ≫ 0. In this case, the second
term in the right-hand side of Eq.(8) is much smaller than thefirst one for every time (includingt = 0) and can be ignored. This
way, the soliton coordinate can be expressed as:

z0 =
1

2
√
n0B

cosh−1
[

ν−1 cosh(2n0νBt)
]

, (10)

which yields the soliton velocities:

dz0
dt

=
√
n0

sinh(2n0νBt)
√

ν−1 cosh2(2n0νBt) − 1
. (11)
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FIG. 1: Top panels: Soliton trajectories for symmetric two-soliton collisions for different initial velocities:ν = 0.2 (left) andν = 0.8 (right).
In the former (latter) case the solitons are reflected by (transmitted through) each other. Bottom panels: Soliton trajectories for an asymmetric
two-soliton collision for initial velocitiesν1 = 0.5 andν2 = 0 (left), and for a three-soliton collision for initial velocities ν1 = −ν3 = 0.4
andν2 = 0 (right). In all panels, shown are density plots of the wave function carrying the solitons as obtained by direct numerical integration
of the homogeneous NLS equation. The solid lines correspondto the solution of Eq. (14) (i.e., employing the effective interaction potential).
In all cases the normalized chemical potential isµ = 1.

The above equation shows that in the limitt→ ±∞, the soliton velocities take the asymptotic valuesdz0/dt = ±√
n0ν, namely

the values of the velocities of each individual soliton [seethe definition of the single soliton velocity beneath Eq. (3)]. On the
other hand, att = 0, Eq. (11) yieldsdz0/dt = 0; this means that as the dark solitons are approaching each other, they become
slower, i.e., darker, and att = 0 (corresponding to the point of their closest proximity) they become black, remaining at some
distance away from each other. After such a, so-called, head-on “black collision” [26], the dark solitons are reflected by each
other and continue their motion in opposite directions.

We now proceed to determine the effective repulsive potential for well-separated dark solitons. This can be done by deter-
mining, at first, an equation of motion for the soliton coordinate: differentiating Eq. (10) twice with respect to time, and using
Eq. (8) (without the second term, which is negligible for well-separated solitons), we obtain the equation of motion in the form
d2z0/dt

2 = −∂V (z0)/∂z0, with the repulsive potential being given by:

V (z0) =
1

2

n0B
2

sinh2(2
√
n0Bz0)

. (12)

It is worth noting here that sinceB =
√

1 − ν2, the above potential is, in principle, a velocity dependentone. Note that Eq. (12)
recovers the result obtained in Ref. [25] by means of a Lagrangian approach (in that work, thesinh term in the denominator
appears as acosh term due to a typographical error [43]).

Although the potential of Eq. (12) is formally applicable only to symmetric collisions, it can nevertheless be applied also in
the case of non-symmetric collisions provided that an “average depth” of the two solitons is employed. In fact, it is possible
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to generalize this concept for an arbitrary number of solitons, n: assuming that thei-th soliton (with i = 1, 2, · · · , n) is
characterized by a darknessBi, velocityνi =

√

1 −B2
i , and a positionzi, we may define the average depthBij = (1/2)(Bi +

Bj) and the relative coordinatezij = (1/2)(zi − zj) for solitonsi andj, and express the interaction potentialVi in the presence
of other solitons, as:

Vi =

n
∑

i6=j

n0B
2
ij

2 sinh2[
√
n0Bij(zi − zj)]

. (13)

Notice that Eq. (13) is reduced to Eq. (12) forνi = −νj = ν (i.e., forBi = Bj = B) andzi − zj = 2z0.
Using Eq. (13), it is now straightforward to obtain equations of motion for a “lattice” consisting of an arbitrary numberof

dark solitons. Taking into regard that the LagrangianL of n interacting solitons isL = T −V , whereT ≡ ∑n
i=1(1/2)żi

2 (with
żi ≡ dzi/dt) andV ≡

∑n
i=1 Vi are the kinetic and potential energy, respectively, the Euler-Lagrange equations,d(∂żiL)/dt−

∂ziL = 0, lead to the following set of dynamical evolution equations:

z̈i −
n

∑

k=1

(

∂2V

∂zk∂żi
żk +

∂2V

∂żk∂żi
z̈k

)

+
∂V

∂zi
= 0. (14)

Thesen coupled equations of motion can then be used to calculate thetrajectorieszi(t) of n-interacting dark solitons. It is worth
pointing out here that in deriving Eqs. (14), we have attempted to incorporate the character of the solitary waves as “deformable
particles” with a velocity-dependent interaction potential (cf. Eq. (12) and related discussion). This approximation will be tested
a posteriori through the detailed comparison of the particle-based and the GP-based dynamical results.

We have performed systematic numerical simulations to investigate the range of validity of Eqs. (14), both for cases of
symmetric and asymmetric soliton colisions, as well as bothfor cases of low-speed (well-separated) and high-speed dark solitons.
Various relevant examples are shown in Fig. 1. The simulations confirm that as long as the dark solitons are well-separated from
each other, i.e., if their depth (velocities) is (are) sufficiently large (small), their trajectories found by means of Eqs. (14) almost
coincide with the ones found by direct numerical integration of the NLS equation. This excellent agreement can be illustrated not
only qualitatively but also quantitatively: this can be done upon comparing the exact results for the collision-induced phase-shifts
of the soliton trajectories to the ones found numerically bymeans of Eq. (14). In the case of two solitons, these phase-shifts
were calculated analytically in Ref. [1] and have the following form,

δz1 =
1

2B1
ln

(ν1 − ν2)
2 + (B1 +B2)

2

(ν1 − ν2)2 + (B1 −B2)2
, (15)

δz2 = − 1

2B2
ln

(ν1 − ν2)
2 + (B1 +B2)

2

(ν1 − ν2)2 + (B1 −B2)2
. (16)

In Fig. 2 we compare the exact phase-shifts provided by the above expressions to the ones determined by means of Eq. (14),
which employ the effective repulsive potential of Eq. (12).Both cases of a symmetric (top panels) and an asymmetric (bottom
left panel) collision are shown; it is clearly observed thatthe agreement between the two approaches is very good for soliton
velocitiesν ≤ 1/2, i.e., for well-separated dark solitons. Notice that in thecase of an asymmetric collision,ν1 6= ν2, the two
shifts are not equal,|δz1| 6= |δz2|, while in the case of a symmetric collision,ν1 = −ν2 = ν (and, thus,B1 = B2 = B), the
phase shifts become equal,|δz1| = |δz2| = (2B)−1 ln(1 +B2/ν2).

B. Dynamics and interactions of multiple solitons in the trap

The above analysis of soliton interactions in the homogeneous case is of use in the inhomogeneous case as well. In particular,
here we will consider multiple dark solitons in the presenceof an harmonic trap, also taking into regard that the condensate
is cigar-shaped, so that the proper model is Eq. (2) (rather than its weakly-interacting limiting case, i.e., the usual cubic NLS
equation considered above). In such an experimentally relevant situation, we may employ the theoretical approach adopted in
Ref. [18] and use an interaction potential for dark solitonsof the form:

V eff
i = V eff

ext (zi) + Vi(zi, żi), (17)

whereVi(zi, żi) is the interaction potential of Eq. (13) and the effective trapping potentialV eff
ext is given by:

V eff
ext (zi) =

1

2
ω2

oscz
2
i . (18)
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FIG. 2: Collision-induced phase-shift of the solitons as a function of the velocityν. Solid lines depict the analytical result of Eqs. (15)-(16)
and the dashed lines show the results obtained from Eq. (14),which employs the effective repulsive potential. The agreement between the two
approaches is very good for well-separated solitons, i.e.,for ν ≤ 1/2. The left panel shows the case of a symmetric collision, and the right one
the case of an asymmetric collision of a moving soliton withν = ν1 and a stationary soliton (i.e., a black soliton withν2 = 0 – see bottom
left panel of Fig. 1). The dashed vertical line depicts the critical valueν = 1/2 and defines the range of applicability of the approach based on
the effective repulsive potential.

The underlying assumption within this decomposition is that dark soliton is an effective particle moving under the combined
influence of external forces from the confining potential andfrom the other solitons within the configuration. Each of these
individual forces has an associated potential and hence thetotal force and associated motion stem from the combinationof these
potentials. A more subtle assumption is that while the effect of dimensionality on a single soliton is captured in the effective
oscillation frequencyωosc discussed in detail in the next paragraph, the tail-tail interaction of the waves is well approximated
by its NLS counterpart. These assumptions will be validateda posteriori through our comparisons between theoretical and
numerical results below.

Here,ωosc is the oscillation frequency of a single dark soliton in the harmonic trap, which coincides with the lowest anomalous
mode of the system [31]. In the purely 1D regime, and for sufficiently large number of atoms (i.e., in the so-called Thomas-Fermi
regime [6, 7]) the soliton oscillation frequency isωosc = Ω/

√
2, whereΩ is the normalized trap strength. This can be derived

either by analyzing the dynamics of the dark soliton in the trap (see, e.g., [9] and references therein) or by means of a BdG
analysis [30]. In the case of cigar-shaped BECs under consideration, the oscillation frequency is upshifted [31] and, generally,
takes values in the intervalΩ/

√
2 < ωosc < Ω.

Based on the above discussion, the interaction potential ofEq. (18) takes into account both the effective harmonic trap
(including the dimensionality of the system),V eff

ext (zi), and the inter-soliton interaction potential,Vi(zi, żi) (derived for the
homogeneous 1D regime). This potential has already been successfully used in Ref. [18], where the experimental findingsfor
the symmetric collisions between two dark solitons were found to be in excellent agreement with the corresponding theoretical
results. Here, we will show that the approach based on the useof the effective potential of Eq. (17) can also be generalized to
the case of asymmetric collisions. Such a case can also be investigated experimentally in the context of the experimental setup
of [18]. In particular, in [18] an even number of dark solitons was created by merging two condensates initially preparedin a
double-well trap, with a zero-phase difference between them. In principle, it is also easy to create an odd number of solitons,
upon introducing a non-zero phase difference between the wells, which would lead to an asymmetric evolution pattern of the
solitary waves. If, furthermore, the phase difference is exactly equal toπ, then a stationary (black) dark soliton is created exactly
at the center of the harmonic trap. In fact, this procedure has already been used in relevant interference experiments (not directly
connected, however, to dark solitons) [45].

In Fig. 3 we show an example of an asymmetric collision between a stationary dark soliton (withν2 = 0) at a trap center
and a pair of oscillating solitons (withν1 = −ν3) in a cigar-shaped condensate confined in a trap of strengthΩ ≈ 0.06. The
figure shows the evolution of the density as obtained by direct numerical integration of Eq. (2). Additionally, the figureshows
the trajectory of one of the solitary waves as computed via the equation of motion that makes use of the effective potential of Eq.
(17) (solid green line) [the other moving dark soliton is themirror image of the one shown aroundz = 0, while the third is, by
symmetry, constrained to stay precisely atz = 0]. It is clear that the agreement between Eq. (2) and the reduced particle picture
is excellent.

We complete the analysis of this section by studying the caseof dark solitons performing small oscillations around their
equilibrium positions. In fact, we are going to use the Lagrangian approach devised above to connect the oscillation frequency
obtained by the multi-soliton dynamics to the eigenfrequencies of the anomalous modes of the stationary soliton statesthat will
be obtained by a BdG analysis in the next section. In that respect, it is relevant to consider the simplest case of two well-separated
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FIG. 3: (Color online) A configuration of three dark solitons, with the central one being stationary and the other two oscillating with a
frequencyωosc = 0.904Ω. Shown are a contour plot depicting the evolution of the density according to Eq. (2) illustrating the path of the
density minimum of one of the oscillating solitons, as well as the respective trajectory calculated by the equation of motion employing the
effective potential of Eq. (17) (solid line). The parametervalues areN = 2000, ωz = 2π × 53 Hz, ω⊥ = 2π× = 890 Hz (i.e.,Ω ≈ 0.06)
and initial displacement from the trap centerδz0 = 2µm.

solitons, which are assumed to be almost black (i.e.,B1 = B2 ≈ 1). In such a case, the Lagrangian takes the form,

L =
1

2
ż1

2 +
1

2
ż2

2 − 1

2
ω2

oscz
2
1 − 1

2
ω2

oscz
2
2 − n0

sinh2(
√
n0(z2 − z1))

. (19)

Then, using the Euler-Lagrange equations, and replacing the hyperbolic functionsinh by its exponential asymptote in the case
under consideration, i.e., for|z2 − z1| >> 0, the following equations of motion are obtained

z̈1 = −8n
3/2
0 e−2n

1/2

0
(z2−z1) − ω2

oscz1 (20)

z̈2 = 8n
3/2
0 e−2n

1/2

0
(z2−z1) − ω2

oscz2.

The fixed points,Z1, Z2 of the above system can be easily found by setting the left-hand side equal to zero. The result is:

Z = Z2 = −Z1 =
1

4
√
n0
w

(

32n2
0

ω2
osc

)

, (21)

wherew(η) is the Lambert’s w function defined as the inverse ofη(w) = wew. Then, considering small deviations (η1, η2) from
the equilibrium positionsZ1, Z2, we can Taylor expand the interaction potential keeping only the lowest-order term and, this
way, derive the following linearized equations of motion:

η̈1 = 16n2
0e

−4
√

n0Z(η2 − η1) − ω2
oscη1, (22)

η̈2 = − 16n2
0e

−4
√

n0Z(η2 − η1) − ω2
oscη2.

Let us now consider the normal modes of the system and seek solutions of the formηi = ηi0e
iωt, i = 1, 2, whereω is the

common oscillation frequency of both dark solitons. Then, substituting this ansatz into Eqs. (23), we rewrite the equations of
motion as matrix eigenvalue equation, namely:

−ω2η =

(

−ω2
osc − 16n2

0e
−4

√
n0Z 16n2

0e
−4

√
n0Z

16n2
0e

−4
√

n0Z −ω2
osc − 16n2

0e
−4

√
n0Z

)

η.

To this end, it is possible to obtain from the above system thecharacteristic frequencyω1 = ωosc, which corresponds to in-phase
oscillations of the two dark solitons, as well as the frequency ω2, which corresponds to out-of-phase oscillations of the two
solitons. The latter is given by:

ω2 =
√

ω2
osc + 32n2

0e
−4

√
n0Z . (23)

The above procedure can also be applied to the case of three, almost black, solitons (Bi ≈ 1, i = 1, 2, 3) considering only
nearest-neighbour interactions. In this case, the equilibrium positions are given by the following expressions

Z2 = 0, Z̃ = Z3 = −Z1 =
1

2
√
n0
w

(

16n2
0

ω2
osc

)

, (24)
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while the three characteristic frequencies which correspond to the three normal modes of the system are the following,

ω1 = ωosc, (25)

ω2 =

√

ω2
osc + 16n2

0e
−2

√
n0Z̃

ω3 =

√

ω2
osc + 48n2

0e
−2

√
n0Z̃ .

In the following section, we will elaborate on the investigation of the stability of the multiple soliton states and the derivation of
their anomalous modes.

IV. STABILITY OF STATIONARY MULTI-SOLITON STATES

Having examined the location of the solitary waves and theiroscillation eigenmodes and eigenfrequencies in an analytical
form, we now turn to the numerical investigation of such stationary multi-soliton states, and to their corresponding BdG spec-
trum. We carry out the relevant computations first for the two-dark-soliton state and subsequently for the three-dark-soliton
state.

A. The two-dark-soliton state

We start by considering the simplest possible stationary multi-soliton state, namely the second-order nonlinear modeof Eq.
(2). In the linear limit ofN → 0, this state corresponds to the second-excited state of the quantum harmonic oscillator. The
excitation spectrum of this state contains a zero eigenvalue (corresponding to the Goldstone mode), two double eigenfrequencies
located atΩ and2Ω, as well as infinitely many simple eigenfrequencies. Below we will analyze the excitation spectrum in the
nonlinear regime (i.e., when the number of atomsN is increased) focusing, in particular, on the two double eigenvalue pairs
mentioned above. Notice that in our numerical results (see below) we fixω⊥ to the typical valueω⊥ = 2π × 400 Hz.

First, we consider the two eigenfrequencies located atΩ (for N = 0) which, in the nonlinear regime, obtain opposite Krein
signature. In particular, one of them has positive Krein signature and corresponds to thedipole mode[6, 7], while the second
one has negative Krein signature, i.e., the integral of the norm× energy product,

∫

(|u|2 − |v|2)ωdx (in our units), is negative.
In other words, in the nonlinear regime this eigenvalue becomes the eigenfrequencyω1 of one of the two anomalous modes of
the system (recall that the number of anomalous modes in the excitation spectrum is the same as the number of dark solitons
or nodes in the relevant waveform). Notice that both eigenfrequencies originating fromΩ in the linear limit [see dashed (solid)
lines for the one with positive (negative) Krein signature in the top panel of Fig. 4] are real for every value of the numberof
atomsN , indicating the absence of any instability. In fact, the dipolar mode, per the relevant symmetry [6, 7], remains fixed at
ω = Ω, while the anomalous mode’s frequency in line with the dependence of the single dark soliton mode anomalous mode
frequency [31].

Next, we consider the eigenvalue pair located at2Ω (for N = 0). Similarly to the previous case, these eigenfrequencies
obtain opposite Krein signature: one eigenvalue has positive Krein signature and corresponds to the background condensate’s
quadrupole mode[6, 7], while the second one has negative Krein signature, thus being the eigenfrequencyω2 of the second
anomalous mode of the system. An important difference from the previous case is that this second pair of double eigenfre-
quencies does become complex – see bottom panel of Fig. 4, where the imaginary part of these eigenfrequencies is shown
as a function ofN . This implies that the respective nonlinear stationary state is unstable for sufficiently small atom numbers.
Nevertheless, the instability occurs only near the linear limit (as was also predicted in Ref. [42]). However, as seen inthe
bottom panel of Fig 4, when the number of atoms exceeds a critical value, namelyN = 438 for a trap strengthΩ = 0.1, all the
eigenfrequencies become real and the nonlinear state becomes linearly stable.

We have generally found that the larger the number of atoms, and the stronger the anisotropy of the harmonic trap, the more
stable the configuration with the two stationary dark solitons is. For example, forΩ = 0.35 this state is unstable up to the number
of atomsN = 1067, while forΩ ≈ 0.1 the instability occurs for very small condensates, with number of atomsN < 500. Notice
that a similar behavior was also found in the framework of the1D GP equation considered in Ref. [42] (results not shown here).
Additionally, regarding the connection of our analysis with experimental observations, we note that within the parameter range
of relevance to the recent experiment of [18], we found the two-dark soliton state to be linearly stable.

Let us now return to the excitation spectrum of Fig. 4 and focus on the eigenfrequencies possessing negative Krein signature
(see solid lines in the top panel of Fig. 4), namely the two anomalous modes. In the case of two dark solitons under consideration,
the physical significance of these two anomalous modes has been discussed in Ref. [35]. More specifically, excitation of the
anomalous mode with the smallest eigenfrequency,ω1, gives rise to anin-phaseoscillation, i.e., the two dark solitons move
towards the same direction without changing their relativespatial separation. On the other hand, excitation of the anomalous
mode with the largest eigenfrequency,ω2, gives rise to anout-of-phaseoscillation, i.e., the two dark solitons move in opposite
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FIG. 4: (Color online) Top panel: the real partωr of the lowest eigenfrequencies of the second nonlinear modeas a function of the number
of atomsN (for a harmonic trap withΩ = 0.1). Eigenfrequencies possessing negative Krein signature,namely eigenfrequencies of the two
anomalous modes, are depicted by solid lines. Eigenfrequencies possessing positive Krein signature are depicted by dashed lines, with the
lowest ones starting fromωr = 0.1 andωr = 0.2 at N = 0 corresponding, respectively, to the dipole and quadrupolemodes. Bottom panel:
the imaginary partωi of the eigenfrequency pair starting fromωr = 0.2 atN = 0 as a function of the number of atomsN . The vertical dotted
line at the critical valueN = 438 indicates the splitting of the complex pair into real eigenfrequencies.

directions with the same velocity and undergo a head-on collision. It should be pointed out that in the context of the analysis
of the previous section, this information is also encompassed within the eigenvectorsηi0 of the small perturbations around the
stationary multi-soliton state. In particular, the two possibilities correspond, respectively, toη20 = η10 andη20 = −η10.

The correspondence of the anomalous modes with the normal modes of the two-dark soliton state is confirmed by direct
numerical simulations. In particular, we have numericallyintegrated Eq. (2) with initial condition the nonlinear stationary
mode excited by the corresponding anomalous modes, i.e.,ψ(x; t = 0) = ψDS(x) + u(x) + υ∗(x). The results (for parameter
valuesΩ = 0.1 andN ≈ 1000) are shown in panels (a), (b) of Fig. 5. In Fig. 5(a) (Fig. 5(b)), the excitation of the first
(second) anomalous mode results in an in-phase (out-of-phase) oscillatory motion of the two dark solitons, with the characteristic
eigenfrequency of the first (second) anomalous mode, i.e.,ω1 = 0.0784 (ω2 = 0.199). Calculating numerically the maximum
density of the stationary state and the equilibrium positions of the dark solitons, we find thatn0 = 0.623 andZ = 1.78 ± 0.1.
This allows us to make a comparison with the ones calculated analytically based on the theoretical approach of the previous
section. Using Eq. (21), withωosc = ω1, and Eq. (23) we find thatZ = 1.85 andω2 = 0.205, which differ only3% from the
corresponding numerically obtained values.

Finally, it is worth investigating the manifestation of theinstability predicted above for small condensates, due the“collision”
of the second anomalous mode with the quadrupole mode. In Fig. 5(c), we show the evolution of the density of a condensate
with N ≈ 400 confined in a trap with strengthΩ = 0.1 (as before). For these parameter values, the eigenfrequencies of the two
anomalous modes areω1 = 0.081 andω2 = 0.188 + 0.0025i. The numerical integration of Eq. (2) reveals that althoughthe
initial evolution of the density roughly follows the one observed in Fig. 5(b) (up tot ≈ 700), the instability eventually manifests
itself: the soliton motion excites the quadrupole mode of the system, and this excitation results in a breathing behavior of the
BEC (see the bottom panel of Fig. 5).

B. The three-dark-soliton state

Let us now consider the third-order nonlinear mode of Eq. (2). In the linear limit, the excitation spectrum of this state
consists of a zero eigenvalue, three double eigenfrequencies located atΩ, 2Ω, and3Ω, as well as infinitely many simple ones.
In the nonlinear regime, and similarly to the previous case,each of the the three aforementioned pairs obtain opposite Krein
signature. In Fig. 6 we show the real (top panel) and imaginary (bottom panel) parts of the lowest eigenfrequencies as a function
of the number of atomsN (for a trap strengthΩ = 0.1 as before). In the top panel, the eigenfrequencies depictedby dashed
(solid) lines correspond to ones with with positive (negative) Krein signature. Regarding the ones with positive Kreinsignature,
we note that the lowest ones, starting fromωr = 0.1 and0.2 for N = 0, correspond to the dipole and quadrupole modes,
respectively. As before, the system’s ability to sustain dipolar oscillations for allN with a frequencyΩ preserves the dipolar
frequency atωr = 0.1 throughout the relevant figure and precludes the possibility of a quartet-inducing collision with the lowest
in-phase-oscillation anomalous mode of the system.

We now focus on the two upper double pairs (and their anomalous modes), located at2Ω and3Ω in the linear limit. These
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FIG. 5: (Color online) Spatio-temporal evolution of the condensate density after the excitation of the two anomalous modes. Panels (a),(b)
show the in-phase and out-of-phase oscillatory motion of the two dark solitons (forΩ = 0.1 andN = 1000); the oscillation frequencies are
identical to the eigenfrequencies of the first and second anomalous modes, respectively. Panel (c) shows the manifestation of the dynamical
instability (for Ω = 0.1 andN ≈ 400) due to the collision of the second anomalous mode with the quadrupole mode: the motion of the
solitons excites the quadrupole mode of the system, resulting in a breathing behavior of the condensate.
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FIG. 6: (Color online) Top panel: The real part of the lowest eigenfrequencies of the third excited mode (i.e., three-dark-soliton state) as a
function of the number of atomsN (for a harmonic trap withΩ = 0.1). The notation follows the one used in Fig. 4. The bold circlein the top
panel indicates the collision of eigenfrequencies of opposite Krein signatures which does not lead to instability (seedetails in the text). Bottom
panel: The imaginary parts of the the eigenfrequency pairs starting fromωr = 0.2 (blue) andωr = 0.3 (green) atN = 0 as a function of the
number of atomsN . The vertical dotted lines indicate the splitting of the respective complex pairs into real ones. After the second splitting,
all the eigenfrequencies become real and the three-solitonstate is stabilized.

become complex in the nonlinear regime. As is observed in Fig. 6, the upper pair (starting from3Ω for N = 0) splits into real
eigenfrequencies at very small values of the number of atomsN , while the lower pair (starting from2Ω atN = 0) remains
complex for larger values ofN . For the assumed trap strengthΩ = 0.1, the complex eigenfrequencies become real beyond the
critical value ofN ≈ 880 and, thus, the nonlinear mode becomes dynamically stable. Here, it is worth mentioning that this
state remains stable for the values ofN & 880 considered herein, although atN ≈ 1395 another collision appears: indeed,
at a point marked by a circle in the top panel of Fig. 6, the eigenfrequencies starting fromωr = 0.3 and0.4 for N = 0,
which possess opposite Krein signature, cross each other. Nevertheless, this collision does not lead to instability because the
eigenmodes associated with these eigenfrequencies remainorthogonal at the collision point. This happens due to the opposite



12

0.05 0.1 0.15
0

0.002

0.004

0.006

0.008

0.01

0.012

m
ax

(ω
i)

Ω

−0.01 0 0.01
−0.2

0

0.2

ω
i

ω
r −0.01 0 0.01

−0.5

0

0.5

ω
i

ω
r

N=1000

FIG. 7: (Color online) The maximum of the imaginary part of the eigenfrequencies of the third excited state for a fixed number of atoms
(N = 1000) as a function of the trap strengthΩ. The insets show the spectral plane for a stable (Ω = 0.05) and an unstable (Ω = 0.18) case.
In the latter case, the complex eigenfrequencies originatefrom the collision of the second anomalous mode with the quadrupole mode.

parity of the colliding eigenmodes [42].
So far, to investigate the stability of the three-dark soliton state (as well as the two-soliton state considered in the previous

section) we kept the trap strengthΩ fixed and varied the number of atomsN . It is also worthwhile (and experimentally relevant)
to reverse the procedure, i.e., to keep the number of atoms fixed, atN = 1000, and vary the harmonic trap strengthΩ, as
shown in Fig. 7. In this figure, it is readily observed that thenonlinear state remains stable up to the critical valueΩ = 0.12.
Beyond this value, the eigenfrequency of the second anomalous mode collides with that of the quadrupole mode and becomes
complex. Typical examples of the spectral plane, for both stable and unstable cases, are shown in the insets of Fig. 7. For
the stable case ofΩ = 0.05, the eigenfrequencies of the anomalous modes are found to beω1 = 0.039, ω2 = 0.0988, and
ω3 = 0.1626, while for the unstable case ofΩ = 0.18 the respective values areω1 = 0.1489 andω2 = 0.5994; notice that there
exist also two complex eigenfrequencies atω2 = 0.3379 ± 0.01i, stemming from the above mentioned collision. Once again,
we calculate numerically the maximum density of the state,n0 = 0.3817, and the equilibrium positions of the dark solitons:
Z2 = 0, Z3 = −Z1 = 4.3±0.1. Using Eq. (24), withωosc = ω1, we find thatZ = 4.54, in good agreement with the numerically
obtained, while the remaining two normal mode frequencies given by Eq. (26) are found to beω2 = 0.1, ω3 = 0.1647 and differ
by less than2% from the ones obtained by the BdG analysis.

Similarly to the two-soliton state, we now present results of direct numerical integration of Eq. (2) with an initial condition
given by the third nonlinear mode excited by the corresponding anomalous modes. First we study the stable case, withΩ = 0.05
andN = 1000, and then the unstable case, withΩ = 0.18 andN = 1000. In the stable case, when the first anomalous mode
is excited, the three dark solitons perform an in-phase oscillation with the characteristic eigenfrequency of the corresponding
anomalous mode – see Fig. 8(a). The excitation of the second anomalous mode results in the following configuration: the two
outer solitons are moving in opposite directions (symmetrically aroundz = 0), while the center soliton is a stationary one – see
Fig. 8(b). As mentioned in the previous section, this configuration may be experimentally observed following the experimental
procedure of [18], i.e., by merging two condensates initially prepared in a double-well trap, with aπ-phase difference between
them. On the other hand, when the third anomalous mode is excited, the two outer solitons are oscillating in-phase while the
center soliton is oscillating out-of-phase with respect tothe outer ones – see Fig. 8(c)). Finally, in the unstable case, we use as
an initial condition the third nonlinear state excited by the mode associated with the complex eigenfrequencies. As seen in Fig.
8(d), initially the outer dark solitons are moving out-of-phase, following the configuration observed in Fig. 8(b). Nevertheless,
similarly to the two-dark soliton state, the motion of the solitons gradually excites the quadrupole mode of the system,resulting
in a breathing behaviour of the condensate, signalling the manifestation of the relevant dynamical instability. Clearly, in such a
case, the oscillation amplitude of the dark solitons is not constant anymore.

V. EXPERIMENTAL CREATION OF MULTIPLE ATOMIC DARK SOLITONS

Dark solitons can be created experimentally, e.g., by the method of matter-wave interference, which can be considered as
a form of density engineering. This method makes use of the fact that an interference pattern in the presence of interatomic
interactions generates a train of dark solitons [46]. Our experimental realization of density engineering involves two BECs,
initially prepared in a double-well potential. This doublewell potential is created by the superposition of a crossed optical
dipole trap and a one-dimensional optical lattice [47]. Removing the optical lattice leads to the merger of the two initially
separated BECs in the harmonic trap and to the subsequent creation of an interference pattern which generates the solitons. The
experimental procedure is described in [18]. Two oscillating and colliding solitons were observed in that experiment.In the
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FIG. 8: (Color online) Spatio-temporal evolution of the condensate density after the excitation of the three anomalousmodes. In panels (a)-(c)
stable configurations withΩ = 0.05, N = 1000 are shown: in (a) excitation of the first anomalous mode results in a configuration where the
three dark solitons move together in-phase; in (b) excitation of the second anomalous mode results in a configuration where the outer solitons
move in opposite directions (each being the mirror image of the other aroundz = 0) while the middle one is at rest; in (c) excitation of the
third anomalous mode results in a configuration where the center soliton is moving in opposite direction to the outer darksolitons. Panel (d)
shows the excitation of the mode associated with a complex eigenfrequency for the unstable case withΩ = 0.18 andN = 1000. Here, a
dynamical instability manifests itself due to the collision of the second anomalous mode with the quadrupole mode: the motion of the dark
solitons excites the quadrupole mode of the system, resulting in a breathing behaviour of the entire condensate.

FIG. 9: Increasing the distance between the created solitons can be realized by increasing the ramping-down time of the optical latticeτOL, as
shown by numerical simulations of Eq. (2): a)τOL = 0ms, b) τOL = 2ms, c) τOL = 4ms

following we will extend this scheme to the preparation of a single and of multiple dark solitons in a harmonic trap.

A. Controlling the created macroscopically excited state

The fringe spacing of a matter-wave interference pattern depends on the momentum of the two merging atom clouds. There-
fore, it is possible to vary the number of created solitons inthis process by controlling the relative velocity. An increase of the
relative velocity between the atom clouds lowers the distance between the created solitons and leads to the creation of additional
solitons further away from the trap center. This can be realized by changing the ramping-down time of the optical latticeτOL, as
shown in Fig. 9. The number and distance of created solitons can also be controlled by the aspect ratio of the trapωz/ω⊥ or by
lowering the number of atoms. As thermal fluctuations of the initial phase directly translate into position fluctuationsof the dark
soliton train, care has to be taken to keep this phase as rigidas possible. Since the phase fluctuations scale asδΦ ∝ kBT/Ej
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(with Ej being the tunneling coupling energy of a double-well system), a careful control of the potential height, i.e.Ej , allows
to stabilize the phase and thus leads to negligible positionfluctuations. This also limits the achievable soliton distances. In our
experiment we can realizeδΦ ≈ 0.06/(2π).

The successful experimental realization of four solitons plus two additional weak ones with extremely high oscillation ampli-
tude is shown in Fig. 10(a). The illustrated oscillation dynamics, recorded with a time resolution of1ms, includes the creation
process of the solitons starting at the initial double well potential and including the ramping down of the optical lattice. The
creation process ends at the dashed line, where the final value of the longitudinal trapping frequency is reached after a suitable
ramping down from the value necessary to obtain the double well potential.

FIG. 10: a) Observation of the oscillation of four dark solitons including the creation process. The evolution is averaged over 10 experimental
runs. The point in time where the creation process of the solitons is finished is marked by the dashed line. b) Experimentalobservation of three
dark solitons in a harmonic trap averaged over 16 runs. The creation process of the solitons is not shown in this case. The soliton in the center
of the trap is at rest (black soliton) whereas the two outer ones oscillate. The time evolution plots were obtained by integrating the images over
their transverse axis, meaning that each vertical line shows the longitudinal density of the BEC at a certain point in time.

A matter-wave interference pattern depends on the relativephase difference∆φ of the two merging atom clouds. If∆φ = 0
a symmetric pattern with an even number of solitons is produced. A small phase difference leads to an asymmetric evolution
pattern of the created solitons, while a phase difference close toπ leads to the creation of an additional soliton between the other
ones meaning that an odd number of solitons is produced. Suchphase difference can be created by changing the symmetry of the
potential, which results in an energy difference between the levels of the two wells of the double-well potential. Maintaining this
asymmetry for a certain hold time accumulates a phase difference between the two BECs. In a simple approximation, the phase
difference is given by∆φ ≈ ∆E/~ · t. By adapting the asymmetry and the time of phase accumulation before releasing the two
condensates from the double well, arbitrary phase differences can be achieved. Especially interesting is the case werethe initial
phase difference is exactlyπ. Then, a black (stationary) soliton is created at the centerof the trap, between the oscillating ones.
Shifting the symmetry of the potential experimentally is realized by shifting the second beam of the dipole trap with respect to
the optical lattice.

Fig. 10(b) shows the experimental realization of three darksolitons in a harmonic trap created by the above discussed method.
The trap frequencies used in the experiment areνz = 36.1±0.25Hz (longitudinal frequency),ν⊥ = 407.5±40.8Hz (transverse
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frequency). The mean number of atoms in the BEC isN = 1570 ± 146. In this measurement the height of the optical lattice
is ramped down linearly on a timescale ofτOL = 2ms. The final value of the longitudinal trapping frequencyνz is reached
after ramping down within7ms from the value ofνinitial

z = 63Hz necessary for obtaining the double well potential [44]. In the
performed experiment the oscillation amplitude of the two outer solitons,Aosc = (21 ± 0.6)ξ, is relatively large. Therefore,
the oscillation frequency is only moderately increased by the soliton-soliton interaction in this case:νd/νz = 0.775 ± 0.006. A
numerical simulation yieldsνd/νz = 0.761 in good agreement with the experimental result.

Our method should offer the possibility of creating a single, stationary soliton, corresponding to the first excited state in
a harmonic trap [45]. Numerical simulations reveal that this can be achieved by increasing the ramping-down time of the
optical latticeτOL further, which decreases the kinetic energy of the collision process. In the lowest collisional state only one
interference fringe is produced which produces a single dark soliton. However, for technical reasons [49], the single (moving)
dark solitons that we created by this method (see Fig. 11) were fluctuating in position from shot to shot.

The above results illustrate the possibility of experimentally generating not only a single pair of dark solitons as in [18], but
rather of an essentially arbitrary number of such solitons.
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FIG. 11: (Color online) Single shots of the longitudinal density of the BEC. Increasing the ramping-down time of the intensity of the optical
lattice fromτOL = 2 ms toτOL = 5 ms offers the possibility of creating a single soliton. Leftpanel: single shot of the three soliton state
shown in Fig. 10. Note that the stationary soliton in the middle appears with finite density on its minimum in the experimental images. This is
due to the limited optical resolution. Right panel: single shot of a single dark soliton state.

VI. CONCLUSIONS

In the present work, we attempted to quantify the existence,stability and dynamics of multiple atomic dark solitons, by
examining in detail the prototypical cases of two- and three-dark soliton states. We provided two complemetary viewpoints
corroborating the same basic picture. A first approach was that of considering the solitons as particles, which interactwith each
other through an exponential tail-tail interaction and areconfined within a parabolic trap (appropriately incorporating the effect
of dimensionality). This particle picture provided us witha detailed understanding of the repulsive nature of the inter-soliton
interaction and its implication on collision-phenomena and on how it can be combined with the restoring force of the parabolic
confinement to provide for effective stationary states of the system (i.e., of the dark soliton “crystal”). Within the context of these
equations of motion the normal modes of this crystal were also examined and were associated with relative motions between
the solitary waves. The second viewpoint came from the consideration an effective quasi-one-dimensional partial differential
equation (which incorporates appropriately the transverse confinement of the cloud) and starting from the linear limitof the
number of atomsN → 0 which has the well-known quantum harmonic oscillator eigenfunctions and developing the multi-dark-
soliton states as natural continuations of appropriate (second- or third- or higher-) excited modes of the linear problem. In that
context, the excitation spectrum contained the modes of thebackground BEC (omitted from the particle picture), as wellas
the anomalous modes pertaining to the dark-soliton quasi-particles, which were, in turn, associated with the above mentioned
normal modes. These two approaches together with a detailedunderstanding of the experimental setup of [18] provide key
insights on what types of modes can be excited in the experiment, what intrinsic frequencies should be associated with them
and, furthermore, what types of instabilities/resonanceswith background excitations, these modes can be expected toinduce.

One of the future directions of the present program would be to generalize this picture to the extent possible to the n-dark-
soliton lattice, formulating and addressing questions about the characterization of the normal modes of such a “dark-soliton-
crystal”, as well as questions about the conditions under which this crystal could potentially undergo phase transitions, possibly
to a state such as a “dark-soliton-gas”. On the other hand, another natural generalization of the present program would be that of
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considering a quasi-two-dimensional analog of the waveforms, the corresponding stability and dynamics, namely that of multi-
vortex structures and the associated particle picture. Studies along these directions are presently in progress and will be reported
in future publications.
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Phys.4, 496 (2008).
[17] S. Stellmer, C. Becker, P. Soltan-Panahi, E.-M. Richter, S. Dörscher, M. Baumert, J. Kronjäger, K. Bongs, and K. Sengstock, Phys. Rev.
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