
PRL 94, 020403 (2005) P H Y S I C A L R E V I E W L E T T E R S week ending
21 JANUARY 2005
Nonlinear Self-Trapping of Matter Waves in Periodic Potentials
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We report the first experimental observation of nonlinear self-trapping of Bose-condensed 87Rb atoms
in a one-dimensional waveguide with a superimposed deep periodic potential . The trapping effect is
confirmed directly by imaging the atomic spatial distribution. Increasing the nonlinearity we move the
system from the diffusive regime, characterized by an expansion of the condensate, to the nonlinearity
dominated self-trapping regime, where the initial expansion stops and the width remains finite. The data
are in quantitative agreement with the solutions of the corresponding discrete nonlinear equation. Our
results reveal that the effect of nonlinear self-trapping is of local nature, and is closely related to the
macroscopic self-trapping phenomenon already predicted for double-well systems.
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FIG. 1. Observation of nonlinear self-trapping of Bose-
condensed 87Rb atoms. The dynamics of the wave packet width
along the periodic potential is shown for two different initial
atom numbers. By increasing the number of atoms from 2000�
200 (squares) to 5000� 600 (circles), the repulsive atom-atom
interaction leads to the stopping of the global expansion of the
wave packet. The insets show that the wave packet remains
almost Gaussian in the diffusive regime but develops steep edges
in the self-trapping regime. These edges act as boundaries for the
complex dynamics inside.
The understanding of coherent transport of waves is
essential for many different fields in physics. In contrast
to the dynamics of noninteracting waves, which is concep-
tually simple, the situation can become extremely complex
as soon as interaction between the waves is of relevance.
Very intriguing and counterintuitive transport phenomena
arise in the presence of a periodic potential. This is mainly
due to the existence of spatially localized stationary
solutions.

In the following we will investigate the dynamics of
Bose-condensed 87Rb atoms in a deep one-dimensional
periodic potential; i.e., the matter waves are spatially lo-
calized in each potential minimum (tight binding) and are
coupled via tunneling to their next neighbors. This system
is described as an array of coupled boson Josephson junc-
tions [1]. The presence of nonlinearity drastically changes
the tunneling dynamics [2] leading to new localization
phenomena on a macroscopic scale such as discrete sol-
itons, i.e., coherent nonspreading wave packets, and non-
linear self-trapping [3]. These phenomena have also been
studied in the field of nonlinear photon optics where a
periodic refractive index structure leads to an array of
wave guides, which are coupled via evanescent waves [4].

In this Letter we report on the first experimental con-
firmation of the theoretically predicted effect of nonlinear
self-trapping of matter waves in a periodic potential [3].
This effect describes the drastic change of the dynamics of
an expanding wave packet when the nonlinearity, i.e.,
repulsive interaction energy, is increased above a critical
value. Here the counterintuitive situation arises that
although the spreading is expected to become faster due
to the higher nonlinear pressure, the wave packet stops to
expand after a short initial diffusive expansion. Since we
observe the dynamics in real space, we can directly mea-
sure the wave packet width for different propagation times.
In Fig. 1 we show the experimental signature of the tran-
sition from the diffusive to the self-trapping regime. We
prepare wave packets in a periodic potential and change
05=94(2)=020403(4)$23.00 02040
only the nonlinear energy by adjusting the number of
atoms in the wave packet close to (2000� 200 atoms)
and above (5000� 600 atoms) the critical value. Clearly
both wave packets expand initially. At t� 35 ms the wave
packet with higher initial atomic density has developed
steep edges and stops expanding (see inset in Fig. 1). In
contrast, the wave packet with the lower initial atomic
density continues to expand keeping its Gaussian shape.

The coherent matter-wave packets are generated with
87Rb Bose-Einstein condensates realized in a crossed light
beam dipole trap (� � 1064 nm, 1=e2 waist 55 �m,
600 mW per beam). Subsequently a periodic dipole poten-
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tial Vp � sErsin
2�kx�, realized with a far off-resonant

standing light wave (� � 783 nm) collinear with one of
the dipole trap beams is adiabatically ramped up. The
depth of the potential is proportional to the intensity of
the light wave and is given in recoil energies Er �

�h2k2
2m with

the wave vector k � 2�=�. By switching off the dipole
trap beam perpendicular to the periodic potential, the
atomic matter wave is released into a trap acting as a
one-dimensional waveguide Vdip �

m
2 �!

2
?r
2 �!2

k
x2�

with radial trapping frequency !? � 2�	 230 Hz and
longitudinal trapping frequency !k 
 2�	 1 Hz. The
wave packet evolution inside the combined potential of
the waveguide and the lattice is studied by taking absorp-
tion images of the atomic density distribution after a
variable time delay. The density profiles n�x; t� along the
waveguide are obtained by integrating the absorption im-
ages over the radial dimensions and allow the detailed
investigation of the wave packet shape dynamics with a
spatial resolution of 3 �m.

In Fig. 2 the measured temporal evolution of the wave
packet prepared in the self-trapping regime (s �
10; 7:6�5� �m initial rms width, 5000� 600 atoms) is
shown. The evolution of the shape is divided into two
characteristic time intervals. Initially (t < 20 ms) the
wave packet expands and develops steep edges. This dy-
namics can be understood in a simple way by considering
that the repulsive interaction leads to a broadening of the
momentum distribution and thus to a spreading in real
space. Since the matter waves propagate in a periodic
potential, the evolution is governed by the modified dis-
persion (i.e., band structure) E�q� � �2K cos�dq� where
d � �=2 is the lattice spacing, �hq is the quasimomentum,
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FIG. 2. Comparison between theory and experiment for s �
10; 7:6�5� �m initial rms width and 5000� 600 atoms. The
upper graphs show the measured density distribution for differ-
ent propagation times. During the initial expansion in the self-
trapping regime the wave packet develops steep edges which act
as stationary boundaries for the subsequent internal dynamics.
The results of the numerical integration of Eq. (2) (depicted in
the lower graphs) are in very good agreement. For t � 50 ms a
1.5 mrad deviation of the waveguides’ horizontal orientation
(consistent with the experimental uncertainty) is taken into
account and reproduces the experimentally observed asymmetry
(gray line).
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and K is the characteristic energy associated with the
tunneling. The formation of steep edges is a consequence
of the population of higher quasimomenta around q �
��=2d where the dispersion is strongly reduced and the
group velocity is extremal. In order to populate quasimo-
menta jqj>�=2d the initial interaction energy has to be
higher than the characteristic tunneling energy K and thus
the critical parameter depends on the ratio between the on-
site interaction energy and the tunneling energy as we will
discuss in detail. While in the linear evolution the steep
edges move with the extremal group velocity [5], in the
experiment reported here they stop after their formation.
As we will show, this is a consequence of the high atomic
density gradient at the edge which suppresses tunneling
between neighboring wells. The further evolution is char-
acterized by stationary edges acting as boundaries for the
complex internal behavior of the wave packet shape. The
formation of the side peaks is an indication that atoms
moving outwards are piled up because they cannot pass
the steep edge. Finally the pronounced features of the wave
packet shape disappear and a square shaped density distri-
bution is formed.

In order to understand in detail the ongoing complex
self-trapping dynamics we compare quantitatively our ex-
perimental findings with numerically obtained solutions
(see Fig. 2). For our typical experimental parameters of
s� 11 and �100 atoms per well, we are in the regime
where the dynamics can be described by a macroscopic
wave function �� ~r; t� and thus by the Gross-Pitaevski
equation [6]. Since we use deep optical lattices, the de-
scription can be reduced to a one-dimensional discrete
nonlinear equation, which includes the fundamental pro-
cesses, namely, tunneling between the wells and nonlinear
phase evolution due to the interaction of the atoms [3,7]. In
our experiment the trapping frequency in a single well
along the lattice period is on the order of !x 

2�	 25 kHz, whereas the transverse trapping frequency
of the waveguide is !? � 2�	 230 Hz. Thus our system
can be described as a horizontal pile of pancakes, and the
transverse degree of freedom cannot be neglected. In [7] a
one-dimensional discrete nonlinear equation (DNL) is de-
rived which takes into account the adiabatic change of the
wave function in the transverse direction due to the atom-
atom interaction. A generalized tight binding ansatz

�� ~r; t� �
X
j

 j�t��j~r; Nj�t�� (1)

is used, with  j�t� �
�����������
Nj�t�

q
ei�j�t�, where Nj�t� is the atom

number and �j�t� is the phase of the jth condensate. �j is
normalized to 1 (i.e.,

R
d~r�2j � 1) and ��~r; t� is normal-

ized to the total number of atoms NT (i.e.,
P
jj jj

2 � NT).
The spatial real wave function �j ~r; Nj�t�� is centered at
the minimum of the jth well and is time dependent through
N�t�. Integrating over the spatial degrees of freedom, the
3-2
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FIG. 3. A numerical investigation of the site-to-site tunneling
dynamics. (a) The atomic distribution Nj of the wave packet for
t � 0 and 50 ms. (b) The relative population difference �Nj time
averaged over the expansion time indicates two regions with
different dynamics. (c) The dynamics of �Nj and the phase
difference ��j for the marked site oscillate around zero known
as the zero-phase mode of the boson Josephson junction. (d) The
dynamics in the edge region is characterized by long time
periods where j�Njj is close to 1 while at the same time ��j

winds up very quickly (phase is plotted modulo �) known as
‘‘running phase self-trapping mode’’ in boson Josephson junc-
tions. Thus the expansion of the wave packet is stopped due to
the inhibited site-to-site tunneling at the edge of the wave packet.
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following DNL is obtained from the Gross-Pitaevski equa-
tion

i �h
@ j
@t

� !j j � K� j�1 �  j�1� ��locj  j: (2)

K is the characteristic tunneling energy between adjacent
sites. !j �

R
d~r m2 !

2
k
x2�2j is the on-site energy resulting

from the longitudinal trapping potential, which is negli-
gible in the description of our experiment. The relevant
chemical potential is given by �locj �

R
d~rm2 !

2
?r
2�2j �

g0j j�t�j
2�4j � with g0 � 4� �h2a=m (a is the scattering

length). It can be calculated approximately for our experi-
mental situation assuming a parabolic shape in transverse
direction (Thomas-Fermi approximation) and a Gaussian
shape in longitudinal direction for �j ~r; Nj�t�� (!x �

�locj = �h >!?). This leads to �locj � U1j j�t�j with

U1 �

�������������������
m!2?g0�������
2�

p
�%x

vuut : (3)

Here %x � �=�2�s1=4� is the longitudinal Gaussian width
of �j in harmonic approximation of the periodic potential
minima. Please note that if the local wave function�j does
not depend on Nj Eq. (2) reduces to the well known
discrete nonlinear Schrödinger equation with �locj / Nj
[3,8].

We compare the experimental and numerical results in
Fig. 2 and find very good agreement. The theory reprodu-
ces the observed features such as steepening of the edges,
the formation of the side peaks, and the final square wave
packet shape. It is important to note that all parameters
entering the theory (initial width, atom number, periodic
potential depth, and transverse trapping frequency) have
been measured independently. The observed asymmetry of
the wave packet shapes (e.g., see Fig. 2, t � 50 ms) ap-
pears due to the deviation from the perfect horizontal
orientation of the wave guide ( � 2 mrad) which results
from small changes in height of the pneumatic isolators of
the optical table during the measurements.

In the following we will use the numerical results to get
further insight into the self-trapping dynamics. We inves-
tigate the local tunneling dynamics and phase evolution by
evaluating the relative atom number difference �Nj �
�Nj�1 � Nj�=�Nj�1 � Nj� and the phase difference��j �

�j�1 ��j between two neighboring sites. In Fig. 3(a) the
wave packet shapes for t � 0 and t � 50 ms are shown. In
Fig. 3(b) we plot the relative atom number difference �Nj
averaged over the whole propagation duration of 50 ms.
The graph indicates two spatial regions with different
characteristic dynamics. While the average vanishes in
the central region (shaded in light gray) it has significant
amplitude in the edge region (shaded in dark gray). The
characteristic dynamics of �Nj and ��j in the central
region is depicted in Fig. 3(c). The atom number difference
02040
as well as the phase difference oscillate around zero. This
behavior is known in the context of Bose-Einstein con-
densation in double-well potentials. It is described as the
boson Josephson junction ‘‘zero-phase mode’’ [2] and is
characteristic for superfluid tunneling dynamics if the atom
number difference stays below a critical value. At the edge
in contrast, �Nj crosses the critical value during the initial
expansion (steep density edge) and locks for long time
periods to high absolute values showing that the tunneling
and thus the transport is inhibited. At the same time the
phase difference winds up. This characteristic dynamics
has been predicted within the boson Josephson junction
model for a double-well system and is referred to as the
‘‘running phase self-trapping mode’’ [2]. This analysis
makes clear that the effect of nonlinear self-trapping as
observed in our experiment is a local effect and is closely
related to boson Josephson junctions dynamics in a double-
well system.

Although the local dynamics just described is very
complex, the evolution of the root mean square width of
the wave packet, i.e., the global dynamics, can be predicted
analytically within a very simple model. In [3], a Gaussian
profile wave packet  j�t� / exp�� j

&�t��
2 � i '�t�2 j

2�, pa-
rametrized by the width &�t� (in lattice units) and the
quadratic spatial phase '�t�, is used as an ansatz for qua-
simomentum q � 0 to solve the discrete nonlinear
Schrödinger equation. The time evolution of the width
3-3
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FIG. 4. Experimental investigation of the scaling behavior.
The solid line shows the curve given by Eq. (4).
Experimentally the parameter  = c was varied by using three
different periodic potential depths: s � 10:6�3� (stars), 11:1�3�
(squares), and 11:5�3� (diamonds). For each potential depth,
wave packets with different atom numbers and initial widths
are prepared and the width for t � 50 ms is determined. The
experimental data show qualitatively the scaling behavior pre-
dicted by Eq. (4) and are in quantitative agreement with the
results of the numerical integration of the DNL (dashed line).
The inset depicts the nature of the scaling: increasing  = c (by,
e.g., increasing the atom number) leads to a faster trapping and
thus to a smaller final width.
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&�t� is obtained analytically applying a variational princi-
ple. The result of this simple model is that the dynamics of
the wave packet width is solely determined by two global
parameters— the density of the atoms and the depth of the
periodic potential. Also, a critical parameter  = c can be
deduced, which governs the transition from the diffusive to
the self-trapping regime. The transition parameter  = c
for the 2D case described by Eq. (2) is obtained following
the same lines of calculation as in [3]. Assuming that the
initial width &0 � 1 (in the experiment typically &0 
 40)
we obtain

 �
U1

�������
NT

p

2K
and  c �

3

2

	
9�
8



1=4 ������

&0
p

:

A surprising result of this model is the prediction of the
following scaling behavior (shown in Fig. 4):

&0
&1

�

���������������
1�

 c
 

s
(4)

for  = c > 1, where &1 is the width of the wave packet
for t! 1. For  = c < 1 the width is not bound and thus
the system is in the diffusive regime. In the regime
 = c > 1 the width is constant after an initial expansion
(see inset Fig. 4). Since  = c / �locav=K, the self-trapping
regime is reached by either reducing the initial width,
increasing the height of the periodic potential, or, as is
shown in Fig. 1, by increasing the number of atoms.

Scaling means that all data points (i.e., different experi-
mental settings with the same = c) collapse onto a single
universal curve. In order to confirm the scaling behavior
experimentally we measure the width of the wave packet
after 50 ms evolution for different system parameters, i.e.,
atom number, initial width of the wave packet, and depth of
the periodic potential. The experimental results shown in
Fig. 4 confirm the universal scaling dependence on  = c
and follow qualitatively the prediction of the simple model.
The dashed line in Fig. 4 is the result of the numerical
integration of the discrete nonlinear equation given in
Eq. (2) evaluated at t � 50 ms. It shows quantitative agree-
ment with the experiment. The difference between the
numerical (dashed line) and analytical calculation (solid
line) is due to the initial non-Gaussian shape (numerically
obtained ground state) and the strong deviation from the
Gaussian shape for long propagation times.

Concluding, we have demonstrated for the first time the
predicted effect of nonlinear self-trapping of Bose-Einstein
condensates in deep periodic potentials. The detailed
analysis shows that this is a local effect, which occurs
due to nonlinearity induced inhibition of site-to-site tun-
neling at the edge of the wave packet. This behavior is
closely connected to the phenomenon of macroscopic self-
trapping known in the context of double-well systems.
Furthermore, we quantitatively confirm in our experiments
the predicted critical parameter which discriminates be-
tween diffusive and self-trapping behavior.
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