
P H Y S I C A L R E V I E W L E T T E R S week ending
11 JUNE 2004VOLUME 92, NUMBER 23
Bright Bose-Einstein Gap Solitons of Atoms with Repulsive Interaction
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We report on the first experimental observation of bright matter wave solitons for 87Rb atoms with
repulsive atom-atom interaction. This counterintuitive situation arises inside a weak periodic potential,
where anomalous dispersion can be realized at the Brillouin zone boundary. If the coherent atomic wave
packet is prepared at the corresponding band edge, a bright soliton is formed inside the gap. The
strength of our system is the precise control of preparation and real time manipulation, allowing the
systematic investigation of gap solitons.
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FIG. 1 (color). Observation of bright gap solitons. The atomic
density in the negative mass regime deduced from absorption
images (430 �m� 125 �m) averaged over four realizations is
shown for different propagation times. After approximately
25 ms, a small peak is formed which does neither change in
shape nor in amplitude. Excessive atoms are radiated and
disperse over time. After 45 ms only the soliton with �250
atoms has sufficient density to be clearly observable. The
second peak at 15 ms shows the atoms which have been
removed by Bragg scattering to generate an initial coherent
wave packet consisting of �900 atoms. For longer observation
clearly reveal that after a propagation time of 25 ms a times, those atoms move out of the imaged region.
Nonspreading localized wave packets [1]—bright soli-
tons—are a paradigm of nonlinear wave dynamics and
are encountered in many different fields, such as physics,
biology, oceanography, and telecommunication. Solitons
form if the nonlinear dynamics compensates the spread-
ing due to linear dispersion. For atomic matter waves,
bright solitons have been demonstrated for which the
linear spreading due to vacuum dispersion is compensated
by the attractive interaction between atoms [2]. For re-
pulsive atom-atom interaction, dark solitons have also
been observed experimentally [3].

In this Letter, we report on the experimental observa-
tion of a different type of solitons, which exist only in
periodic potentials—bright gap solitons. For weak peri-
odic potentials, the formation of gap solitons has been
predicted [4], while discrete solitons [5] should be ob-
servable in the case of deep periodic potentials. These
phenomena are well known in the field of nonlinear
photon optics where the nonlinear propagation properties
in periodic refractive index structures have been studied
[6]. In our experiments with interacting atoms, a new
level of experimental control can be achieved, allowing
for the realization of gap solitons for repulsive atom-atom
interaction corresponding to a self-defocusing medium. It
also opens up the way to study solitons in two- and three-
dimensional atomic systems [7].

In our experiment, we investigate the evolution of a
Bose-Einstein condensate in a quasi-one-dimensional
waveguide with a weak periodic potential superimposed
in the direction of the waveguide. In the limit of weak
atom-atom interaction, the presence of the periodic po-
tential leads to a modification of the linear propagation;
i.e., dispersion [8]. It has been demonstrated that with this
system anomalous dispersion can be realized [9], which is
the prerequisite for the realization of gap solitons for
repulsive atom-atom interaction.

Our experimental observations are shown in Fig. 1 and
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nonspreading wave packet is formed. The observed be-
havior exhibits the qualitative features of gap soliton
formation such as (i) during soliton formation excessive
atoms are radiated and spread out over time, (ii) solitons
do not change their shape and atom number during propa-
gation, and (iii) gap solitons do not move.

The coherent matter wave packets are generated
with 87Rb Bose-Einstein condensates [Fig. 2(a)]. The
atoms are initially precooled in a magnetic time-orbiting
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FIG. 2 (color online). Realization of coherent atomic wave
packets with negative effective mass utilizing periodic poten-
tials. (a) Top view of the crossed dipole trap geometry used for
Bose-Einstein condensation. (b) A periodic potential is ramped
up while the atoms are still trapped in the crossed dipole trap
realizing the atomic ensemble at qc � 0. (c),(d) The atoms are
released into the one-dimensional waveguide and, subse-
quently, the periodic potential is accelerated to the recoil
velocity vr � h=�m. This prepares the atomic wave packet at
the band edge of the lowest band. (e) Normal and anomalous
(shaded area) dispersion regime in a periodic potential. The
single preparation steps are indicated. The shown band struc-
ture is calculated for a modulation depth of V0 � 1Er.
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potential trap using the standard technique of forced
evaporation leading to a phase space density of �0:03.
The atomic ensemble is subsequently adiabatically trans-
ferred into a crossed light beam dipole trap (� �
1064 nm, 1=e2 waist 60 �m, 500 mW per beam), where
further forced evaporation is achieved by lowering the
light intensity in the trapping light beams. With this
approach, we can generate pure condensates with typi-
cally 3� 104 atoms. By further lowering the light inten-
sity, we can reliably produce coherent wave packets of
3000 atoms. For this atom number no gap solitons have
been observed. Therefore, we remove atoms by Bragg
scattering [10]. This method splits the condensate coher-
ently leaving an initial wave packet with 900(300) atoms
at rest. The periodic potential V � V0sin

2�2�� x� of peri-
odicity d � �=2 is realized by a far off-resonant standing
light wave of wavelength � � 783 nm. The absolute value
of the potential depth was calibrated independently by
analyzing results on Bragg scattering and Landau-Zener
tunneling [11].

After the creation of the coherent wave packet, we
ramp-up the periodic potential adiabatically, which pre-
pares the atomic ensemble in the normal dispersion re-
gime at quasimomentum q � 0 as indicated in Fig. 2. The
dispersion relation for an atom moving in a weak peri-
odic potential exhibits a band structure as a function of
quasimomentum q known from the dispersion relation of
electrons in crystals [12] [see Fig. 2(e)]. Anomalous
dispersion, characterized by a negative effective mass
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meff < 0, can be achieved if the mean quasimomentum
of the atomic ensemble is shifted to the Brillouin zone
boundary corresponding to q � �=d. This is accom-
plished by switching off one dipole trap beam, releasing
the atomic cloud into the one-dimensional horizontal
waveguide [Fig. 2(c)] with transverse and longitudinal
trapping frequencies !? � 2�� 85 Hz, and wjj � 2��
0:5 Hz. Subsequently, the atomic ensemble is prepared at
quasimomentum q � �=d by accelerating the periodic
potential to the recoil velocity vr � h=m�. This is done
by introducing an increasing frequency difference be-
tween the two laser beams, creating the optical lattice.
The acceleration within 1.3 ms is adiabatic; hence, ex-
citations to the upper bands by Landau-Zener transitions
are negligible [11]. It is important to note that the strength
of the dispersion is under full experimental control. The
absolute value of meff�q � �=d� � V0=�V0 � 8Er�m
(weak potential approximation [12]) scales with the
modulation depth of the periodic potential, where Er �
� �h2=2m���2=d2� is the recoil energy.

For weak periodic potentials, the full wave function
of the condensate is well described by ��x; t� �
A�x; t�uqc0 �x� exp�iqcx�, where uqc0 �x� exp�iqcx� represents
the Bloch state in the lowest band n � 0 at the corre-
sponding central quasimomentum qc. Within the approxi-
mation of constant effective mass, the dynamics of the
envelope A�x; t� is governed by a one-dimensional non-
linear Schrödinger equation [13]:
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with g1d � 2 �ha!?�nl, where �nl is a renormalization
factor due to the presence of the periodic potential (�nl �
1:5 for q � �=d in the limit of weak periodic potentials
[13]), and a is the scattering length. The stationary solu-
tion for qc � �=d is given by

A�x; t� �
��������������
N=2x0

p
sech�x=x0�e

i �ht=2meffx20 ;

where x0 is the soliton width andmeff is the effective mass
at the band edge. The total number of atoms constituting
the soliton is given by

N �
�h

�nl!?meffx0a
: (1)

This quantitative feature of bright solitons can also be
deduced by equating the characteristic energies for dis-
persion ED � �h2=meffx20 and atom-atom interaction Enl �
g1djA�x � 0; t�j2.

A characteristic time scale of solitonic propagation
due to the phase evolution can also be identified. In
analogy to light optics, the soliton period is given by
TS � �meffx

2
0=2 �h. Solitonic propagation can be con-

firmed experimentally if the wave packet does not
broaden over time periods much longer than TS.

Our experimental results in Fig. 1 show the evolution of
a gap soliton in the negative mass regime for different
230401-2
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FIG. 3. Characteristic features of the observed gap soliton.
(a) Comparison of expansion in the positive and the negative
effective mass regime for 300 atoms. While the soliton does not
disperse at all over a time of 65 ms, corresponding to more than
eight soliton periods (solid circles), a wave packet in the normal
mass regime expands significantly (open circles). Each point
represents the result of a single realization. The solid line marks
the average measured rms width of Gaussian fits to the solitons.
Panel (b) shows the position of the soliton in the frame of the
periodic potential and reveals that a standing gap soliton has
been realized. The dotted lines indicate the positions that
correspond to the maximum and the minimum group velocity
in the lowest band. (c) Number of atoms in the central peak.
The initial atom numbers exhibit large shot to shot fluctuations,
which are reduced during the soliton formation. The predicted
relation between the number of atoms and the soliton width
[Eq. (1)] is indicated by the horizontal bar using the width
deduced as shown in (a). Note that this comparison has been
done without a free parameter since all contributing parame-
ters are measured independently.
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propagation times. The reproducible formation of a single
soliton is observed if the initial wave packet is close to the
soliton condition, i.e., a well-defined atom number for a
given spatial width. The preparation scheme utilizing the
Bragg pulse leads to a wave packet containing 900 atoms
with a spatial size of �2:5 �m (rms). The periodic po-
tential depth was adjusted to V0 � 0:70�5�Er leading to
meff=m ’ �0:1 at the band edge. The soliton can clearly
be distinguished from the background after 25 ms, cor-
responding to three soliton periods. This is consistent
with the typical formation time scale of few soliton
periods given in nonlinear optics textbooks [14]. After
45 ms of propagation, the density of the radiated atoms
drops below the level of detection and thus a pure soliton
remains, which has been observed for up to 65 ms. It has
been shown that for gap solitons a finite lifetime is ex-
pected due to resonant coupling to transversally excited
states [15]. In order to understand the background, we
numerically integrated the nonpolynomial nonlinear
Schrödinger equation [16]. The calculation reveals
that the nonquadratic dispersion relation in a periodic
potential leads to an initial radiation of atoms. However,
the absolute number of atoms in the observed background
(�600 atoms) is higher than the prediction of the em-
ployed effective one-dimensional model (�250 atoms).
Therefore we conclude that transverse excitations have to
be taken into account to get quantitative agreement. This
fact still has to be investigated in more detail.

In the following, we will discuss the experimental facts
confirming the successful realization of gap solitons.

In Fig. 3(a), we compare the spreading of wave packets
in the normal and anomalous dispersion regime which
reveals the expected dramatic difference in wave packet
dynamics. The solid circles represent the width of the gap
soliton for meff=m � �0:1, which does not change sig-
nificantly over time. We deduce a soliton width of x0 �
6:0�9� �m (xrms � 4:5 �m) from the absorption images
where the measured rms width shown in Fig. 3(a) is
deconvolved with the optical resolution of 3:8 �m
(rms). In this regime, the wave packet does not spread
for more than eight soliton periods [TS � 7:7�23� ms].
Since our experimental setup allows one to switch from
solitonic to dispersive behavior by turning the periodic
potential on and off, we can directly compare the soli-
tonic evolution to the expected spreading in the normal
dispersion regime. The open circles represent the expan-
sion of a coherent matter wave packet with 300(100)
atoms in the normal mass regime meff=m � 1.

The preparation at the band edge implies that the group
velocity of the soliton vanishes. This is confirmed in
Fig. 3(b), where the relative position of the soliton with
respect to the standing light wave is shown. The maxi-
mum group velocity of the lowest band is indicated by
the dotted lines. In the experiment, care has to be taken
to align the optical dipole trap perpendicular to the
gravitational acceleration within 200 �rad. Otherwise
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the solitons are accelerated in the direction opposite
to the gravitational force revealing their negative mass
characteristic.

The calculated number of atoms [Eq. (1)] is indicated
by the horizontal bar in Fig. 3(c). The width of the bar
represents the expectation within our measurement un-
certainties. The observed relation between atom number
and width, characteristic for a bright soliton, is in excel-
lent agreement with the simple theoretical prediction
without any free parameter.
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FIG. 4. Scaling properties of a gap soliton. The effective mass
was varied experimentally by changing the periodic potential
depth. The scaling predicted by Eq. (1) is represented by the
solid line and is in good agreement with our experimental
observations. The error bars represent the variation of the
scaling parameter for different realizations.
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As an additional check for soliton formation, we de-
termine the product of atom number and soliton width as
a function of the effective mass which is varied by adjust-
ing the modulation depth of the periodic potential. Fig-
ure 4 shows the range of effective masses, for which
solitons have been observed. For smaller values of jmeffj,
corresponding to smaller potential depths, Landau-Zener
tunneling does not allow a clean preparation in the nega-
tive mass regime, while for larger values the initial num-
ber of atoms differs too much from the soliton condition.
The observed product of atom number and wave packet
width after 40 ms of propagation are shown in Fig. 4 and
confirm the behavior expected from Eq. (1). Additionally,
our experimental findings reveal that the change of the
scaling parameter Nx0 in Fig. 4 is dominated by the
change in the atom number, while the soliton width ex-
hibits only a weak dependence on the effective mass.

The demonstration of gap solitons confirms that Bose
condensed atoms combined with a periodic potential
allow the precise control of dispersion and nonlinearity.
Thus, our setup serves as a versatile new model system for
nonlinear wave dynamics. Our experiments show that gap
solitons can be created in a reproducible manner. This is
an essential prerequisite for the study of soliton collisions.
The experiment can be realized by preparing two spa-
tially separated wave packets at the band edge and apply-
ing an expulsive potential. Ultimately, atom number
squeezed states can be engineered with atomic solitons
by implementing schemes analog to those developed
for photon number squeezing in light optics [17]. This
is interesting from a fundamental point of view and
may also have impact on precision atom interferometry
experiments.
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