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We study stationary states of a two-dimensional �2D� Bose-Einstein condensate with both attractive and
repulsive nonlinearities in a combination of a double-square-well potential in one direction and a perpendicular
optical lattice. We look for dual-core solitons in this configuration, focusing on their symmetry-breaking
bifurcations. For attractive interactions, without the lattice, a similar analysis was performed �M. Matuszewski
et al., Phys. Rev. A 75, 063621 �2007��, where subcritical bifurcation transforming antisymmetric gap solitons
into asymmetric ones was found. Here we focus on the effect of an optical lattice and the so created gap
solitons. We discover that a phase transition occurs when the lattice depth increases and the additional dimen-
sion becomes strongly suppressed. The bifurcation type changes from subcritical �typical for a 2D system, with
hysteresis� to supercritical �typical for a one-dimensional system�. An additional advantage of the lattice is that
gap solitons exist even for repulsive interactions. In this case we also discover bifurcation of a supercritical
type. The analysis is based on a variational approximation, which is surprisingly well verified by numerical
results.
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I. INTRODUCTION

The Gross-Pitaevskii equation �GPE� provides a powerful
model for studying the mean-field dynamics of Bose-
Einstein condensates �1�. An important example is the pre-
diction of a one-dimensional �1D� gap solitons in a self-
repulsive condensate trapped in a periodic optical lattice �2�.
This was realized experimentally in an ultracold gas of 87Rb
atoms confined in a cigar-shaped trap �3�. Another example
is the prediction of the Josephson effect in a BEC �4�. It was
subsequently observed in a condensate trapped in a macro-
scopic double-well potential �5�. In contrast to hitherto real-
ized Josephson systems in superconductors and superfluids,
interactions between tunneling particles play a crucial role in
a bosonic junction. The effective nonlinearity induced by the
interactions gives rise to new effects in the tunneling. In
particular, anharmonic Josephson oscillations were predicted
�6–10�. The nonlinearity specific to the BEC gives rise to a
self-trapping effect in the form of a self-maintained popula-
tion imbalance �5,6�.

One-dimensional dynamics of a BEC in potentials com-
posed of two rectangular potential wells were studied in sev-
eral papers �11�. Stationary states with different populations
in the two wells are generated by symmetry-breaking bifur-
cations from symmetric and antisymmetric states, for attrac-
tive and repulsive nonlinearity, respectively �6,10�. A natural
two-dimensional �2D� extension of the double-well configu-
ration is a dual-channel one, with the potential creating two
wells in the direction of x extended into parallel troughs
along y �12,13�. In the case of an attractive nonlinearity, this
setting may naturally give rise to dual-core solitons, which

are self-trapped in the y direction �similar to the ordinary
matter-wave solitons created in a single-core trap �14��. Fur-
thermore, if the ratio of the nonlinearity to the tunneling
coupling is large enough the symmetric dual-core soliton
may bifurcate into an asymmetric one. This was demon-
strated both in the full 2D model �12�, and in its 1D coun-
terpart �13�.

If the dual-channel potential in 2D geometry is combined
with an axial optical lattice, which runs along both potential
troughs, it is natural to consider a dual-core gap soliton. In
Ref. �13�, this was done using the approximation which re-
placed the corresponding two-dimensional GPE by a pair of
linearly coupled 1D equations. It was demonstrated that a
symmetric gap soliton may be stable in this case, and never
bifurcates, while asymmetric solitons are generated by a
symmetry-breaking bifurcation from antisymmetric ones.

An advantage of the application of an optical lattice is
twofold. First, we can consider repulsive interactions, which
are easier to realize experimentally. Second, in the case of
attractive interactions we can follow the phase transition
from two-dimensional geometry, where we predict a subcriti-
cal bifurcation, to the one-dimensional case in the strong
lattice, where the bifurcation remains supercritical. We pre-
dict the parameter regions admitting asymmetric solitons by
means of a restricted variational approximation �VA� �16�,
which allows us to simplify an otherwise very complicated
calculation. These results are verified by numerics. We find
the agreement to be surprisingly good, for such a restricted
variational model.

The paper is organized as follows. The model and the VA
are introduced in Sec. II. In Sec. III we analyze the
symmetry-breaking bifurcations in both models, with attrac-
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tive and repulsive interactions. In Sec. IV we present the
numerical methods and results and Sec. V concludes the
paper.

II. MODEL AND VARIATIONAL APPROXIMATION

The normalized form of the GPE for the mean-field wave
functions � in 2D geometry is

i�t = − �1/2���xx + �yy� + �U�x� + ����2 − � cos�2y��� ,

�1�

where �= +1 and −1 for the self-repulsive and self-attractive
BEC, and � cos�2y� represents the longitudinal optical-lattice
potential. The transverse double-well structure is taken as

U�x� = �0, �x� � L/2 and �x� � L/2 + D ,

− U0, L/2 � �x� � L/2 + D ,
� �2�

with D, U0, and L being, respectively, the width and depth of
each well, and the width of the barrier between them, see
Fig. 1 below.

Stationary solutions to Eq. �1� are assumed in the form
��x ,y , t�=e−i�t��x ,y�, where the real function ��x ,y� satis-
fies the equation

�� + �1/2���xx + �yy� − U�x�� − ��3 + � cos�2y�� = 0.

�3�

It can be derived from the Lagrangian,

Lstat =�� dxdy���2 − �1/2���x
2 + �y

2�

− U�x��2 − ��/2��4 + � cos�2y��2� . �4�

To apply the VA, we follow Ref. �12� and adopt an ansatz
consisting of two distinct parts. First, inside each potential
trough, i.e., at �x� �L+D� /2��D /2, the trial function is

�	�x,y� = A	 cos	

x � �L + D�/2

D

exp	−

y2

2W2
 , �5�

where A	 and W are three variational parameters. This
expression implies different amplitudes and a common

longitudinal width, W, of the wave-function patterns in both
troughs. In the x direction, the ansatz �5� emulates the
ground-state wave function in an infinitely deep potential
box, which vanishes at the edges of the trough, see Fig. 1. In
the y direction, the ansatz approximates the self-trapped soli-
ton by a Gaussian profile. Outside the troughs �at �x��L /2
+D and �x��L /2�, the ansatz also follows the pattern of
quantum mechanics, in the form of a superposition of expo-
nential wave functions:

��x,y� = �
+,−

A	 exp	− �− 2�x �
L + D

2
 −

y2

2W2
 , �6�

with the same amplitudes A	 and width W as in Eq. �5�. Here
�¯ � stands for modulus. The ansatz is not continuous at the
edges of the troughs; however, comparison with numerical
findings �see Fig. 4 below� clearly suggest that the VA can be
used despite this local discrepancy.

Substitution of expressions �5� and �6� into Eq. �4� upon
integration produce the simplified Lagrangian. In this La-
grangian we neglect the contributions from the exponentially
decaying functions in the outer region, �x��L /2+D, we also
neglect the term −�1 /2��x

2 in the Lagrangian density. The
contribution from the optical-lattice potential is taken into
account only inside the troughs. Our approach may seem
to be very crude, however, in the past it has so far yielded
sensible results �12,13� and the effective Lagrangian so ob-
tained is tractable. In particular, the bifurcation diagram is
usually a good approximation. The Lagrangian reads

2

D�

Leff =

1

2
�We−W2

�A+
2 + A−

2�

+ �
+,−

	� + U0

2
A	

2 W −
A	

2

8W
−

3�

29/2A	
4 W


+
4�− 2�

D
e−�−2��L+D�A+A−W . �7�

We now define N	��3 /4�2�A	
2 W, and

� � �2/D��− 2� exp�− �− 2��L + D�� , �8�

N �
N+ + N−

4��
, � �

N+ − N−

4��
,  � � + U0. �9�

The numbers of atoms trapped in the two troughs are propor-
tional to the respective partial norms of the wave function,

�
−�

+�

dy�
	L/2

	�D+L/2�

dx���x,y��2 =
2�2


3
DN	, �10�

hence �, defined in Eq. �9�, measures the population imbal-
ance. In this notation, the Lagrangian �7� simplifies to

y

x

U

L D

0

FIG. 1. The shape of the quasi-one-dimensional double-well po-
tential, U�x ,y�. The wiggles indicate quasi-1D lattice along y.
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3

8�2
�D
Leff�

N

2
−

N

8W2 − �
��

2

N2 + �2

W

− s��N2 − v2 +
1

2
�Ne−W2

, �11�

with s= +1 and −1 for the configurations of the antisymmet-
ric and symmetric types �with A+A−�0 and A+A−�0, re-
spectively�.

Our Lagrangian gives rise to variational equations
�L /�W=�L /��=�L /�N=0,

N + 2����N2 + �2�W − 4�NW4e−W2
= 0, �12�

�	−
�

W
+ s� �

N2 − �2
 = 0, �13�

1

4W2 + �
2��N

W
+

2s�N
�N2 − �2

− �e−W2
=  . �14�

Equation �13� has two solutions: �=0, which corresponds to
symmetric or antisymmetric solitons, and

�2 = N2 − �W2, �15�

for asymmetric ones.
For symmetric and antisymmetric solitons, Eqs. �12� and

�14�, with �=0, are tantamount to equations that were de-
rived, by means of the VA, for solitons in 1D models with a
periodic sinusoidal potential and attractive or repulsive non-
linearity �19,20�. In particular, in the latter case �for �= +1�
a known fact is that solutions exist only for ����0�

�e2 /16�0.462 �in fact, this constraint predicts, with high
accuracy, the edge of the first finite band gap in the linear
spectrum induced by the lattice �20��. Results for asymmetric
solitons are presented in the next section.

III. ASYMMETRIC SOLUTIONS

A. Equations for the bifurcation point

According to Eq. �13�, asymmetric solutions exist in two
cases: �=s= +1 �repulsion, with the asymmetric branch bi-
furcating from the antisymmetric one�, or �=s=−1 �attrac-
tion, with the bifurcation from the symmetric branch�. Elimi-
nation of �2 in Eqs. �12� and �14� by means of Eq. �15� yields
a system of equations for N and W,

N + 2���W�2N2 − �W2� = 4�NW4e−W2
,

1

4W2 + �
2��N

W
+

2s��N

W
− �e−W2

=  . �16�

Taking into account definitions �8� and �9�, solutions to Eqs.
�16� depend on parameters L, D, U0, and �.

At the bifurcation point, �=0, Eq. �15� yields N=��W,
hence Eqs. �15� generate a system of two equations for two
coordinates of the bifurcation point, � �via relations �9� and
�8�� and W,

1 + 2��W2 = 4�W4e−W2
,

1

4W2 + 2�� + s�� − �e−W2
=  . �17�

Without the optical lattice, i.e., for �=0 �the case considered
in Ref. �12��, the first equation in �17� gives the bifurcation
point at N=1 /�2. To obtain explicit results in the model with
��0, one can start with an obvious solution to Eqs. �17�, at
�=�=N=0, �=��0� �recall ��0��e2 /16�, U=U0

�0��1 /16, and
W=W�0���2. This solution, which has N=0 is, by itself,
trivial, but a nontrivial one can be obtained as an expansion
around it.

B. Model with self-attraction

Consider the attraction model corresponding to �=s=−1.
Then, straightforward analysis of Eqs. �17� for small ��=�
−��0� and �U0=U0−U0

�0� demonstrates that the bifurcation of
symmetric solitons �which pertain to s=−1, see above� may
occur at two values of the norm,

N =
1

2�2
�− �e−2�� + �U0�	2 −

1

2
�e−2�� + �U0�

	 �15e−2�� − �U0
 , �18�

the respective value of the width being W��2�1− �e−2��
+�U0� /4�. Note that the second term in the large parentheses
in Eq. �18� is a small correction to 2, the main correction
given by the last term, which demonstrates that theoretically
there may be two different bifurcation points. Obviously, ex-
pressions �18� are meaningful, i.e., the bifurcation takes
place, if

�e2/15��U0 � �� � − e2�U0 �19�

�in other words, �U0 must be negative, while �� may have
either sign�. Numerical calculations imply that only the
lower value of N is valid.

A set of bifurcation diagrams in the attraction model, in
the form of ��N�, i.e., curves showing the asymmetry of the
dual-core solitons versus the total norm, was generated by a
numerical solution of the full system of variational equations
�16�. The set is displayed in Fig. 2, where a noteworthy
feature is the transition from the subcritical shape �backward-
directed one�, which is a characteristic of the attraction
model without the longitudinal lattice �12� �as well as to the
model of dual-core optical fibers �15��, to the simpler super-
critical �forward-directed� shape at sufficiently large values
of lattice strength �. Note that the symmetry-breaking bifur-
cations of dual-core solitons, studied in systems of linearly
coupled GPEs including the attractive nonlinearity and lat-
tice potential �13,17�, as well as in the system of linearly
coupled fiber Bragg gratings �18�, are of supercritical type
too. The physical significance of the subcritical bifurcation is
that it allows bistability of the solitons �the coexistence of
stable symmetric and asymmetric ones� in a limited interval
of values of N.

C. Model with self-repulsive nonlinearity

In the case of the self-repulsion, i.e., �=s= +1, the expan-
sion of Eqs. �17� predicts the following values of the norm at
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which asymmetric gap solitons may bifurcate from the anti-
symmetric ones �recall antisymmetric solitons corresponds to
s= +1�:

N =
1

2�2
�e−2�� + �U0	2 −

1

2
�e−2�� + �U0�

	 �15e−2�� − �U0
 , �20�

where the notation is the same as in Eq. �18� for the attrac-
tive model. This expression predicts the bifurcation in the
following region �cf. Eq. �19� in the attraction model�:
−e−2����U0�15e−2��, which implies ���0, while �U0
may be both positive and negative, in contrast with the case
of the attraction model, that demanded �U0�0, while allow-
ing �� to take either sign. Once again numerical calculations
imply that only the lower value of N is valid.

A typical set of bifurcation diagrams in the repulsive
model is displayed in Fig. 3, again generated by a numerical
solution of the full system of variational equations �16�. It is
seen that the bifurcation generating asymmetric gap solitons
from the antisymmetric ones is always of supercritical type,
in compliance with results obtained for the models based on
linearly coupled GPEs with the optical-lattice potential and
repulsive nonlinearity �13,17�. These bifurcation diagrams
exist only for ����0��e2 /16, because, as mentioned above,
at smaller values of the optical-lattice strength the VA does
not predict antisymmetric gap solitons that might give rise to
a bifurcation.

IV. NUMERICAL METHODS AND RESULTS

To verify the above predictions, we solved Eq. �3� nu-
merically, using the imaginary-time relaxation method with a
fourth-order Runge-Kutta algorithm. The accuracy of the nu-
merical code was tested by varying computational param-
eters, namely the mesh density, window size, and time step.
These parameters were then fixed at values for which further
increase of the accuracy would not lead to a visible change in
the final results. This procedure was applied whenever the
physical parameter N was changed.

The numerical results are summarized in Figs. 4 and 5.
Comparison of typical asymmetric and symmetric solitons,
found from a numerical solution of Eq. �3�, with their coun-
terparts predicted by the VA, is presented in Fig. 4. Although
at first glance there is discrepancy between the results of
these two calculations, the general features are similar. The
discrepancies are only observed at the peaks and are a result

0.4 0.6 0.8
N

-1

-0.5

0

0.5

1

ν

ρ=0.0
ρ=0.2
ρ=0.4
ρ=1.0

FIG. 2. �Color online� A set of numerically found bifurcation
diagrams in the model with attraction, showing degree of a asym-
metry of dual-core soliton, �, as a function of the soliton’s total
norm, N, see Eqs. �9�. The diagrams pertain to fixed values of
parameters of the transverse double-well configuration, L=D=1,
U0=−0.7 �attractive case�, while the strength of the longitudinal
optical-lattice potential gradually increases. One can check from the
analysis of Eq. �17� that the turning points are at �=0 and 	N /�3.
One can clearly see that the supercritical bifurcation will turn into
subcritical bifurcation with increase of the optical latttice strength.
It can be interpreted as a phase transition.

0.1 0.125 0.15 0.175 0.2
N

-0.2

-0.1
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0.1

0.2

ν

ρ=0.6
ρ=0.8
ρ=1.0

FIG. 3. �Color online� A set of bifurcation diagrams for gap
solitons in the model with repulsive nonlinearity, for L=D=1, U0

=4, and a set of different values of the optical-lattice strength, �.
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0.8

Φ
(x

)
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x
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1

1.5

Φ
(x
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FIG. 4. �Color online� The top and bottom panels demonstrate
examples of cross-section profiles, along y=0, of stable asymmetric
and symmetric gap solitons, as obtained from a numerical solution
to Eq. �3� and predicted by the variational approximation �dashed
and continuous lines, respectively�. Parameters of the double-well
potential are L=D=1, U0=−0.7 ��=s=1, attractive case�, and �
=1. Norms of the asymmetric and symmetric solitons are, respec-
tively, N=0.52 and N=0.28. The asymmetry parameter for the
former soliton, see Eqs. �9�, is �=0.34.
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of the form of the Ansatz. It is still surprising that the agree-
ment is so good in spite of the simplicity of the model. A
similar restricted Ansatz was used in Ref. �12� and discrep-
ancies of the wave functions were of the same order. Never-
theless we were able to predict the form of the bifurcation
diagram correctly. Here also the variational calculation

helped us to predict the values of the parameters and where
to expect symmetric and asymmetric solutions. Even the
asymmetry parameter is in agreement with the variational
predictions of Fig. 2.

To better visualize the situation we also present a two-
dimensional density plot �Fig. 5� obtained numerically.

V. CONCLUSIONS

We have introduced a 2D model for self-attractive and
self-repulsive BECs, which combines a double-well potential
in the transverse direction, and a periodic potential along the
longitudinal direction. The analysis involved symmetry-
breaking bifurcations for dual-core solitons. Our results were
obtained by means of a restricted variational approximation.
We so created bifurcation diagrams and predicted the values
of parameters that should yield symmetric, antisymmetric,
and asymmetric solitons. Agreement with numerical solu-
tions was good. However, the exact shape of the solitons was
only reproduced outside the troughs. In the case of a repul-
sive nonlinearity, the bifurcation is of supercritical type,
while in the model with attraction an increase of the optical-
lattice strength leads to a phase transition from subcritical
bifurcation to a supercritical one.
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