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Dark matter-wave solitons in the dimensionality crossover
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We consider the statics and dynamics of dark matter-wave solitons in the dimensionality crossover regime
from three dimensions (3D) to one dimension (1D). There, using the nonpolynomial Schrddinger mean-field
model, we find that the anomalous mode of the Bogoliubov spectrum has an eigenfrequency which coincides
with the soliton oscillation frequency obtained by the 3D Gross-Pitaevskii model. We show that substantial
deviations (of the order of 10% or more) from the characteristic frequency w,/ V2 (w, being the longitudinal
trap frequency) are possible even in the purely 1D regime.
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The experimental realization of lower-dimensional Bose-
Einstein condensates (BECs) in highly anisotropic traps [1,2]
has inspired many studies devoted to the behavior of such
systems in the dimensionality crossover, i.e., from 3D to 1D.
Particularly, it has been shown that fundamental properties of
BECs, such as the chemical potential, speed of sound, and
collective oscillations, change significantly as the dimension-
ality is reduced from 3D to 1D [3,4]. These regimes, as well
as the crossover between them, can be described by the di-
mensionless parameter NQa/a | [4], where N is the number
of atoms, ()=w,/w, is the ratio of longitudinal and trans-
verse trapping frequencies, « is the scattering length, and
a, =Vh/mw, (m is the atomic mass). Particularly, if
NQa/a, > 1, the BEC locally retains its original 3D char-
acter and its ground state can be described by the Thomas-
Fermi approximation in all directions. On the other hand, if
NQa/a, <1, excited states along the transverse direction
are not energetically accessible and the BEC is effectively
1D; in such a case, the transverse wave function is described
by the ground state of the radial harmonic oscillator, whereas
the longitudinal wave function obeys an effectively 1D
Gross-Pitaevskii equation (GPE) [5]. Of particular relevance
are effectively 1D mean-field models [6,7] describing the
axial dynamics of “cigar-shaped” BECs in the 1D (and 3D)
regimes, as well as in the dimensionality crossover. Impor-
tantly, there exist recent experimental results [8] which have
been accurately described by the nonpolynomial Schrodinger
equation (NPSE) of [6].

It is then natural to expect that, apart from the ground-
state properties of BECs, the dimensionality should signifi-
cantly affect the stability and dynamical properties of the
excited BEC states as well, such as the dark solitons in
repulsive BECs. The first experiments reporting the observa-
tion of dark matter-wave solitons were performed with
quasi-spherical [9,10] or cigar-shaped [11] traps. In all cases,
dark solitons were prone to instabilities, such as nonunifor-
mity induced dynamical instability [9], thermal instability
[11], or snaking instability [ 10]. From the theoretical point of
view, the former two instabilities were analyzed in [12],
while the snaking instability (which occurs in the higher-
dimensionality setting [13]) was analyzed in [14-16]. In the
latter works, a detailed study of the Bogoliubov—de Gennes
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(BdG) equations in 2D and 3D revealed the emergence of
complex eigenvalues in the excitation spectrum and their
connection to oscillatory dynamical instabilities (including
the snaking instability). Moreover, it was demonstrated
[14—17] that there exists a so-called “anomalous mode” in
the excitation spectrum, which has negative energy. The ex-
istence of the anomalous mode indicates that dark solitons
(and vortices [18]) are thermodynamically unstable and, in
the presence of dissipation, the system is driven toward con-
figurations with lower energy; this scenario is also often
referred to as energetic instability [19]. Importantly, the
anomalous mode frequency is directly related to the dark
soliton oscillation frequency wog.=w./\2 [14,17]. This oscil-
lation frequency has been obtained upon analyzing the 1D
GPE [20] for Q<1 and assuming the Thomas-Fermi (TF)
approximation for the longitudinal BEC background on
which the dark soliton exists. However, it is important to
stress that the above result is not particularly relevant to ei-
ther the first dark soliton experiments [9-11] or to the recent
experimental studies of [21], because of the fact that, in all
cases, the condensates were actually in the purely 3D regime.

In this work, we study the statics and dynamics of dark
solitons in BECs confined in highly elongated traps (with
O <1) in the dimensionality crossover regime—i.e., for
NQala, =1; our analysis also applies in the case of
quasi-1D small BECs in which the TF approximation for the
axial direction is not valid. We thus aim to provide a com-
plete picture bridging the one- and multiple-dimensional dy-
namics of dark solitons. We will show, in particular, that in
the crossover regime the anomalous mode frequency result-
ing from the BdG analysis of the NPSE model [6] estimates
accurately the soliton oscillation frequency resulting from
the 3D GPE. Moreover, we will demonstrate that, in this
regime, the frequencies of the anomalous mode and the soli-
ton oscillation coincide but may significantly differ from the
value w,/ V2.

Let us start our analysis considering the example of a
87Rb BEC containing N~ 2100 atoms and confined in a trap
with frequencies w, =20w,=27 X200 Hz (here 1=0.05). In
this case, NQa/a;=0.815, a value in the dimensionality
crossover region, which implies that the 1D GPE is not valid.
Thus, to calculate the oscillation frequency of a dark soliton
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FIG. 1. (Color online) (a) Contour plot of the initial density (in
the x=0 plane) of a BEC, confined in a harmonic trap with
=0.05 and with a dark soliton placed at z=2. The dimensionality
parameter is NQa/a | =0.815. (b) Spatiotemporal evolution of the
above density along a cross section at r=0. The dark soliton oscil-
lates with frequency w,,=0.7462> /2. The dotted line across
the soliton trajectory corresponds to the prediction obtained by the
NPSE model.

in such a setting, one needs to consider the fully 3D GPE,
which can be expressed in the following dimensionless form:
Y 1

1
i = —5V2+E(sz2+r2)+|¢|2 v, (1)

where the density |#{?, length, time, and energy are, respec-
tively, measured in units of 47Taa2l, o, wll, and hw . We
use as an initial condition a dark soliton initially placed at
z=2 on top of the ground state of the system, which is found
by a relaxation technique (i.e., using imaginary time integra-
tion to find the ground state, as well as a quiescent dark
soliton at the trap center, and then displacing the soliton at
the desired location to set the soliton into motion). Then, for
a normalized 3D chemical potential u;p=1.625, the follow-
ing result is obtained (see Fig. 1): The soliton oscillates with
a frequency w,,.=0.746(), although the system is “highly
anisotropic” and one would expect an oscillation frequency
of Q/y2=0.707€) (in this case the deviation from the predic-
tion of [20] is of order of =6%).

Instead of using the 3D GPE, we will now investigate if
the above value of w, can be obtained in the framework of
a 1D mean-field model. As the 1D GPE is not applicable in
this example, we consider the NPSE [6]
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where ¢ is the normalized longitudinal wave function and
the density |¢|> is measured in units of 2aN (length, time,
and energy are measured in the same units as in the 3D
GPE). Note that this model is reduced to the 1D GPE in the
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low-density limit of |¢[><1 (in our units), which is not
relevant to the case example of NQa/a, =0.815. We have
numerically integrated Eq. (2) with an initial condition cor-
responding to the longitudinal density profile of the 3D GPE
case and have found that the soliton oscillation frequency is
Wosc=0.744Q), approximately the same with the one obtained
by the 3D GPE (w,=0.746)). This result, depicted by the
dotted line in Fig. 1(b), indicates that the NPSE may accu-
rately predict the soliton oscillation frequency in the dimen-
sionality crossover regime.

Following the above argument, we now proceed with the
investigation of the excitation spectrum of the NPSE’s dark
soliton state. This way, we first find a real, stationary soliton
state  ¢g(z) using a fixed-point algorithm (a standard
Newton-Raphson method [22]). Then, considering small per-
turbations of this state of the form

(z.1) ={gs(2) + u(z)e™™ + v ()™ Tre ™, (3)

we obtain from Eq. (2) the following BdG equations (valid to
leading order in the small parameter €):

ou=[H- p+f($)lu+g(di)v, (4)
~ wv=[H- p+f($3) v + g($lu, (5)
where  H=—(1/2)7+(1/2)0%2,  f(¢2)= —gff;:$§3%§4, and

2\ 3ditddi . . .
g(dy)= IR The above equations provide the eigenfre-
: 'ds

quencies = w,+iw; and the amplitudes u and v of the nor-
mal modes of the system. Note that due to the Hamiltonian
nature of the system, the eigenfrequencies of the Bogoliubov
analysis appear in pairs (or in quartets, if complex); thus, the
solution of BdG equations with frequency w represent the
same physical oscillation with the solution with frequency
-w [23].

Among the various eigenfrequencies, we focus on the
three smallest magnitude pairs in Fig. 2(a): One of them is at
the origin of the spectral plane (w,,w;) reflecting the phase
invariance of the NPSE model. The respective eigenfunction
is the Goldstone mode and does not result in any physical
excitation (oscillation) of the system. The solutions with
eigenfrequencies w==0.05 correspond to the dipole (or
Kohn) mode, representing the motion of the system’s center
of mass which oscillates with the frequency of the harmonic
trap. Finally, the solutions with eigenfrequencies w
=(0.744Q) correspond to the anomalous mode. For the latter,
the integral of the norm X energy product, [(|u|*~|v|*)w dz
(in our units), is negative [23], indicating the energetic insta-
bility of the dark soliton discussed above. Importantly, this
eigenfrequency coincides with the soliton oscillation fre-
quency as obtained by the NPSE—and in accordance with
the result of the 3D GPE. The eigenfunctions u and v of the
anomalous mode, shown in Fig. 2(b), are localized within the
notch of the dark soliton [17].

We now aim to investigate if the above agreement is
generic—i.e., whether the BdG analysis of the NPSE indeed
provides an accurate estimation of the soliton oscillation fre-
quency in the dimensionality crossover regime. In this con-
nection, we fix the normalized harmonic trap strength to its
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FIG. 2. (Color online) (a) The six lowest characteristic eigenfre-
quencies of the Bogoliubov excitation spectrum: Two of them, lo-
cated at the origin, correspond to the Goldstone mode due to the
phase invariance and the ones at +()==+0.05 to the Kohn mode,
while the intermediate ones, at +0.744(), to the anomalous mode.
The dashed lines indicate the location of the +Q)/+2 prediction. (b)
The eigenfunctions u (solid line) and v (dotted line) of the anoma-
lous mode.

previous value ((2=0.05) and find the normalized soliton os-
cillation frequency w/{) varying the parameter Na/« | . The
results are presented in Fig. 3 which summarizes the main
findings of the present work: the solid line depicts the
anomalous mode frequency obtained by the BAG analysis of
the NPSE, while the stars depict the soliton oscillation fre-
quency obtained by a direct numerical integration of the 3D
GPE. The different dimensionality regimes, also shown in
Fig. 3, are defined as follows: The 1D regime corresponds to
pap<hw, [1], or u3p<<l in our units—i.e., to Na/a| <2
(or NQa/a; <0.1); the dimensionality crossover regime
corresponds to the region around Na/a, =20 (or
NQa/a, =1); finally, the 3D regime corresponds to the
limit Na/a | >20 (or NQa/a | >1).

In the 1D regime, the NPSE is reduced to the 1D GPE
and, as a result, the anomalous mode frequency obtained in
the framework of the NPSE coincides with the one obtained
by the BAG analysis of the 1D GPE (see dashed line in Fig.
3). This agreement ceases to exist for Na/ a| >2, which is a
clear indication that the system enters the dimensionality
crossover regime. Therefore, the asymptotic value of /42
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FIG. 3. (Color online) Normalized frequency w/{) as a function
of Na/a : Solid (dashed) line corresponds to the anomalous mode
frequency obtained by the BAG analysis of the NPSE (1D GPE),
and stars denote the oscillation frequency of the dark soliton ob-
tained by the 3D GPE. The vertical dotted lines depict the different
dimensionality regimes.

depicted by the dotted line in Fig. 3 for Na/« | >2 is quan-
titatively irrelevant: the correct result for the oscillation fre-
quency in the crossover regime is provided by the 3D GPE
(stars) and is accurately approximated by the NPSE (solid
line). Notice that in the limit Na/ o, — 0 (which corresponds
to the linear Schrodinger equation), one obtains w/Q—1;
i.e., the anomalous and Kohn mode frequencies coincide, in
accordance with the prediction of Ref. [15].

In the dimensionality crossover regime, and particularly
for 2<Na/a, <20, the anomalous mode frequency ob-
tained by the BdG analysis of the NPSE almost coincides
with the oscillation frequency of the dark soliton obtained by
the 3D GPE. However, as shown in Fig. 3, as the system
approaches the 3D regime (Na/a | >20) the NPSE underes-
timates the frequency obtained by the 3D GPE. This is a
consequence of the fact that the NPSE uses a Gaussian an-
satz to describe the transverse wave function, rather than the
TF profile which is relevant to the 3D regime. On the other
hand, it is important to note that for ws,>2.4 [14,15], cor-
responding to Na/a | =60, the system becomes dynamically
unstable through the emergence of complex eigenfrequencies
in the excitation spectrum of the 3D GPE, related to the
onset of oscillatory and snaking instabilities of dark solitons
[14-16]. Although these types of instabilities were indeed
observed in our 3D simulations (results not shown here), the
BdG equations of the NPSE did not predict such complex
eigenvalues. Thus, the above results suggest a note of cau-
tion: the NPSE can indeed predict accurately the oscillation
frequency of dark solitons in the dimensionality crossover
regime, but given its freezing of the transverse directions
into their ground state, it cannot capture the emergence of
the pertinent instabilities occurring in the fully 3D regime.

We have also performed the BAG analysis of both the
NPSE and 1D GPE models for other values of the normal-
ized trap frequency (). As seen in Fig. 4, where w/Q is
shown as a function of the dimensionality parameter
NQa/a , larger (smaller) values of ) yield larger (smaller)
anomalous mode frequencies. It is worth mentioning that
Fig. 4 is merely devoted to the 1D regime (the dimensional-
ity parameter does not exceed the value 0.3). There, as the
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FIG. 4. (Color online) Normalized frequency w/{) of the
anomalous mode obtained by BdG analysis of the NPSE (solid
lines) and the 1D GPE (dotted lines), as a function of NQa/« | for
=0.1,0.05,0.005. The dashed line indicates the )/ \E anomalous
mode eigenfrequency.

trap frequency is decreased (toward the limit of Q) <<1 con-
sidered in Refs. [20]), the anomalous mode frequency ap-
proaches the value of /12 depicted by the dashed line in
Fig. 4. Thus, in the 1D regime, and for (A <<1, the BdG
analysis of the NPSE recovers the soliton oscillation fre-
quency obtained asymptotically in the framework of the 1D
GPE [20].

An important observation stemming from our analysis is
that even in the 1D regime, the soliton oscillation frequency
may have a substantial difference from (/2. For example,
let us consider two different cases (both for a 8’Rb BEC),
one with number of atoms N~5000 and trap frequencies
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o, =200w,=27X200 Hz and one with N~1000 and w,
=10w,=27X70 Hz. In the former case, our analysis predicts
that the soliton oscillation frequency will be w,,.=0.718(),
differing only 1.5% from the value of /12, while in the
second case w,,=0.772(), differing 10% from /2. Such
strong deviations from the asymptotic prediction should be
directly accessible to current experimental settings.

In conclusion, we have studied dark-matter wave solitons
in Bose-Einstein condensates and how their dynamics is af-
fected by dimensionality in settings of experimental interest
and accessibility. We have first shown that in a highly aniso-
tropic system at the crossover between 3D and 1D behavior,
the dark-soliton oscillation frequency is larger than the usu-
ally quoted value of )/ \2. The deviations are predicted by
the 1D mean-field NPSE model, whose excitation spectrum
reveals an anomalous mode eigenfrequency identical to the
soliton oscillation frequency in the dimensionality crossover
regime. Limitations of the NPSE model, concerning its va-
lidity toward the fully 3D regime (where dynamical instabili-
ties of dark solitons may also come into play), were also
discussed. Importantly, our analysis demonstrates that, even
in the purely 1D regime, deviations of the soliton oscillation
frequency from the standardly used theoretical value of
Q/\2 of order of 10% (or even more) are possible and
should be observable in current experimental setups.
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