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Abstract
We review the experimental realization of a single bosonic Josephson junction
for ultracold gases, which was made possible by the generation of a precisely
controllable double-well potential for Bose–Einstein condensates. We will
focus on the comparison of the experimentally obtained data with the
predictions of a many-body two-mode model and a mean-field description
and show that the observed static, thermal and dynamical properties can be
described in terms of classical equations.

1. Introduction

The difference between classical and quantum mechanical dynamics becomes strikingly
evident when two macroscopic quantum objects are weakly coupled to each other. This
fact was understood by the Nobel laureate Brian D Josephson in 1962 [1], when he predicted
the counter-intuitive effect that a direct current can flow between two superconductors coupled
via an insulating thin layer although no external voltage is applied, which is called the dc-
Josephson effect. Furthermore, an external voltage will in this system not result in a direct
current but gives rise to a rapidly oscillating current; this effect is known as the ac-Josephson
effect. Very soon, after the first experimental proof of principle [2], the Josephson effects found
their way to various applications such as voltage standards (Shaphiro effect) and ultrasensitive
magnetic field sensors (SQUIDS). Also fundamental questions on quantum physics were and
are extensively studied theoretically as well as experimentally with Josephson junctions in
different configurations [3, 4], ranging from ultra small junctions to long junction arrays.

Since the Josephson junction dynamics ‘only’ relies on the existence of two weakly
coupled macroscopic quantum states, similar behaviour has been observed in experiments with
two superfluid helium baths coupled through nano-apertures. The first superfluid Josephson
junctions were generated with superfluid 3He in 1997 [5–7] and with 4He 2001 [8]. With the
advent of Bose–Einstein condensates of weakly interacting gases [9–11] a new experimental
system has become available for the quantitative investigation of Josephson effects in a very
well controllable environment, as was discussed already in 1986 [12].
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In this review we will focus on the discussion of bosonic Josephson junctions (BJJ),
generated by confining a single Bose–Einstein condensate (BEC) in a double-well potential.
The Josephson junction in this system consists of the two localized matter wave packets in the
two wells, which are weakly coupled via tunnelling of particles through the potential barrier.
In the first part we will deal with the basic theoretical description of the physical situation. We
discuss a reduced many-particle theory and connect the results to the mean-field description.
In the following part we deal with the static, thermal and dynamical properties and compare
the predictions of the many-particle theory and the mean-field theory to our experimental
findings.

2. Theoretical description

In the experiment the Bose–Einstein condensate is confined in a double-well potential of the
form

Vdw = 1

2
m

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2) +

V0

2

(
1 + cos

2π

dsw
x

)
, (1)

which consists of a 3D harmonic confinement and a 1D periodic potential acting as the barrier.
The periodic potential has a height of V0 and a periodicity of dsw and the harmonic trap is
characterized by the three trapping frequencies ωx, ωy and ωz.

Generally, this is a many-particle problem and the corresponding many-body Schrödinger
equation cannot be solved exactly due to the interparticle interaction. However, in order
to describe our experimental situation the dimension of the Hilbert space can be reduced
drastically due to the special structure of the energy spectrum. The weak link, which generates
the Josephson junction, directly results in a small energy splitting between the mean-field
ground state and the first excited state of the double-well potential (see section 2.5). Thus,
for low energetic excitations and low temperature only these two states will play a role and
the influence of the higher lying states can be neglected. With this, the dimension of the
Hilbert space is reduced to N + 1, where N is the number of particles in the Bose–Einstein
condensate. The main difficulty when applying this two-mode approximation is to find the
right wavefunctions or orbitals, which account for the two quasi-degenerate states. However,
in the following we will assume that these states are known and present later a way how to
calculate the corresponding wavefunctions.

2.1. Two-mode approximation—the Bose–Hubbard model

The two-mode approximation and the resulting two-mode model can be applied for
investigating the steady state properties of the BJJ and for low energetic excitations. If
the system cannot be described accurately by the two-mode model then multi-orbital theories
like those discussed in [13, 14] have to be used. Following the derivation given in [15] or [16]
the relevant many-particle energy functional is given by

Ĥ = Ĥ 0 + Ĥ int, (2)

Ĥ 0 =
∫

dr
(

− h̄2

2m
�̂†∇2�̂ + �̂†Vdw�̂

)
, (3)

Ĥ int = g

2

∫
dr �̂†�̂†�̂�̂, (4)

where Vdw is the 3D double-well potential (equation (1)), g = 4πh̄2a
m

is the coupling constant
and a is the s-wave scattering length of the particles. Taking only the mean-field ground state
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�g and the mean-field first excited state �e into account, we can rewrite the wavefunction �̂

as

�̂ = ĉg�g + ĉe�e with
∫

dr|�g,e|2 = 1, (5)

and with ĉ
†
g and ĉ

†
e (ĉg and ĉe) being the creation (annihilation) operator for a particle in the

ground and the excited state. The operators obey the standard bosonic commutation relation[
ĉi , ĉj

†] = δij . A more direct and convenient choice for the basis are the atom number states
for which the expectation value of the population of the left and right well is sharp. The
corresponding creation operators are ĉl = 1√

2
(ĉg + ĉe) and ĉr = 1√

2
(ĉg − ĉe). In this basis �̂

is given by

�̂ = 1√
2
(ĉl(�g + �e) + ĉr (�g − �e)). (6)

By inserting equation (6) into equation (3) we find

Ĥ 0 = 1

2

((
ĉ
†
l ĉl + ĉ†r ĉr

)
(Eg + Ee) +

(
ĉ
†
l ĉr + ĉ†r ĉl

)
(Eg − Ee)

)
= N

Eg + Ee

2
+

(
ĉ
†
l ĉr + ĉ†r ĉl

)Eg − Ee

2
, (7)

with

Eg,e =
∫

dr
(

− h̄2

2m
�g,e∇2�g,e + �g,eVdw�g,e

)
, (8)

and substituting into equation (4)
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†
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†
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[s][a]3, (9)

with

[s]i[a]j = 1

4

∫
dr(�g + �e)

i · (�g − �e)
j . (10)

After some algebra and using the commutation relations (e.g. ĉ†r ĉ
†
l ĉl ĉl = ĉ

†
r ĉl · ĉ†l ĉl − ĉ

†
r ĉl) we

find the two-mode Hamiltonian

Ĥ 2M = Ec

8

(
ĉ†r ĉr − ĉ

†
l ĉl

)2 − Ej

N

(
ĉ
†
l ĉr + ĉ†r ĉl

)
+

δE

4

(
ĉ
†
l ĉr + ĉ†r ĉl

)2
, (11)

with the parameters

κi,j = g

2

∫
dr|�i |2|�j |2, (with i, j = g, e) (12)

µg,e =
∫

dr
(

− h̄2

2m
�g,e∇2�g,e + �g,e(Vdw + gN |�g,e|2)�g,e

)
, (13)

Ec = 8κg,e, (14)

Ej = N

2
(µe − µg) − N(N + 1)

2
(κe,e − κg,g), (15)

δE = κg,g + κe,e − 2κg,e

4
. (16)
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The term proportional to Ej describes tunnelling of particles from one to the other well, the
term proportional to Ec corresponds to the local interaction within the two wells, and the term
proportional to δE takes additional two-particle processes into account. In our experimental
parameter range this term is less than 10−5 × Ej/N and less than 10−3 × Ec/8 and thus will
be neglected for the following discussions. With this, the two-mode Hamiltonian (equation
(11)) can be written in the form

Ĥ 2M = Ec

2
n̂2 − Ej α̂, (17)

with

n̂ = ĉ
†
r ĉr − ĉ

†
l ĉl

2
, α̂ = ĉ

†
r ĉl + ĉ

†
l ĉr

N
. (18)

Here, n̂ is the population imbalance (i.e., atom number difference) operator and α̂ the tunnelling
operator. Equation (17) is usually referred to as the Bose–Hubbard Hamiltonian [15, 17–22].
Note that the atom number operator corresponds to the population difference divided by 2.
This is due to the fact that the transfer of one particle from one well to the other changes the
population difference by two. Furthermore, this definition leads in the Gross–Pitaevskii limit
to the canonically conjugate variables n and φ as will be discussed in sections 2.5 and 2.6.

2.2. Atom number fluctuations and coherence

Two important properties of the eigenstates of the Bose–Hubbard Hamiltonian are their atom
number fluctuations and their coherence. The fluctuation of the atom number difference is
defined as

	n2 = 〈n̂2〉 − 〈n̂〉2 =
〈(

ĉ
†
r ĉr − ĉ

†
l ĉl

)2

4

〉
−

〈
ĉ
†
r ĉr − ĉ

†
l ĉl

2

〉2

, (19)

and is a measure for the number of occupied atom number states. Discussions on the state of
the BJJ in the Bose–Hubbard picture can be found in [16, 23–27].

The coherence of this many-body system can be quantitatively defined by the first order
spatial coherence function g(1)(r, r′) as defined in [16]. In the two-mode approximation, it is
easy to see from equation (5) that the first order spatial coherence function does not depend
on the difference (r − r′) and thus is constant in space. With this, the coherence factor α can
be defined in steady state as the uniform value of the spatial coherence function

α = g(1)(r, r′) = |〈�̂†(r′)�̂(r)〉|√
〈�̂†(r′)�̂(r′)〉〈�̂†(r′)�̂(r′)〉

=
〈
ĉ
†
l ĉr + ĉ

†
r ĉl

〉
N

=
〈
ĉ
†
gĉg − ĉ

†
eĉe

〉
N

= 〈α̂〉. (20)

In the two-mode approximation, the coherence factor is directly related to the relative
population difference between the ground and the first excited state and corresponds to the
expectation value of the tunnelling operator. The eigenstates of the tunnelling operator are the
‘SU (2) coherent states’ and can be written in the left–right basis as (e.g., from [28–30])

|c〉 = 1√
N ! · NN

(
ψlĉ

†
l + ψrĉ

†
r

)N |vac〉, (21)

where ψl,r are complex multipliers and account for the population and the ‘phase’ of the two
modes. The state with the highest possible coherence fulfils α̂|c〉 = 1|c〉 and corresponds
to equation (21) with ψl = ψr = √

N/2. This state is the ground state of the double-well
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potential in the non-interacting limit and thus corresponds to totally delocalized particles
occupying all the ground state of the potential.

The coherence factor α = 〈α̂〉 defined in equation (20) can also be understood as the
mean fringe visibility of ensemble-averaged interference patterns which directly corresponds
to the averaged momentum distribution. In the steady state the ensemble-averaged momentum
distribution is given by

〈ρ̂(k)〉 = N

2
(|�g|2 + |�e|2 + 〈α̂〉(|�g|2 − |�e|2)). (22)

The equivalence between the coherence factor and the mean fringe visibility can be established
by using the approximate momentum distributions for the ground and the first excited state
(see figure 3)

�g(k) ≈ f (k) · cos(x0kx) (23)
�e(k) ≈ f (k) · i sin(x0kx), (24)

where �g(k) and �e(k) are the wavefunctions of the ground and the first excited state in
momentum space, f (k) is an envelope function and x0 is the characteristic distance between
the two wells. The resulting momentum distribution is given by

〈ρ̂(k)〉 ≈ N |f (k)|2
2

(1 + 〈α̂〉 · cos (2x0kx + φ)). (25)

Here 〈α̂〉 is the amplitude of the modulation of the momentum distribution which is also
the visibility of the resulting interference patterns, if the interactions do not perturb the
distribution during expansion. A discussion on how interference patterns are measured is given
in appendix B.

2.3. Rabi, Josephson and Fock regime

The properties of the ground state of the Bose–Hubbard Hamiltonian (equation (11)) depend
strongly on the ratio of the local interaction energy and the tunnelling coupling Ec/Ej . For
strong interaction the ground state is localized in the atom number basis (only a few atom
number states are populated) and the coherence is low. In the case of strong coupling the
coherence is high and the state is delocalized, as shown in figure 1(a), where the coherence
(upper graph) and the atom number fluctuations (lower graph) are plotted as a function
of Ec/Ej . Figure 1(b) shows the distribution of atom number states (upper part) and the
ensemble-averaged momentum distributions (lower graphs) for three different ratios of Ec/Ej .
It becomes evident that by increasing the ratio Ec/Ej the atom number fluctuations vanish
for Ec/Ej > N−2 before the coherence of the system starts to decrease at Ec/Ej > 1. By
considering this property three regimes can be distinguished, where (1) the coherence is very
high and the atom number fluctuations are large, (2) the coherence is high and the atom number
fluctuations are small and (3) the coherence is low and the atom number fluctuations vanish.
It is convenient to define these three regimes by the ratio of Ec/Ej [20, 21].

(1) Rabi regime: Ec/Ej � N−2,
(2) Josephson regime: N−2 � Ec/Ej � 1,
(3) Fock regime: 1 � Ec/Ej .

The Rabi regime corresponds to the non-interacting limit, where the system consists
of N independent particles. The distribution of atom number states is Poissonian and the
coherence is very high allowing for the definition of a relative phase between the matter wave
packets within the two wells. In the Josephson regime the fluctuations of the atom numbers
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(a)

(b)

Figure 1. Properties of the BJJ for N = 100. The upper graph in (a) shows the coherence factor
α as a function of Ec/Ej . The coherence starts to decrease at Ec/Ej � 1. The lower graph is a
plot of the population imbalance fluctuations 	n2 as a function of Ec/Ej . The fluctuations start to
decrease at Ec/Ej � N−2. (b) shows the distribution of atom number states (upper part) and the
ensemble-averaged momentum distributions (lower graphs) for three different ratios of Ec/Ej . At
Ec/Ej = N−2 the atom number fluctuations are large (	n ≈ √

N/2) and the visibility is almost
perfect (α ≈ 1). Above Ec/Ej = 1 the atom number fluctuations are strongly reduced but the
visibility is still high. At Ec/Ej = 10 the atom number fluctuations become very small and the
visibility starts to vanish.

are reduced but the coherence is high. Thus, also in this regime a relative phase can be
defined, which has only a small quantum mechanical uncertainty. In this regime, for large
atom numbers, the operators might be exchanged by complex numbers resulting in a mean-
field description of the state. In the Fock regime, the Josephson junction is dominated by the
interaction energy, therefore the eigenstates have a well-defined atom number in each well and
as the coherence vanishes, the phase is completely undefined. In this regime the ground state
cannot be described by a single condensate, but corresponds to a fragmented state, where the
single-particle density matrix has two macroscopic eigenvalues [31–33].

2.4. Definition of a relative phase

Another experimentally directly accessible quantity is the phase of the interference patterns
observed when releasing the atoms from the double-well trap. For each realization perfect
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Figure 2. Distribution of the relative phases for different ratios of Ec/Ej for N = 100. The five
graphs show typical distributions of the relative phase for the three regimes, the Rabi regime on
the left to the Josephson regime in the centre and the Fock regime on the right. In the Rabi regime
the width of the distribution is only determined by the number of particles. In the Josephson
regime also the ratio of the interaction energy and the coupling strength plays a role and in the
Fock regime the relative phase becomes random.

interference fringes are observed even in the Fock regime but the phase of the patterns
is fluctuating from realization to realization as discussed in [34]. Thus, by repeating the
experiment many times the distribution function of the phases can be accessed. To be able
to make a quantitative comparison of the experimentally obtained phases with the theoretical
prediction, a method has to be introduced, how these distribution functions can be extracted
from the Bose–Hubbard picture. In the many-body picture it is difficult to define a relative
phase operator [35, 36], but as by definition the SU (2) coherent states have a well-defined
relative phase between the two modes. Thus, it is possible to use a projection onto the ‘phase
part’ of the SU (2) coherent states, in order to find the distribution of the relative phases.

An orthonormal phase state basis consists of N + 1 phase states with φm = φ0 + m ×
2π/(N + 1) and m ∈ N between 0 and N:

|φm〉 = 1√
N + 1

N/2∑
n=−N/2

exp(inφm)|n〉. (26)

φ0 is an arbitrary phase and will be set in the following for simplicity to −π leading to the
range of relative phases of φ ∈ [−π, π ].

The phase distribution for any state can be calculated by a projection onto the phase states
via n(φm) = |〈φm|�〉|2. Typical distributions of the relative phase for the ground state for
different Ec/Ej are shown in figure 2. In steady state the expectation value of φ̂ is zero and
the width of the distribution increases with Ec. In the Rabi regime 	φ is small and decreases
with the number of particles. In the Fock regime the phase fluctuation increases to its maximal
value 	φ � π

√
3 corresponding to a random distribution and an undefined phase.

2.5. Gross–Pitaevskii equation and the two-mode model

With the many-body description it is possible to calculate all relevant quantities and the
dynamical response of the BJJ exactly within the two-mode approximation if the spatial
wavefunctions �g and �e are known. In the following we will show that starting from the
standard mean-field description of a BEC these wavefunctions can be found. Furthermore,
the mean-field picture allows the derivation of a classical Hamiltonian describing the static
and dynamic properties of the two conjugate observables, the population imbalance and the
relative phase. Since this Hamiltonian also describes the classical motion of a particle in a
sinusoidal potential the ongoing physics becomes intuitively accessible.



R68 Topical Review

(a) (b) (c) (d)

Figure 3. First two eigenstates of the double-well potential calculated by solving the Gross–
Pitaevskii equation in 3D in a symmetric and an asymmetric potential. The wavefunctions are
shown in real space (upper parts) and in momentum space (lower parts) for N = 1150 and
ωx = 2π × 78 Hz, ωy = 2π × 90 Hz, ωz = 2π × 66 Hz, V0/h = 420 Hz, |dsw| = 5.2 µm. The
asymmetry is generated by moving the periodic potential by 	x = 500 nm with respect to the
harmonic potential. The solid lines correspond to the ground state wavefunction in the symmetric
double-well (a), the first excited state in the symmetric double-well (b), the ground state in the
asymmetric double-well (c), and the first excited state in the asymmetric double-well (d). The
dashed lines show the corresponding wavefunctions in the harmonic trap at V0 = 0.

The many-body Schrödinger equation for a degenerate Bose gas, in the limit of
local interaction between the particles, small quantum mechanical uncertainties, and low
temperature, can be reduced to the Gross–Pitaevskii equation (GPE)

ih̄
∂

∂t
�(r, t) =

(
− h̄2

2m
∇2 + Vdw(r) + gN0|�(r, t)|2

)
�(r, t)

with
∫

dr|�(r)|2 = 1. (27)

For low energies, due to the structure of the energy spectrum of the double-well potential, only
the first two eigenstates of the GPE can become macroscopically populated, as their energy
difference is very small. Thus, the two relevant wavefunctions �g and �e correspond to these
two lowest eigenstates with the chemical potentials µg,e

µg,e�g,e(r) =
(

− h̄2

2m
∇2 + Vext(r) + gN |�g,e(r)|2

)
�g,e(r). (28)

In figures 3(a) and (b) the ground and first excited state wavefunctions in real (upper parts)
and momentum space (lower parts) are depicted for characteristic experimental parameters in
a symmetric double-well potential. With a coherent superposition of the two wavefunctions
in real space it is possible to generate states with any atom number difference, in analogy
to the Bose–Hubbard picture. Furthermore, the momentum distribution of the ground state
corresponds to an interference pattern at a zero relative phase and the first excited state to a
pattern at a π relative phase. Thus, with a coherent superposition of the two states it is also
possible to generate interference patterns at all relative phases. Figures 3(c) and (d) depict
similar plots for the ground state wavefunction and the first excited state wavefunction in an
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Figure 4. Mechanical analogue to the bosonic Josephson junction, a single particle with momentum
n and mass E−1

c in a sinusoidal potential. The graph shows a sketch of the ground state wavefunction
of the single particle in the sinusoidal potential at height U and a periodicity of 2π . The potential
is extended beyond the definition of φ ∈ [−π, π ] (dashed line in the grey shaded area).

asymmetric double-well potential. The asymmetry results for both states in a change of the
local amplitudes with an increase of the population of the lower well. The wavefunctions in
the momentum space are only slightly affected by the asymmetry.

When the two modes are known, the mean-field description can be used in order to gain
intuitive insight into the properties and the behaviour of the BJJ. The Hamiltonian in the
mean-field picture can be derived by substituting the creation and annihilation operators into
the two-mode Hamiltonian equation (5) by complex numbers (e.g., ĉl ⇒ √

Nl(t) eiφl(t)). If
δE is negligible, which is the case for our experimental situation, then the Gross–Pitaevskii
two-mode Hamiltonian has the form

HGP-2M = Ec

2
n2 − Ej

√
1 − 4n2

N2
cos φ, (29)

with

n = Nl − Nr

2
, φ = φr − φl. (30)

Here n is the population imbalance divided by 2 and φ the relative phase between the
wavefunction in the right and the left well.

2.6. Mechanical analogue—a simple picture

The already mentioned analogy of a BJJ with a particle in a sinusoidal potential becomes
obvious by associating the population difference with the momentum of a particle n ⇔ p

which has a mass of m = 1/Ec and the relative phase with the position of the particle φ ⇔ x.
With that, as depicted in figure 4, the tunnelling coupling Ej defines the height U of the
sinusoidal potential. It is important to note that the absolute height decreases with increasing

momentum U = 2Ej

√
1 − 4n2

N2 .
As an instructive example we will show that the quantum mechanical uncertainties 	x2,

	p2 associated with the ground state of the particle in the sinusoidal potential are equal to
the atom number and phase uncertainties derived within the Bose–Hubbard model. However,
it is important to note that the phase in this context is only meaningful, if the phase distribution
is sharply peaked around a mean value. This is the case in the Rabi or the Josephson regime.
In the Fock regime a mean phase cannot be defined and thus the following discussion is not
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(a)

(b)

(c)

Figure 5. Comparison of the uncertainties of the variables n and φ according to the Bose–Hubbard
model (solid line) and the simple mechanical analogue (dashed line). (a) Phase fluctuations,
(b) the atom number fluctuations and (c) the product of the two uncertainties revealing that φ and
n are conjugate variables in the Rabi and Josephson regime. In the Fock regime the atom number
fluctuations are smaller than expected and the phase fluctuations are bound leading to a strong
deviation of the product from the expectation due to the mean-field model.

adequate. By expanding the Hamiltonian to second order in φ and n we obtain

Hsimplified =
(

Ec +
4Ej

N2

)
n2

2
+

Ej

2
φ2, (31)

which describes a single particle in a harmonic potential with the standard quantum mechanical
uncertainties of the ground state leading to (e.g. [37])

	p2 ⇔ 	n2 = 1

2

√
Ej

Ec + 4Ej/N2
, 	x2 ⇔ 	φ2 = 1

2

√
Ec + 4Ej/N2

Ej

. (32)

The product of the fluctuations of the two dynamical variables n and φ as a function of
the system parameters Ec and Ej leads to an uncertainty relation of the form

	n2 × 	φ2 � 1/4, (33)

where the equality is valid for the ground state. The comparison of this uncertainty relation
with the calculation using the Bose–Hubbard model is shown in figure 5. The solid lines were
calculated with the Bose–Hubbard model with N = 100 and the dashed lines are the prediction
of the GP two-mode model. In the Rabi and Josephson regime the agreement is excellent as in
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these regimes the mean-field description is adequate; however in the Fock regime the product
vanishes, as the fluctuation of the atom numbers becomes arbitrarily small but the fluctuation
of the phase is bound between 0 and π .

3. Steady state properties at zero temperature

At zero temperature in a symmetric double-well potential the expectation values of the
population imbalance and the relative phase vanish. The mean-field ground state of the
BJJ is characterized by a uniform phase and thus the relative phase between the two wells in
the steady state is always zero. However, by introducing an energy asymmetry between the
two wells, the ground state population imbalance can be modified.

For the double-well potential defined in equation (1), which consists of a harmonic
trapping potential and a periodic potential, an asymmetry can be introduced by changing the
position of the harmonic trap. A shift of 	x leads to the potential

V
asymm

dw = 1

2
m

(
ω2

x(x − 	x)2 + ω2
yy

2 + ω2
zz

2
)

+
V0

2

(
1 + cos

2π

dsw
x

)
= Vdw − mω2

xx	x + const, (34)

where the shift is equivalent to an additional potential gradient. The resulting Bose–Hubbard
Hamiltonian for the asymmetric double-well potential has the form

Ĥ
asymm
2M = Ĥ 2M − 	x · δ ·

(
ĉ
†
r ĉr − ĉ

†
l ĉl

2

)

= Ec

2
n̂2 − 	x · δ · n̂ − Ej α̂

= Ec

2

(
n̂ − 	x · δ

Ec

)2

− Ej α̂ + const, (35)

with the coupling constant

δ = 2mω2
x

∫
dr �∗

s x�a. (36)

From equation (35) it follows that the ground state in the asymmetric double-well trap has a
population imbalance of 	n0 = 	x · δ/Ec. The distribution of the relative phases remains
unchanged in the asymmetric double-well potential, however the coherence is reduced, as 〈α̂〉
corresponds to the visibility of averaged interference patterns and their visibility depends on
the relative amplitudes of the two interfering modes.

In the Gross–Pitaevskii model a similar term appears as

HGP-asymm = Ec

n2

2
− Ej

√
1 − 4n2

N2
cos φ − δ · 	x · n, (37)

leading to the same predictions for the ground state population imbalance.
To measure the ground state population imbalance experimentally we prepare a BEC in

the ground state of an asymmetric double-well potential. The asymmetry is experimentally
realized by changing the position of the harmonic trapping potential with respect to the
standing light wave. The details of the experimental setup and the generation of the double-
well potential can be found in appendix A.

The initial state of the BJJ is prepared by condensing 1450 ± 250 atoms in a 3D harmonic
trapping potential with trapping frequencies ωx = 2π × 78(1) Hz, ωy = 2π × 66(1) Hz and
ωz = 2π ×90(1) Hz. To prepare the BJJ adiabatically the standing light wave with periodicity
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Figure 6. Steady state population imbalance as a function of the shift of the harmonic trapping
potential. The solid line is the solution of the 3D Gross–Pitaevskii equation and the dashed line is
the prediction of the Bose–Hubbard model.

dsw = 5.2(2) µm is raised within 1s to a height of 580(10) Hz. The tunnelling coupling, the
charging energy and the energy shift are calculated by solving the Gross–Pitaevskii equation
in 3D and are Ej/h = 1.17 kHz, Ec/h = 0.32 Hz, and δ/h = 231 Hz µm−1.

The experimentally found steady state population imbalances are plotted as a function of
the shift of the harmonic trapping potential in figure 6. The solid line is the solution of the 3D
Gross–Pitaevskii equation and the dashed line is the prediction of the Bose–Hubbard model.
The data area in good agreement with both theoretical predictions within the experimental error.
The discrepancy between the Bose–Hubbard and the full Gross–Pitaevskii model results from
the fact that the asymmetry changes the wavefunctions of the ground and excited state which
is not taken into account in the framework of the employed simple two-mode approximation.

4. Steady state properties at finite temperature

At finite temperature the fluctuation of the dynamical variables are larger than the
corresponding quantum mechanical uncertainties. The reason for these thermally induced
fluctuations is the equilibration of the bosonic Josephson junction with its thermal environment.
According to the Bose–Einstein distribution in the double-well potential not only the ground
state but also the first excited state will be macroscopically populated, if their energy difference
is smaller than the thermal energy scale. To calculate the effect of the temperature we neglect
the back action of the thermal excitations on the mean-field wavefunctions and the exchange
of particles. Thus, the interaction of the BJJ with its thermal background is only via a transfer
of energy.

The density matrix of the mixed state at finite temperature can be calculated in the
eigenstate basis by populating the eigenstates according to the Boltzmann distribution

ρ̂th = 1

C

N∑
e=0

exp

(
−〈e|Ĥ |e〉

kBT

)
|e〉〈e|, (38)

where |e〉 are the N + 1 eigenstates of the Hamiltonian, kB is the Boltzmann constant and C is
a normalization constant.
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The coherence factor α = 〈α̂〉 = Tr(ρ̂thα̂) defined in equation (20) also at finite
temperature in the steady state is a good measure for the coherence of the system and is
connected to the amount of phase fluctuations in general. For temperatures much higher than
the mean quantum mechanical level spacing, which is approximately given at low energy by
the plasma energy

h̄ωp =
√

Ej

(
Ec +

4Ej

N2

)
(39)

a semi-classical calculation of the thermally averaged fringe visibility is appropriate. In
this limit the many-body two-mode Hamiltonian (equation (17)) corresponds to the classical
Hamilton function (equation (29)) and the coherence factor is the mean value of cos φ which
writes

〈cos φ〉 =
∫

dn dφ cos φ exp(−HGP−2M/kBT )∫
dn dφ exp(−HGP−2M/kBT )

. (40)

In the Josephson regime, the relatively strong interaction term Ec makes at finite temperature
the population of large n energetically unfavourable. The coherence factor can then be
approximated by ([37])

α = 〈cos φ〉 =
∫

dφ cos φ exp
(− Ej

kBT
cos φ

)
∫

dφ exp
(− Ej

kBT
cos φ

) = I1
( Ej

kBT

)
I0

( Ej

kBT

) , (41)

where Ii(j) are the modified Bessel functions of the first kind. At high temperatures, the
agreement between this analytic expression and the prediction of the Bose–Hubbard model is
always very good (see figure 8).

The magnitude of the thermally induced fluctuations can also be directly deduced from
the mechanical analogue as long as the phase fluctuations are smaller than 	φ � π by using
the simplified Hamilton function (equation (31)), and assuming the Boltzmann distribution
leading to the fluctuations

	n2
th = kBT

Ec + 4Ej

N2

, 	φ2
th = kBT

Ej
. (42)

The product of the thermally induced fluctuation of the population imbalance and the phase
gives also rise to an ‘uncertainty relation’ of the form

	n2
th × 	φ2

th � (kBT )2

Ej

(
Ec + 4Ej

N2

) =
(

kBT

h̄ωp

)2

. (43)

To experimentally investigate the amount of thermal fluctuations in the BJJ, the distribution
of the relative phase for many realizations is measured as a function of the temperature, the
barrier height and the atom numbers [38]. The experiments are performed by condensing about
2000 to 10 000 atoms in the 3D harmonic trap with trapping frequencies ωx = 2π × 90(2)

Hz and ωy,z = 2π × 100(2) Hz at the lowest possible temperature of about 10 nK. Then
the temperature is increased by keeping the atoms in the harmonic trap for different holding
times, where due to uncontrolled fluctuations of the trap parameters energy is transferred to the
atoms. For these experiments it is crucial that the temperature can be deduced independently,
thus the adjusted temperature is in the range of 50–80 nK, which can be accurately measured
by standard thermometry methods. The atom number of the initial condensate is chosen such
that after the heating process the number of the condensed particles stays in the range of 1900
and 3600 atoms.
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(a) (c)

(b)

Figure 7. Thermally induced fluctuations. (a) shows polar plots of relative phase measurements
for a fixed barrier height leading to a constant tunnelling coupling and for different temperatures.
Every open circle corresponds to a single realization of the interference measurement. The solid
line shows twice the standard deviation of the phase. The amount of fluctuations increases
with temperature. (b) corresponds to similar experiments, but here the temperature is fixed and the
barrier height varied in order to realize different tunnelling couplings. (c) shows phase distributions
for different ratios of the temperature and the tunnelling coupling. The solid line represents the
classical prediction taking also into account the experimental uncertainty of the deduced phase.

Once the Bose gas is prepared in the 3D harmonic trap the standing light wave with
a periodicity of dsw = 4.8(2) µm is raised within 300 ms to its final value of between
V0/h = 500 Hz and 2000 Hz. The resulting coupling constants are Ej/kB between 1.6 nK
and 640 nK and Ec/kB between 13 pK and 21 pK. The plasma energy ranges between
h̄ωp/kB = 0.1 nK and 4 nK and the tunnelling times between τp = 12 ms and 500 ms. After
the ramp all potentials are turned off within 200 µs and the resulting interference patterns
imaged after 5 or 6 ms time of flight.

The qualitative analysis of the phase fluctuations is shown in figure 7, where polar
diagrams of relative phase measurements are plotted. Every open circle corresponds to a
single interference experiment and the solid lines show twice the standard deviation. In (a)
the barrier height is kept constant leading to a tunnelling coupling of Ej/kBT = 69(25) nK
and the temperature is varied between T = 15(4) nK and 75(2) nK. The fluctuations clearly
increase with temperature. In (b) the temperature is kept constant at T = 15(4) nK and the
barrier height changed leading to a tunnelling coupling between Ej/kBT = 39(17) pK and
378(90) nK. Here the fluctuations decrease with increasing coupling. Four distribution
functions for different ratios of the thermal energy and the tunnelling coupling are shown
in (c) in form of histograms. The classical expectation (solid line) is in good agreement with
the experimental findings, when also the experimental uncertainty of the phase deduction is
taken into account.

The measured coherence factors α as a function of the scaling parameter kBT /Ej are
shown in figure 8. Here for every temperature and barrier height about 100 measurements
are performed and every data point in the graph corresponds to a subset extracted from
these measurements for different atom number ranges (e.g., 2000 to 2500, 2500 to 3000 etc
atoms in the condensate fraction). Each data point represents at least 28 and on average 40
measurements. The coherence factor is calculated by averaging over the cosine of the fitted
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Figure 8. Experimental investigation of the coherence factor α as a function of the scaling
parameter kBT /Ej . Each data point corresponds to the average of at least 28 (typically about
40) single measurements for different T and Ej . The temperature is measured independently
with a time-of-flight method and the coupling strength is deduced from 3D simulations of the BJJ
using the independently measured system parameters (potential parameters and atom numbers).
The experimental error of kBT /Ej is about ±30%. The central black line corresponds to the
prediction of the Bose–Hubbard theory and the white dashed line is the prediction of the classical
theory, where both calculations take the uncertainty of the phase fitting into account. The grey
shaded area shows twice the expected standard deviation of the coherence factor due to the finite
number of measurements. The behaviour of the coherence factor is confirmed over a three orders
of magnitude change of the scaling parameter.

phases. The Josephson energy Ej is deduced for every point at the given trap parameters and
the mean atom numbers in the condensate fraction by numerically solving the Gross–Pitaevskii
equation in 3D.

The shown behaviour is in quantitative agreement with the prediction of the classical
model (white dashed line) since for the accessible parameter range the quantum fluctuations
are very small

	φ2
th = kBT

Ej

� 	φ2
qm = 1

2

√
(Ec + 4Ej/N2)

Ej

⇒ kBT � h̄

2
ωp. (44)

In the experimentally accessible regime quantum mechanical fluctuations are negligible as
kBT /h̄ωp > 10.

The temperature for every data point is deduced from three different quantities. In the
single interference images the thermal background can be fitted transversally to the interference
patterns with a Gaussian function and the temperature might thus be deduced from the size
of the thermal cloud. Additionally, independent time-of-flight measurements are performed
releasing the atoms from the harmonic trap. Here, the temperature is deduced from both
the expansion velocity of the thermal cloud and the ratio of the condensed and the thermal
fraction. All three methods lead within the experimental error to the same results. The last
method leads to the smallest fitting uncertainty and thus is chosen for calculating kBT /Ej in
figure 8.

The typical error of kBT /Ej is ±30%. The error in Ej results from the uncertainty of
the atom numbers, the trapping frequencies, the barrier height and the lattice spacing of the
periodic potential. The error in T results from the fitting error of the waists and amplitudes of
the double Gaussian distribution of the independent time-of-flight measurements.
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The central black line in figure 8 shows the theoretical prediction of the Bose–Hubbard
model for the coherence factor and the white dashed line is the classical prediction in the
high temperature limit. The fitting error of the relative phases is taken into account for the
calculation of both theory curves. The influence of the fitting error on the coherence factor
is estimated by averaging over an additional fluctuating phase with a box shaped distribution
function with a standard deviation corresponding to the fitting error. For our experiments the
fitting error of the relative phase is 0.13π and leads to a reduction of the coherence factor
of α′ = 0.92α. The grey shaded area shows twice the standard deviation of the coherence
factor resulting from the finite number of measurements, which is for about 40 measurements
approximately 	α ≈ 0.13 × (1 − α).

The dependence of the coherence factor on T and Ej is consistent with the prediction of
the two-mode model over a wide range. For small values of kBT /Ej the coherence factor is in
close agreement with the theoretical prediction. However, for kBT /Ej > 2 the data points lie
within the experimental error but are mainly localized above the curve. This deviation can be
explained by the fact that the BJJ is not thermalized for small Ej (see appendix C). The points
corresponding to a high temperature of 80 nK lie outside the shaded region revealing a lower
degree of coherence. A disagreement in this regime can also be expected as the temperature is
close to the critical temperature of Tc ≈ 87 nK. The analogy with superconducting Josephson
junctions where a deviation close to Tc has been predicted [39], is under investigation.

The classical phase fluctuations are of fundamental interest however, the successful
demonstration opens up the route for applying these measurements for thermometry in the
ultralow temperature regime, where standard techniques fail. More details are discussed in
appendix C.

5. Dynamical properties of the bosonic Josephson junction

The dynamical response of the bosonic Josephson junction to low energetic excitation can
be calculated in the many-body two-mode description. The temporal evolution of the
wavefunction is governed by the temporal propagation of the density matrix

ρ̂(t) = e−iĤ t/h̄ρ̂(t = 0) eiĤ t/h̄ with ρ̂ = |�̂〉〈�̂|. (45)

In the eigenbasis the time propagation operator corresponds to a phase evolution of the
eigenstates according to their energy. With this, the expected dynamical behaviour of the BJJ
in the three dynamical regimes can be understood by the structure of the energy spectrum and
the eigenstate wavefunctions. In figure 9 the eigenstates and the eigenenergies of the Bose–
Hubbard Hamiltonian for N = 100 are shown in the Rabi regime (a), in the Josephson regime
(b) and in the Fock regime (c). The eigenstates in the Rabi regime are the SU (2) coherent
states and show a linear, harmonic oscillator like energy spectrum. In the Fock regime the
eigenstates are localized atom number states and the energy spectrum is similar to the energy
spectrum of a free particle. In the Josephson regime for low energies E < 2Ej the eigenstates
are similar to coherent states with a well-defined phase and for large energies E > 2Ej they
are similar to Fock states with a well-defined atom number.

In the Rabi regime the eigenstate wavefunctions and the energy spectrum is similar to a
harmonic oscillator and thus the dynamical response to low energetic excitations are harmonic,
plasma oscillations. In the Fock regime the eigenstates are localized in the Fock space and
every energy (except of the ground state at an even number of particles) is a doublet with
a quasi-degenerate symmetric and an antisymmetric state. The preparation of a single Fock
state, corresponding to a population imbalance, consists of the superposition of two degenerate
states and will show no (or only an extremely slow) temporal evolution. The preparation of
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(a) (b) (c)

Figure 9. Eigenstates and energy spectra of the Bose–Hubbard Hamiltonian in the three dynamical
regimes. (a) shows the coherent eigenstates in the Rabi regime, which are strongly delocalized.
The energy scale is only given by the tunnelling coupling and the eigenenergies increase linearly
with the eigenstate label. (b) corresponds to the Josephson regime, where the low lying excitations
are delocalized and coherent and the higher excitations are well localized atom number states. In
(c) the eigenstates in the Fock regime are shown. The strong localization is evident and the energy,
which is dominated by the interaction energy, shows a quadratic increase. Every eigenenergy is
two-fold degenerate and corresponds to well-defined atom number states at n and −n.

many Fock states thus will keep the mean population imbalance constant, as the doublets are
not evolving, but the energy difference between the doublets will lead to a rapid oscillation
on top. The dynamics in the Josephson regime depends on the exact preparation of the initial
state. For low energetic excitations (E < 2Ej) the BJJ shows plasma oscillations and for high
energetic excitations (E > 2Ej) self-trapping.

Furthermore, in the context of the Bose–Hubbard model, additional dynamical effects
exist, which are not connected to the mean values of the population imbalance and the relative
phase but to their fluctuations. If not an initial imbalance is prepared but the coupling constants
are changed in time, then phenomena such as collapses and revivals are anticipated. More
detailed discussions on this topic can be found in [16, 40–43].

However, for a quantitative understanding of the dynamical response in the Bose–Hubbard
picture the temporal evolution has to be calculated numerically. Intuitive insight can be won
by considering the Gross–Pitaevskii two-mode description and calculating the equation of
motion for n and φ [15, 18, 22, 44–49]

dn

dt
= −1

h̄

∂H

∂φ
= −Ej

h̄

√
1 − 4n2
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cos(φ). (47)
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(a) (b)

Figure 10. Dynamics of the bosonic Josephson junction. In (a) the two expected dynamical
regimes are shown. The upper graph corresponds to an initial kick, which is smaller than a critical
value, leading to oscillations of the particle around its equilibrium position, i.e. plasma oscillations.
If the kick is large enough such that the particle can reach the potential maxima as shown in the
lower graph, it will continue moving through the periodic potential. The particle is in the self-
trapping regime. The corresponding phase plane portrait is shown in (b), where the ellipsoids
depict the plasma oscillation modes and the dotted lines the self-trapped modes. The separatrix
divides the phase plane into the two regimes.

The experimentally accessible dynamical modes become obvious employing the mechanical
analogue, i.e. solving the equation of motion by intuition. If the particle is slightly moved
away from its ground state position (i.e., a small phase is imprinted) or the particle has a
small initial kick (i.e., a small initial population imbalance) as sketched in the upper graph in
figure 10(a), then the particle will perform harmonic oscillations around the minimum of the
potential at the characteristic plasma frequency

ωp = 1

h̄

√
Ej

(
Ec +

4Ej

N2

)
. (48)

The oscillations of the particle correspond to oscillation of the population imbalance and the
relative phase around a zero mean value, and the BJJ is in the plasma oscillation regime.

For larger momenta the assumption for the derivation of the simplified Hamilton function
(equation (31)) are not fulfilled and the full two-mode Hamilton function (equation (29)) should
be considered instead. If the initial kick is large enough such that the particle can reach the
top of the potential as shown in the lower graph in figure 10(a), then the particle will continue
moving through the periodic potential. In this case the position coordinate will increase in
time and the momentum will always point into the same direction leading to a non-zero mean
value. This corresponds in the BJJ to the winding up of the relative phase and a non-vanishing
mean population imbalance. With this, the BJJ is in the self-trapping regime. The condition
for self-trapping is, that the initial energy of the particle is just enough to reach the top of the
potential (i.e., φ = π at n = 0), which is the case if H (nc, φ = 0) > H (n = 0, φ = π).
Thus, the critical initial imbalance nc for a zero initial phase difference is defined as

Ec

2
n2

c − Ej

√
1 − 4n2

c

N2
= Ej ⇒ |nc| = 2

√
Ej

Ec

(
1 − 4Ej

N2Ec

)
. (49)

A discussion on the optimal conditions for observing the Josephson dynamics can be found in
[50].
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Figure 11. Dynamics of the bosonic Josephson junction at N = 100 and Ec/Ej = 0.01. The
graphs show the temporal evolution of the dynamical variables n (upper graphs) and φ (lower
graphs) calculated with the GP model (dotted lines) and the many-body model (solid lines), where
the grey shaded area corresponds to plus/minus the fluctuations of the respective quantities. (a) is
initiated by a population imbalance of n(0) = 9.6 and shows the dynamics in the plasma oscillation
regime. In (b) the dynamics starts with a population imbalance of n(0) = 19.2, which is slightly
below the critical population imbalance of nc = 19.6. (c) shows the response of the system, when
the initial population imbalance is n(0) = 28.7 and reveals self-trapping.

Also a third dynamical regime exists due to the momentum dependence of the potential
height leading in certain cases to stable oscillations around the top of the potential. For details
on this regime we refer to [46].

The dynamical response of the bosonic Josephson junction can be visualized in the phase
plane portrait, where the population imbalance is plotted versus the relative phase (modulo
2π ). A typical phase plane portrait is shown in figure 10(b) for N = 100 and Ec/Ej = 0.01
(Josephson regime). In the central part of the graph the periodic (plasma) oscillations in the
zero-phase regime are indicated by ellipsoids. Above and below the self-trapped states are
plotted. The two regimes are separated by the separatrix, which is characterized by the initial
condition n0 = ±nc at φ0 = 0.

Figure 11 shows the comparison of the predictions of the equations of motion (solution of
equations (46) and (47), dashed lines) and the numeric simulations of the many-body system
(solid lines) for N = 100 and Ec/Ej = 0.01. The grey shaded areas correspond to plus/minus
the expectation value of the fluctuation operators of the respective quantities. In the upper
graphs the temporal evolution of the population imbalance is plotted and in the lower graphs
the temporal evolution of the relative phase. For the three graphs different initial conditions
are prepared, by starting with the ground state of different asymmetric double-well potentials
leading to the initial population differences of n(0) = 9.6 (a), 19.2 (b) and 28.7 (c). The
dynamics is initiated, when the energy asymmetry is lifted.

In the zero-phase mode regime (figure 11(a)) the GP prediction is in good agreement with
the many-body calculation. A small reduction of the oscillation amplitude in the many-body
case can be found for long oscillation times. In the case of self-trapping (figure 11(c)) the
GP prediction is in good agreement with the many-body calculation for short times, but the
oscillations disappear rapidly due to a dephasing of the populated atom number states. Close
to the separatrix (figure 11(b)) the GP prediction is only valid for a very short time. It starts
to deviate strongly from the many-body description, when the relative phase approaches π .
This is due to the fact that in the many-body case not only a single Fock state but many
atom number states are populated. Thus, at the critical population imbalance there are states
which are self-trapped but also states which are not. By increasing the number of particles
the deviations become less relevant and the classical equations can be used to predict the
behaviour of the BJJ also for longer times.
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The possibility of generating a tunnel array for Bose–Einstein condensates was
demonstrated in 1998 by M A Kasevich and coworkers [51]. In these experiments a BEC
was trapped in a vertically oriented periodic potential and atoms were coupled out due to
the influence of gravity. The experiments showed that if the matter wave packets within the
lattice have initially a constant phase relation from well to well, the out-coupled probability
distribution is periodically modulated due to matter wave interference and if the phases are
random initially the probability distribution will be constant.

Later, in 2001, also the Josephson dynamics was observed with Josephson junction arrays
[52]. In the following discussion however, we will focus on the experimental investigation of
the dynamics of a single bosonic Josephson junction, which was produced for the first time in
2005 [53].

The initial state of the BJJ is prepared by condensing 1150 atoms (where the number
of atoms is fixed by post selection to be between 1000 and 1300) at a temperature below
20 nK in a 3D harmonic trapping potential with trapping frequencies ωx = 2π × 78(1) Hz,
ωy = 2π × 66(1) Hz and ωz = 2π × 90(1) Hz. To prepare the BJJ adiabatically the standing
light wave with periodicity dsw = 5.2(2) µm is raised within 1s to a height of 420(5) Hz1.
The tunnelling coupling, the charging energy and the energy shift are calculated by solving
the Gross–Pitaevskii equation in 3D and are Ej/h = 3.15 kHz, Ec/h = 0.33 Hz, δE/h =
0.14 mHz and δ/h = 204 Hz µm−1 leading to the plasma frequency ωp = 2π × 33 Hz.
The resulting thermally induced fluctuations of the dynamical variables are 	φth = 0.1π and
	nth = 36, which are small compared to the change of the dynamical variables during the
evolution and thus lead only to a small uncertainty of the initial conditions. It is important to
note that the uncertainty of the barrier height, the atom numbers and the spacing of the standing
light wave lead to a large systematic uncertainty of the coupling constants of Ej/h = 2.33–
4.14 kHz, Ec/h = 0.30–0.35 Hz and δE/h = 0.12–0.16 mHz.

To initiate the dynamics two different initial population imbalances are prepared by
changing the initial position of the harmonic trapping potential with respect to the periodic
potential. The shift for accessing the plasma oscillation regime is 	x = 240(80) nm leading
to n(0) = 161(35) and the self-trapping regime 	x = 500(80) nm leading to n(0) = 357(35).
The critical initial population imbalance is nc = 193.

After the preparation of a Bose–Einstein condensate in the asymmetric double-well
potential the Josephson dynamics is initiated by moving the harmonic trap to 	x = 0 and
realizing a symmetric double-well. A motion of the harmonic trap faster than the inverse local
trapping frequency might lead due to experimental uncertainties to an uncontrolled excitation
of the two Bose–Einstein condensates and thus to an unpredictable time-dependent change of
the coupling constants. Hence, in order not to excite any dynamics within the wells the shift
is performed slower than the inverse local trapping frequencies of 2π/ωloc ≈ 3 ms, but much
faster than the tunnelling time of about 30 ms. The time constant for moving the harmonic
trap is chosen to be τxdt = 5 ms with the time dependence of the position

xxdt(t) = 	x(t) = 	x(0) · exp(−t/τxdt). (50)

The measurement of the temporal evolution in both dynamical regimes (plasma
oscillations and self-trapping) is shown in figure 12. In the Josephson regime (figure 12(a))
both variables show oscillations around a zero mean value. The population imbalance starts
with the prepared initial value and the relative phase with zero. In the self-trapping regime as

1 The difference between the previously [53] reported value of 412(20) Hz and the new value of 420(5) Hz for
the barrier height results from an improved method for deducing the height of the standing light wave by using 3D
numerical simulations instead of the non-polynomial Schrödinger equation for calibrating V0. For details on the
calibration method we refer to [54].
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Figure 12. Dynamical response of the bosonic Josephson junction. (a) shows the measurement
of the temporal evolution of the population imbalance (upper graph) and the relative phase
(lower graph) in the Josephson regime. The dynamics is initiated by a population imbalance
of n(0) = 161(35). Both dynamical variables show oscillations with a zero mean value. The
deduced timescale of the oscillations is 40(2) ms. (b) shows the measurement of the temporal
evolution of the two dynamical variables in the self-trapping regime, where the dynamics is
initiated by a population imbalance of n(0) = 357(35). Here the initial population imbalance does
not change within the experiential error and the phase winds up. The solid lines correspond to the
solution of the full 3D Gross–Pitaevskii equation with only independently measured parameters
and also taking the time-dependent position of the harmonic trap into account. However, for
quantitative agreement a 40 nm smaller jump of the harmonic trap is assumed, which is well within
the experimental error of about 80 nm. The grey shaded area corresponds to the variation of the
initial shift of the harmonic trap (±40 nm) and the variation of the total number of atoms (1000 to
1300) within the measured range.

shown in figure 12(b) the population imbalance is locked (within the experimental error) and
the phase winds up. The error bars of the relative phases correspond to the standard deviation
of the phase measurements.

The theoretical prediction for the temporal evolution is indicated by the solid lines, which
are calculated by performing 3D simulations of the Gross–Pitaevskii equation using only the
independently measured trap parameters, atom numbers and shifts of the harmonic trap. For
quantitative agreement with the experimental data also the shifting time of τsw = 5 ms is
taken into account. Furthermore, a detailed analysis shows that the harmonic trap does not
reach the designated position but stops on average about 40 nm earlier, which is well within
the experimental uncertainty of 80 nm. The grey shaded regions in figure 12 correspond to
the experimental uncertainties and are calculated by performing numerical simulations of the
experiment with different atom numbers at different initial positions of the harmonic trap.
The atom numbers range between 1000 and 1300 and the position of the harmonic trap in
the plasma oscillation regime is −240 ± 40 nm (the jump is 200 nm) and in the self-trapping
regime of −500 ± 40 nm (with a jump of 460 nm).

The expected tunnelling frequency according to the two-mode model varies between
τp = 29 ms and 37 ms, which is faster than the experimentally found 40(2) ms. This deviation
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Figure 13. Phase plane diagram of the bosonic Josephson junction. In this graph the population
imbalance is plotted versus the relative phase. The filled circles correspond to measurements in
the Josephson tunnelling regime and the open circles to the measurements in the self-trapping
regime. The two regimes are separated by the separatrix (dashed line). The solid lines show the
expected behaviour of the dynamical variables due to the two-mode model, where also the time
dependence of the shift of the harmonic trapping potential is taken into account. The grey shade
area corresponds to the uncertainty of the initial parameters.

might be a result of the change of the transverse size of the matter wave packets during the
tunnelling (by σmin/σmax = 0.7), which is not taken into account by the two-mode model.
However, the amplitudes of the oscillations are correctly accounted for as shown in the phase
plane diagram in figure 13, where the normalized population imbalance is plotted versus the
relative phase. The filled circles show the data in the plasma oscillation regime and the open
circles in the self-trapping regime. The solid lines result from numerical simulations of the
two-mode model, where the time-dependent shift of the harmonic trap is taken into account.
For this the equation of motion in the case of an energy asymmetry (from equation (35)) are
used

dφ

dt
= Ec

h̄
n +

Ej

h̄

4n

N2

(√
1 − 4n2

N2

)−1

cos(φ) − δ	x (51)

(the equation of motion of the population imbalance is unchanged and is governed by
equation (46)). The time dependence of the position of the harmonic trap is given above
(equation (50)). The grey shaded area corresponds to the experimental uncertainty calculated
by using the same numerical integration for different initial population imbalances in the
Josephson regime n(0) = 161 ± 35 and in the self-trapping regime n(0) = 357 ± 35.

To estimate the effect of the finite shifting time we can solve the equation of motion in
the small amplitude limit and find for t � τxdt that the temporal evolution of the population
imbalance is governed by

n(t) = n(0)√
1 + τ 2

xdtω
2
p

× cos(ωpt − arctan(ωpτxdt )). (52)

Thus, the oscillation amplitudes for our parameters are reduced by 25% leading to an effective
critical population imbalance of nc = 238 instead of 193. This can be understood by
considering that already during the change of the position of the harmonic trap the tunnelling
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dynamics is initiated and thus energy is taken out of the motion. Figure 13 reveals that
the dynamical response of the BJJ in the phase plane portrait is very well described by the
two-mode model.

6. Summary

We discussed the experimental realizations and investigations of a single Josephson junction
with Bose–Einstein condensates. The measured static, thermal and dynamical properties are
quantitatively compared with the Bose–Hubbard many-particle description and the mean-field
model.

We found that the measured steady state population imbalances as a function of the
asymmetry of the double-well potential were in quantitative agreement with the theoretical
expectation. In further experiments the investigation was focused on the measurement of
thermally induced fluctuations of the relative phase in a symmetric double-well. In the
high temperature limit, when the thermal energy scale is much larger than the plasma
energy associated with small amplitude Josephson oscillations, a semi-classical approach is in
excellent agreement with the experimentally measured distributions. Due to the quantitative
agreement the measurement of the fluctuations could be applied to measure the temperature
of a degenerate Bose gas leading to a new method for thermometry. This new method can
also be applied to Bose gases at very low temperatures far below the critical temperature for
Bose–Einstein condensation, where standard thermometry methods fail.

By controlling the initial population imbalance the dynamics in the plasma oscillation
regime and also the dynamics in the self-trapping regime could be accessed and found to be
consistent with the numerical solution of the 3D Gross–Pitaevskii equation. The measured
amplitudes of the population imbalance and the relative phase were also in excellent agreement
with the prediction of the Gross–Pitaevskii two-mode equations of motion, however the
timescale of the tunnelling dynamics deviated. The discrepancy might be explained by the
fact that the transverse size of the wave packets changed during the evolution and resulted in
a slower tunnelling than expected.
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Appendix A. Experimental realization of the bosonic Josephson junction

The most direct way to generate a Josephson junction with Bose–Einstein condensates is the
realization of a double-well potential for a degenerate Bose gas. If the barrier is high enough,
i.e. comparable to the chemical potential of the atoms, the BEC is split into two localized
matter wave packets, and if the barrier is not too high, particles can tunnel from well to well
leading to a coherent coupling. The main difficulty for the experimental realization is, that the
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(a) (b) (c)

Figure A1. Experimental setup and realization of the double-well potential by the superposition
of a harmonic trap and an optical lattice with large periodicity. (a) is a sketch of the laser beams
generating the optical potentials. Two orthogonal dipole trap beams at 1064 nm (grey) create a
3D harmonic confinement and two laser beams at 830 nm crossing under an angle of about 10◦
generate the optical lattice (red) with a periodicity of dsw ≈ 5 µm. (b) shows the potential resulting
from the superposition of the dipole trap and the optical lattice on the scale of the Gaussian dipole
trap beam. (c) is the potential in the centre revealing the symmetric double-well structure with a
separation of the two wells of about 4.4 µm.

shape of this potential has to be fixed very well, as the tunnelling current depends exponentially
on the barrier height.

A promising method for creating double-well potentials for neutral atoms was presented
in the group of J Schmiedmayer in 2005. Their approach is the application of radio-frequency
dressed state potentials on an atom chip [55], which in analogy to optical dipole traps, where
two electronic states are coupled to each other, address two hyperfine levels. Recently these
potentials were employed for coherent splitting of a Bose–Einstein condensate and for matter
wave interference experiments [56].

Another possibility of realizing a weak link between two spatially separated Bose–Einstein
condensates was demonstrated in 2005 in the group of W Ketterle [57]. They generated
a double-well potential where no direct spatial tunnelling between the two Bose–Einstein
condensates was possible. Via two Bragg beams atoms were coupled out from both wells
coherently and brought to interfere with the two Bose–Einstein condensates, leading to a
coherent coupling and establishing the weak link.

The approach used in our experiments is the realization of an all-optical double-well
potential, generated by the superposition of a 3D harmonic trapping potential and a periodic
potential with large periodicity as depicted in figure A1(a). The effective potential is shown
in figure A1(b) on the full scale of the trap and in (c) on the scale of the BEC.

The 3D harmonic trap is generated by two crossed Gaussian Nd:YAG-laser beams at
λNd:YAG = 1064 nm. The first dipole trap beam, in the following called the wave guide (WG)
is responsible for the transverse confinement and points perpendicular to gravity in order to
hold the atoms in the trap. The atoms are located at the waist of the beam which has a size
of about 60 µm and a power of less than 500 mW. The resulting trapping frequencies can be
adjusted to be between typically 2π × 70 Hz and 2π × 180 Hz. The second dipole trap beam,
in the following referred to as the crossed dipole trap (XDT), is pointed perpendicular to the
first beam and perpendicular to gravity. The XDT is elliptic, with the tighter confinement in
the direction along the WG in order not to influence the transverse trapping. The size of the
beam along the WG is 70 µm and in the direction of gravity 140 µm and has a power of
typically less than 800 mW. Both beams are transferred to the experiment via optical fibres and
the out-coupler of the XDT is fixed on a piezo actuated mount, which allows for changing the
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position of the longitudinal confinement over several µm. The periodic potential is realized
by the interference of two titanium-sapphire laser beams at λTi:Sa = 830 nm, crossed under an
angle of about 10◦. The periodicity of the resulting sinusoidal potential is about 5 µm. The
waist of the two beams is 500 µm and their power is less than 100 mW, leading to a maximal
potential height of V0/h = 10 kHz.

The Bose–Einstein condensate consists of typically 1000 to 3000 87-Rubidium atoms,
which are pre-cooled in a TOP (time orbiting potential) trap and then adiabatically transferred
into the crossed dipole trap, where Bose–Einstein condensation is reached by forced
evaporation. The lowest temperatures in the final stage of evaporative cooling are on the
order of 10 nK.

The imaging of the BEC is done by illuminating the atoms with resonant light at high
intensities I0 � Isat for 5 µs and deducing the density distribution from the loss of photons
from the coherent beam. The imaging is done using a lens system with which the distribution is
magnified by 1:10 and projected onto a CCD-camera with a pixel size of 6.45 µm × 6.45 µm.
The optical resolution is about 3 µm and limited by the numerical aperture of the lens.

High stability of the experimental setup is crucial for the realization of the bosonic
Josephson junction, especially the parameters of the double-well potential have to be fixed
very well, as the tunnelling times and coupling constants depend strongly on the exact shape of
the potential. Thus, for the realization of the BJJ the high passive stability of the experimental
apparatus is supported by active stabilization of the relevant components. The intensity of the
laser fields creating the double-well potential, namely the two dipole trap beams and the two
standing light wave beams, is actively stabilized by adjusting the beam intensities with AOMs.
The intensity of every beam is monitored with photo-diodes and stabilized by feeding back
the signal using a PI-loop. The stability reached is better 10−4. The exact positions of the
maxima of the standing light wave are directly connected to the symmetry of the double-well
potential and already changes of the optical path of the beams on the 50 nm scale lead to
modifications of the symmetry of the resulting potential. Thus, the phase of the standing light
wave is actively stabilized as well.

The symmetry of the resulting double-well potential is adjusted by changing the position
of the harmonic confinement and measuring directly the symmetry of the steady state density
distribution of the Bose–Einstein condensate in the double-well. To guarantee that the double-
well potential has the right symmetry, check measurements are performed after every 10–20
experiments. For a more detailed discussion on the experimental procedure we refer to [58].

Appendix B. Measurement of the population imbalance and the relative phase

In our experiments all relevant quantities are deduced from images of either the density
distribution in the trap or the density distribution after a time of flight, which in the far field
corresponds to the momentum distribution. The population imbalance is obtained by fitting
two overlapping Gaussian functions to the density distribution. However, the accuracy of the
fitting is not very good, as the separation of the two matter wave packets in the double-well
trap (about 4.4 µm) is only slightly larger than the optical resolution (about 3 µm) and the
barrier height is comparable to the chemical potential leading to broad matter wave packets.
To improve the accuracy the distance between the two wave packets is increased by rapidly
ramping up the height of the standing light wave (within 200 µs) and simultaneously turning
off the longitudinal confinement (XDT). The minima of the two wells move apart and a dipolar
oscillation of the two matter wave packets is induced. As the two BEC move in opposing
directions their distance increases and the overlap of the two matter wave packets is reduced.
The images are taken when their separation is maximal.
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(a) (b) (c)

Figure B1. Matter wave interference patterns. (a) A sketch of the interference experiments.
Once the double-well trap is turned off, the matter wave packets expand, overlap and interfere
revealing the relative phase as a shift of the interference peaks with respect to their envelope;
(b) corresponds to typical interference patterns at φ ≈ 0 and φ ≈ π for low temperature and
(c) to typical interference patterns for high temperature. The integrated patterns show a clear
interference signal for all temperatures (central graphs). However, for high temperature also
a broad background is visible, corresponding to the distribution of the thermal atoms after the
expansion time. In order to find the coherent interference patterns, this background is subtracted
(lower graphs).

The relative phase is deduced from time-of-flight images as shown in figure B1(a). The
atoms are released from the double-well trap by turning off all potentials within 200 µs and
taking the images after a time-of-flight of between 5 and 8 ms. During this time the matter
wave packets fall down, but also expand due to the stored kinetic and interaction energy
and interfere with each other. Typical interference images for low temperature are shown in
figure B1(b) and for high temperature in (c). The upper part of the graph shows the absorption
images, where in (b) the interference patterns are very clear but in (c) a broad background is
visible. The middle part of the graphs corresponds to the transversally integrated interference
profiles revealing that for high temperature the interference patterns are on top of the thermal
background, making an accurate phase deduction difficult. Thus, the thermal background is
fitted transversally and subtracted from the interference patterns. The resulting profiles are
shown in the lower part of the graphs revealing that the visibility of the interference patterns
is mainly independent on temperature and is typically between 40% and 50%.

Appendix C. Thermalization and thermometry

The measurement of the thermally induced fluctuations can be used for thermometry, even
for very low temperatures, where the standard time-of-flight method is not applicable due
to the small number of thermal particles. However, even for these temperatures the barrier
height can be tuned such that the BJJ becomes sensitive to thermally induced processes and
the distribution of the relative phases can be measured. The temperature is then found by
calculating the tunnelling coupling numerically and comparing the coherence factor with
the theoretical prediction. However, one difficulty for such experiments is the adiabatic
preparation of the BJJ. For very low temperatures the tunnelling coupling has to be very small
(Ej < 3kBT ) in order to allow for the observation of phase fluctuations and the tunnelling
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Figure C1. Experimental test for thermal equilibration of the BJJ. The graph shows the measured
coherence factors as a function of the tunnelling time. The experimental Eeff

j are deduced by
fitting the measured coherence factor with the theoretical prediction. For tunnelling times τp �
50 ms the ratio is one. For τp > 50 ms the ratio increases as the BJJ is not completely thermalized.
Thermalization takes place only if τp � tramp = 300 ms, which is the time for ramping up the
potential barrier.

time becomes very long. Thus, in order to keep the BJJ in the thermal equilibrium during the
preparation, the barrier has to be raised much slower than the typical tunnelling time.

To test on what timescale the ramping has to be performed in order to keep the BJJ in
the thermal equilibrium, we compare the coherence factor measurements with the theoretical
prediction from equation (41). We introduce an effective tunnelling coupling Eeff

j to account
for out of equilibrium situations and deduce kBT

/
Eeff

j from the experimental data shown in
figure 8. In figure C1 the ratio Eeff

j

/
Ej is plotted as a function of the tunnelling time τp =

2π/ωp ∝ 1/
√

Ej . We find that for the chosen ramping time of 300 ms the effective tunnelling
coupling is only equal to the expected tunnelling coupling for τp < 50 ms. The observed
increase of Eeff

j for large tunnelling times (τp > 50 ms which corresponds to Ej < 60 nK)
could be explained by the fact that the system might still not have reached the equilibrium
after the 300 ms ramp.

The applicability of the thermometer is demonstrated by observing the heating up
of a degenerate Bose gas in a 3D harmonic trapping potential and comparing the
temperatures deduced from the phase fluctuations measurements with independent time-of-
flight temperature measurements. Agreement within the experimental error is found in the
region, where both methods can be applied. For more details on the realization of this primary
phase noise thermometer we refer to [54].
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