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Abstract
We experimentally study a nonlinear detection scheme in which entangling interactions are time
reversed. In this way, nonclassical many-particle states are disentangled in order to enable their
feasible readout. In the context of quantum-enhanced sensing, such nonlinear readout techniques
extend the class of entangled probe states that can be leveraged for interrogation without being
limited by finite detector resolution.

As the underlying nonlinear mechanism, we employ spin exchange in a Bose-Einstein condens-
ate. The scattering process among spins can be controlled experimentally to not only generate
an entangled state but also the corresponding time reversed dynamics.

We explicitly demonstrate a quantum-enhanced measurement by constructing an atomic
SU(1,1) interferometer. Herein, spin exchange acts as an amplifier which spontaneously populates
initially empty spin states. The nascent entangled two-mode squeezed vacuum state enables
sensitive phase measurements. Checking whether or not the initial state is recovered after time
reversal reveals phase imprints. This scheme is capable of exhausting the quantum resource by
detecting solely average atom numbers, in principle, up to the fundamental Heisenberg limit of
phase estimation.

The intrinsic amplification of this interferometry scheme provides benefits for weak signals.
We experimentally explore the regime of an extended nonlinear readout in which noiseless ampli-
fication permits to maintain quantum-enhanced phase sensitivity even for large magnifications.
Integrating nonlinear dynamics into the detection strategy is widely applicable. We provide
additional examples by using it as an autonomous building block which maps subtle quantum
correlations onto readily detectable quantities.

Zusammenfassung
Wir untersuchen experimentell ein nichtlineares Detektionsschema, in dem verschränkende
Wechselwirkungen zeitumgekehrt sind. Dies hebt die Verschränkung nichtklassischer Vielteilchen-
zustände auf, sodass deren Detektion technisch möglich wird. Im Kontext quantenmechanisch
verbesserter Messverfahren vergrößern derartige nichlineare Auslesetechniken die Menge ver-
schränkter Zustände, die man sich zum Messen zu Nutze machen kann, ohne dabei durch
begrenzte Detektionsauflösung eingeschränkt zu werden.

Als zugrunde liegenden nichtlinearen Mechanismus verwenden wir Spin-Austausch in einem
Bose-Einstein Kondensat. Dieser Stoßprozess erlaubt experimentell gesteuert zu werden, sodass
sowohl verschränkte Zustände, als auch deren zeitumgekehrte Dynamik erzeugt werden können.

Wir demonstrieren explizit eine quantenmechanisch verbesserte Messung, indem wir ein
atomares SU(1,1) Interferometer aufbauen. Hierbei fungiert Spin-Austausch als Verstärker, der
anfänglich leere Spinzustände spontan bevölkert. Der im Entstehen begriffene verschränkte
Zweimoden-gequetschte Vakuumzustand ermöglicht empfindliche Phasenmessungen. Indem man
überprüft, ob nach Zeitumkehr der anfängliche Zustand wiederhergestellt ist, können Phasenver-
änderungen erkannt werden. Diese Technik ist in der Lage, durch bloßes Messen von mittleren
Atomzahlen das Potential des verschränkten Zustandes vollumfänglich auszuschöpfen; im Prinzip,
bis zur Heisenbergschen Höchstgrenze für Phasenbestimmungen.

Die dem Interferometer innewohnende Verstärkung ist vorteilhaft für schwache Signale. Experi-
mentell erforschen wir auch ein verlängertes nichtlineares Ausleseverfahren, in dem die rauschfreie
Verstärkung es ermöglicht, dass selbst unter starker Vergrößerung die quantenmechanisch ver-
besserte Phasensensitivität erhalten bleibt. Es ist häufig möglich, nichtlineare Dynamik in das
Detektionssystem einzubeziehen. Wir führen weiter Beispiele an, indem wir sie als losgelösten
Grundbaustein behandeln, der verborgene quantenmechanische Korrelationen auf einfach zu
detektierende Größen abbildet.





“All of old. Nothing else ever.
Ever tried. Ever failed. No matter.
Try again. Fail again. Fail better.”

– Worstward Ho, Samuel Beckett
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Chapter 1

Introduction

1.1 Quantum technologies
Quantum mechanics entails effects like superpositions and entanglement that have no
classical counterpart. Harnessing these counterintuitive aspects for technological advance
is the goal of quantum technology. It is a thriving research field with some scholars [1]
even seeing a third quantum revolution approaching. Here, the so-called first quantum
revolution refers to the discovery or invention of the fundamental laws governing quantum
physics such as the Schrödinger equation; proof-of-principle experiments on single particles
have then led to the second quantum revolution [2]. Nowadays, quantum technologies
harnessing many-body effects come of age and leave the realm of blue skies research as
they find applications and progressively become a subject of engineering.

Most recently, arguing that more than half of the scientific papers on quantum techno-
logy are written by European authors, a call on the European Commission was started to
secure this ascendancy. Following the proposal, grandiosely called quantum manifesto [3],
one billion Euro will be spent on quantum technology starting next year [4, 5].

Meanwhile, all around the globe efforts to exploit quantum effects for technology are
undertaken. The most prominent endeavour is the quest for quantum computers [6]. While
the most innovative global players like Google, IBM, Microsoft, and Intel already entered
the stage, yet they find themselves challenged as an era of startups and university spinoffs
begins [7–9]. The basic question of what platform (or combination [10]) might be suited
best is still open but first cross-platform comparisons are undertaken [11]. Google aims at
building a programmable quantum computer with 7× 7 superconducting qubits by the
end of this year. IBM, with similar long term goals, recently realized a 17 qubit system.
Knowing how to develop such devices in principle, researchers face similar problems as in
early days conventional computing, namely the so-called Tyranny of numbers, that is the
wiring-up of an ever increasing number of (qu-)bits.

In part relying on superpositions and not necessarily entanglement, quantum cryp-
tography [12, 13] promises security based on the laws of quantum mechanics. This is
different from the usage of one-way functions in conventional asymmetric cryptography,
where the non-reversibility is generally believed but not mathematically proved [14]. Fur-
thermore, considering post-quantum cryptography, those hard problems that asymmetric
cryptography relies on can efficiently be solved using quantum algorithms [15]. While
quantum computation is still in its infancy, quantum cryptography has already found its
way into practical applications [16].

The third major field of quantum technologies is metrology. Often, quantum metrology

1



Chapter 1. Introduction

is referred to as the science behind devising and performing measurements which involve
individual quanta [17, 18]. For instance, redefinitions of units in terms of fundamental
constants at single particle level are subsumed under this name. A recent example is the
so-called quantum metrological triangle, which aims at probing Ohm’s law at the level of
well-defined individual quanta [19].

Within this thesis we adopt the term in a stricter sense. Here, quantum metrology
refers to techniques which make use of quantum correlations such as entanglement to
improve measurements [20–22]. Usually one aims at achieving higher precision, but other
benefits, such as longer coherence times or a larger dynamic range, might also exist [23].

Most precision experiments map the quantity in question onto frequency or phase
such that interferometric techniques can be used for readout. The prime example is
timekeeping. Nowadays, atomic clocks [24] that use transitions in the optical domain reach
accuracy levels of 10−18 [25, 26]. Such fractional uncertainties are achieved in two tour de
force experiments: an ensemble of neutral strontium atoms that is trapped in an optical
lattice, or a single Aluminium ion held in a quadrupole Paul-trap [27–29]. Both contenders
plan to improve their accuracy by exploiting entanglement [30]. History teaches that the
importance of ever increasing precision cannot be undervalued; often, new developments
were only triggered by the unexpected result of a precision experiment. Famous examples
in the field of quantum mechanics are the determination of the Lamb-shift, and the
anomalous electron dipole moment for which Lamb and Kusch shared the Nobel prize.
Both precision experiments can be considered the incentive of quantum electrodynamics.
Today, precise clocks could determine whether or not fundamental constants change over
time in a lab measurement [31–33]. Dirac advocated such drifts [34, 35].

The second major example of precision interferometry is gravitational wave detection
[36, 37]. This year the third gravitational wave has been observed directly [38, 39].
However, all detected events were caused by rare black hole mergers. To start a new era
of (multimessenger) astronomy that builds on detecting gravitational waves as a tool, the
sensitivity has to be improved to extend the astrophysical reach. The implications of
this so-called gravitational-wave astronomy are often compared to the advent of radio
telescopes in the 1930s which opened up the complementary rf spectrum for investigations
of the universe. The strain sensitivity could be improved using quantum mechanically
entangled (squeezed) light [40–43].

One could really argue that these are interesting times to live in – if this were not a
Chinese curse.

1.2 Quantum-enhanced measurements
Let us start start by considering how a generic measurement task can be improved. We
have an atom interferometry application in mind – but the arguments put forward in this
section are of general nature and do not depend on a specific measurement apparatus [44].

Our aim is to determine a quantity precisely. This is routinely achieved by repeating
measurements and averaging the individual outcomes: when performing a measurement N
times, the error of the quantity to be measured, i.e. the error of its estimated mean value,
averages down with the square-root of measurements. This is the fundamental

√
N law

of statistics which holds for independent sampling [21]. Often, the single measurements
are not done sequentially in time but simultaneously. An example would be an atom
interferometer in which an entire cloud of N atoms is used in parallel for interrogation [45].
As long as the probes are uncorrelated, the

√
N law keeps valid [20]. Such a technique is

2



1.2. Quantum-enhanced measurements

nonlinear readout

N
√
/1

better than
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Figure 1.1: Overview of detection strategies for quantum metrology. In panel a) an
ensemble of N independent probes is used to interrogate the black box. At the detection stage
the individual measurement outcomes are averaged as indicated by 〈x〉. The error of the quantity
to be measured averages down with the square root of probes – a direct consequence of the
independent probing. The measurement’s error can be reduced by introducing nonclassical
correlations among the probes as shown in b). Here, interactions described by a nonlinear
Hamiltonian H generate an entangled state (intertwined cloud) which is used for subsequent
interrogation. By measuring subtle correlation functions (indicated by 〈xn〉) a higher precision is
attainable. Panel c) shows a nonlinear readout scheme where an additional nonlinear process is
added before detection. While the entangled state is generated by H the time reversed process
(−H) is used to disentangle the state for feasible readout. Consequently, simple averaging at
the output (〈x〉) suffices to exhaust the quantum resource of the entangled state and reach high
precision. Panel d) depicts the amplifying nonlinear readout. Here, entangling and subsequent
disentangling are performed by nonlinear amplifiers. A posteriori amplification can be used to
magnify the output signal (gain indicated by β) while maintaining improved precision.
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shown schematically in Figure 1.1 a).
This limit, however, is by no means fundamental. It can be surpassed by not using

independent particles but by introducing nonclassical correlations among them [21]. For
this, a nonlinear mechanism is needed, i.e. a nonlinear Hamiltonian H which generates
these correlations (red box in panel b). Then a quantum mechanically entangled probe
state emerges (indicated as the intertwined atom cloud). If such a nonclassical probe state
is used for interrogation, uncertainties smaller than the square root limit can be achieved
in principle. Therefore, the same overall precision can be reached while using less atoms –
or, with the same atom resource at hand smaller errors are attainable.

As a quid pro quo, however, the entangled state and its subtle correlations need
to be measured at the final detection stage. For highly entangled states, this requires
measurements of the full particle correlations with high fidelity, i.e. at single particle
level. We indicate this by 〈xn〉 to emphasize the need of higher moments like 〈x2〉 and
〈x3〉 instead of a simple average 〈x〉. For neutral particles, such single-particle resolved
detection with high dynamic range remains challenging [46, 47]. To summarise, in order
to have a highly sensitive probe state, one needs to have entanglement – but at the same
time, entanglement at the readout stage is hard to deal with because of the need for
sophisticated detection techniques not yet available.

One way to circumvent this detection problem is to use a nonlinear process right before
detection. At this stage – after interrogation – it cannot improve the phase sensitivity any
further. But instead, it eases detection as it is able to disentangle the state. To this end a
similar process which generated the entangled state in the first place is applied right before
detection. Then the effect of the first nonlinear process can be reversed and a classical
state reemerges. For this the sign of the nonlinearity needs to be inverted. Inverting
the sign of the governing Hamiltonian amounts to time reversal. We call such a scheme
(depicted in panel c) therefore quantum-enhanced sensing based on time reversal. Since
the state at the detection stage is disentangled standard averaging can be used to extract
the information gained during interrogation (indicated by 〈x〉). In this thesis we present
the experimental realization of such a scheme. In particular, the entanglement generation
and subsequent time reversal will be realized by nonlinear amplifiers. This arrangement
that is indicated in panel d) offers the unique possibility to further facilitate detection by
a posteriori amplification. This additional amplification stage does not deteriorate the
achievable phase sensitivity. We call such an arrangement amplifying nonlinear readout.
It therefore serves two purposes: first, the quantum state’s entire information is accessible
by standard averaging; and secondly, the output signal is amplified (amplification factor
denoted by β) for feasible detection. One mechanism which allows for experimental control
over the sign of the nonlinearity is spin exchange which we introduce in the next sections.
Before that, however, we detail the potential gain when using entangled probe states for
phase estimation.

1.3 Quantum mechanical limits on phase sensitivity
We now address the question of how large the potential room for improvement is when
using nonclassical probe states. Entanglement cannot enhance sensitivity ad infinitum. In
fact there is a fundamental bound on how efficiently a phase can be measured in principle.
Relying on the notion of efficiency, this so-called Heisenberg limit requires a common
sense of a cost function. In quantum technologies, one conventionally aims at minimising
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1.4. Tailorable nonlinear amplifier for entanglement generation

the number of interrogations1 [48, 49]. In the previous overview of quantum-enhanced
atom interferometry we implicitly treated the total number of atoms as a resource count.
This applies to the most common interferometry schemes in which all N employed atoms
interrogate the phase shift once. Under such circumstance the fundamental Heisenberg
limit reads ∆ϕ = N−1 which – for large atom numbers – is a major improvement over
∆ϕ = N−1/2 with the latter applying for unentangled states.

In other interferometry schemes, however, the total atom number does not agree with
the number of phase interrogations. An important example is phase estimation with
one atom traversing the interrogation stage many times. If in such a situation the atom
number rather than the number of interrogations is inaccurately taken as a resource it
seems that the Heisenberg limit could be surpassed – even without using entanglement at
all [50]. Such and similar inconsistencies are caused by a wrong accounting of the resource
[48, 49]. In this thesis we implement an interferometric sequence that relies on amplifying
nonlinear readout. Generally, the ability to amplify requires holding back particles in a
reservoir. For proper benchmarking of such interferometry schemes, only those atoms
that experience the phase shift are counted as an expensive resource [51]. If we allow for
fluctuations of this atom number (〈N〉 denotes its average value) the associated Heisenberg
limit is slightly adjusted and reads ∆ϕ = [〈N〉 (〈N〉+ 2)]−1/2 [52, 53].

This bound applies to linear phase estimation. This means that the phase imprint
is identical for each employed atom. A popular counterexample in quantum optics is
phase estimation exploiting the Kerr-effect [54]. For such nonlinear interferometers, that is
interferometers with nonlinear phase evolution, the Heisenberg limit as stated above does
not apply [55–58]. Within these two contexts the attribute nonlinear is routinely used. In
this thesis we use the term nonlinear to account for processes which are able to generate
entanglement among the probes [59]. Therefore, it is justified to call the readout technique
nonlinear. In contrast, transformations which cannot generate particle entanglement are
called linear. While this concerns the initial state preparation and the subsequent readout,
the actual phase interrogation in between is linear as defined above.

1.4 Tailorable nonlinear amplifier for entanglement
generation

We implement the nonlinear readout scheme within the well isolated atomic spin degree of
freedom. Crucially, this scheme relies on a customizable amplification process where the
sign of the governing Hamiltonian can be inverted. We use spin exchange to experimentally
realize such an amplifier [60, 61]. This very process is used for entangled state generation,
the nonlinear readout, and a posteriori amplification.

Here, we present the conceptual idea and first show how an entangled probe state
is generated by amplification. Let us consider a spin-1 system whose three magnetic
sublevels are shown in Figure 1.2a). In such a system, spin exchange describes a scattering
process during which two atoms of the |0〉 state are transferred to states |↑〉 and |↓〉 each
as indicated. In our experiments we start with empty modes |↑〉 and |↓〉 – only the mode
|0〉 is highly populated. Within the appropriate limits, this elementary process is then

1This argumentation is not restricted to interferometers. Grovers algorithm, for instance, exploits
quantum effects to learn about an unknown function (the so-called oracle) by performing fewer operations
(interrogations) on that function than classically necessary [15].
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〉0| |↑〉|↓〉 〉0| |↑〉|↓〉

⊗

control
mode

entangled statea) b)

Figure 1.2: Spin exchange as highly customizable nonlinear mechanism. a) Spin
exchange describes the pairwise scattering of two atoms residing in the pump mode (|0〉) into
spin states |↑〉 and |↓〉 each. This process generates a particle entangled state in modes |↑〉 and
|↓〉. Both, the magnitude as well as the phase of this nonlinear process can be tailored via the
classically populated pump mode |0〉, which therefore acts as a control mode: by modifying the
number of pump atoms, the nonlinear coupling κ is varied in strength. Similarly, by changing
the phase of the pump mode the sign of the nonlinearity can be inverted. We therefore endorse
the view of a classically populated mode that exerts comprehensive control over the quantum
mechanically entangled sub system as illustrated in the cartoon of panel b).

governed by a Hamiltonian of the form

H = ~κ â†↑â
†
↓ + h.c. (1.1)

Here, the pairwise process is described by creation operators â†↑ and â
†
↓ for modes |↑〉 and

|↓〉, respectively. This introduces nonclassical correlations among the atoms of both modes
[62–64]. Such scattering processes realize an amplifier: the atoms in state |0〉 provide a
particle reservoir which is used to reinforce the population of the two remaining spin states.
With initially empty spin states |↑〉 and |↓〉 the amplification process is initially triggered
by quantum fluctuations [65–67]. In this line of thinking, the reservoir atoms define the
nonlinearity or gain κ – and thus the rate at which these collisions occur.

The key feature of this implementation is that the nonlinear coupling strength κ can
be tailored by solely controlling the reservoir atoms in state |0〉. Both, the magnitude as
well as the phase and thus the overall sign of κ can thereby be altered. We therefore take
the point of view that the quantum mechanical subsystem formed by |↑〉 and |↓〉 with its
nonclassical correlations can be controlled comprehensively by a third mode as sketched in
Figure 1.2b).

1.5 Quantum-enhanced interferometry with linear readout
In this section we detail how quantum-enhanced phase measurements are accomplished with
linear interferometry. The arguments presented above in abstracto will be substantiated
by considering specific cases in detail. With these examples we cover the most widely used
states employed in quantum metrology and their discussion will showcase the characteristics
of using highly entangled probe states. For reference we start our discussion with a separable
(unentangled) state. Based on this we will present the peculiarities when dealing with
highly entangled probe states.

A Mach-Zehnder interferometer as depicted in Figure 1.3a) can be considered proto-
typical for linear two-mode interferometry [68]. In order to estimate the differential phase
shift ϕ the first beam splitter generates a phase sensitive probe state. It is a superposition
of modes described by bosonic creation operators ĉ† and d̂†. The second beam splitter
downstream maps the accumulated phase onto distinct mode populations measured at
the detection stage, i.e. in modes described by ê† and f̂ †. In such a scheme the last
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†ĉ

†d̂ †ê

†f̂

ϕ

0 10 20 0 10 20 0 10 200 10 20

a)

◦35

◦45

◦55

0

20π/

40π/

◦80

◦60

◦4520π/

10π/

5π/

Figure 1.3: Quantum-enhanced interferometry with linear readout. a) A Mach-
Zehnder interferometer is archetypical for linear two path interferometry. The last beam splitter
in combination with subsequent intensity detection at its output can be considered a linear
readout. The four panels b) – e) show the respective population distributions in each mode
for different quantum states at the probe (top) and output stage (lower three histograms are
for three different phase settings). b) Separable (coherent) state. Starting with N particles at
one input, the first beam splitter generates a phase sensitive equal superposition of the two
modes. Each of the modes is populated in a binomial fashion (top histogram). A second beam
splitter translates the accumulated phase difference ϕ between the modes into distinct output
populations. The three histograms show the counting statistics of mode described by ê† for the
indicated phase. Tracking the shift of the average population allows estimating the accrued
phase. c) N00N state injected into the interferometer after the first beam splitter. The probe
state is described by a superposition of all N = 20 atoms either in mode described by ĉ† or d̂†
(top histogram). At the output of the interferometer fringes at the single atom level emerge. The
broad envelope has the shape of a separable state but does not shift under phase imprints. To
recover a phase sensitive signal, the underlying fine structure has to be resolved. d) Twin-Fock
state at input. The probe state is a comb consisting only of even atom numbers. At the output,
both the envelope as well as the finer structure on top changes. e) Two-mode squeezed vacuum
state at input. Similar to case d) the probe contains only even atom numbers. Depending on the
phase accumulated, the odd atom numbers get filled up to different levels.
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beam splitter taken together with subsequent intensity measurements constitutes a linear
readout.

Before we investigate highly nonclassical states we consider a separable probe state
which is shown in panel b). The four histograms denote the mode population of the probe
(top) and output state (lower three panels). The output distributions are shown for three
distinct phase imprints as indicated. The state at all stages of the interferometric sequence
can be described in the following way (each terms acts onto vacuum)

(b̂†)N → (ĉ† + id̂†)N → (ĉ† + ieiϕd̂†)N → (cosϕê† + sinϕf̂ †)N (1.2)
Here, we use mode operators as defined in Figure 1.3. The first step describes the

action of the (balanced) beam splitter when N (identical and bosonic) particles enter via
one of its input ports. The resulting state is an equal superposition of modes described
by ĉ† and d̂†. The population distribution of this probe state is shown in panel b (top).
The two modes inside the interferometer get populated in a binomial fashion. Subsequent
phase interrogation is described by modified mode operators, d̂† → eiϕd̂†. The accumulated
differential phase is finally mapped onto the output mode population by the second beam
splitter. The lower three histograms of panel b) show the mode population recovered at
one of the two outputs. Clearly, as the imprinted phase varies the centre of the output
distribution shifts. Therefore, by measuring the average population at the output state,
〈N〉 = N cos2 ϕ the phase ϕ can be inferred. The corresponding phase sensitivity can
be determined by applying error propagation, (∆ϕ)2 = (∆N)2/|dN/dϕ|2 which takes
into account both, the fluctuations at the output, as well as the slope of the signal.
As a consequence of the binomial output statistics the variance of the observable is
(∆N)2 = 4N cos2 ϕ sin2 ϕ. Therefore, the phase sensitivity reads (∆ϕ)2 = 1/N and is
independent of the working point. We recognize the classical bound for phase estimation
with independent probes.

We now detail the implications when employing entangled states for achieving higher
phase precision [69]. Highest phase sensitivity is attained when using the so-called N00N
state at the probe stage [70]. Its name derives from the fact that its dual-rail representation
reads |N, 0〉+ |0, N〉. Therefore it is a coherent superposition of all N particles being in
either mode with the respective other empty. For atomic states it is most often referred
to as GHZ (Greenberger, Horne, Zeilinger [71]) state. For this interferometry scheme,
the state after the first beam splitter, i.e. at the probe stage, reads (ĉ†)N + (d̂†)N . Its
population histogram for one of the involved modes is shown in panel c) (top). The phase
imprint and the final beam splitting is described by

(ĉ†)N + (d̂†)N → (ĉ†)N + eiNϕ(d̂†)N → (f̂ † + iĝ†)N + eiNϕ(ê† − if̂ †)N (1.3)

This should be compared to Equation 1.2. As a result of the final beam splitting the
atom number distribution recovered at the output (panel c) has a binomial envelope
identical to the separable state. However, as the phase inside the interferometer is changed
this envelope remains unaltered. Instead the finer structure within changes [72]. This
fine structure is on single-atom level and is described by modifying the probabilities for
detecting an odd or even atom number by sin2(Nϕ) and cos2(Nϕ), respectively [73, 74].
Therefore, rather than being phase dependent to ϕ the phase winds N times faster, i.e.
the phase dependence is with respect to Nϕ. This property, which is characteristic for
entangled states is called super-resolving. As a side effect it reduces the dynamic range.

A different class of entangled states that allow for quantum-enhanced phase measure-
ments are twin-Fock states [75]. Here the input state is given by (â†)N/2(b̂†)N/2 (panel
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d). The first beam splitter transforms this into a comb-like distribution with only even
atom numbers of the probe state being populated, the so-called Holland-Burnett state
[75]. For two atoms, the absence of the odd contribution corresponds to the famous
Hong-Ou-Mandel dip. If no differential phase is accumulated (ϕ = 0) the twin-Fock state
(input state) is recovered at the output. Instead, for a phase of π/2 the probe state is
retained at the output. In between both of these phase settings the state grows rapidly
in size with a fine structure at single-atom level on top. The fine structure is modulated
with respect to 2ϕ. The average value vanishes for all phase settings [76].

Finally, building on the previous case, a superposition of twin-Fock states is considered.
Such states are highly relevant because they are routinely generated by the process of
parametric amplification. There, the emerging state (called two-mode squeezed vacuum
state) is a superposition of twin-Fock states with weights pk that decrease in a power-law
fashion, ∑∞k=0

√
pk(â†b̂†)k [77]. Here, an important distinction to the previous examples

is that this state involves arbitrary high twin-Fock states (albeit with ever-decreasing
weights). Therefore the state’s atom number is only defined by its average population.
Because of the underlying twin-Fock character the probe state has only even atom numbers
populated (panel e, top). The envelope which resembles a thermal state is characteristic
for this two-mode squeezed vacuum state. At phase π/2 this probe state is recovered at
the output. Phase changes around π/2 yield to a filling up of the (initially) absent odd
population numbers while the envelope is barely changed [78].

The appearance of finer structures (at single particle level) amidst a broad pattern is a
general feature connected to entangled states and their linear readout. In any case, the
average mode population ceases to be phase dependent and one needs to determine higher
moments of the underlying mode population. While for the twin-Fock state the second
moment suffices [62, 75], the N00N and twin-Fock state need much higher moments: the
phase information can be retrieved by evaluating the parity signal of the output atom
number distribution, Π = eiπn which assigns +1 (−1) to an even (odd) atom count n [73].
While it is prone to detection noise as it needs single-atom resolution, it is efficient in the
sense that it contains all moments k of the probability distribution, Π ∼ ∑k 〈nk〉 [73, 74].

1.6 Advantage of amplifying nonlinear readout
Here we pick up on two examples provided in the previous section and exemplify how
nonlinear readout eases detection. The prototypical scheme realising nonlinear readout is
shown in Figure 1.4 a). The crucial feature of the nonlinear readout is its mapping of the
accumulated phase onto first moments that are accessible via global measurements. This
makes single-atom resolution unnecessary even when approaching the ultimate limit on
phase sensitivity [79–86]. Additional to this mapping onto easily accessible observables
the output signal can be amplified without signal degradation [87, 88].

Mapping onto global observables
As a probe state we specifically consider the N00N (panel b) and the two-mode squeezed
vacuum state (panel c). While the latter is the subject of this thesis, the N00N state was
treated in the seminal paper experimentally demonstrating nonlinear readouts to approach
the Heisenberg limit of phase sensitivity [81]. We summarize the idea in panel b). The
first nonlinear process generates the entangled N00N state for phase probing. The top
histogram shows the atom number distribution in either of the two interferometry modes.
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Figure 1.4: Nonlinear readout. a) Schematic representation of interferometry with nonlinear
readout. Here, a nonlinear mechanism (blue) that is attuned to the initial entangling process (red)
is used after phase interrogation. In panels b) and c) population distributions akin to Figure 1.3
are shown. b) Population distribution of mode described by ĉ† when the first nonlinear process
generates a N00N state of 20 atoms as probe. Depending on the phase shift ϕ the subsequent
nonlinear process generates population distributions of the mode described by ê† as indicated in
the three lower histograms. c) Two-mode squeezed vacuum state as probe (top). Depending on
the phase imprint the second nonlinear process enhances or diminishes the average atom number
(indicated by dark coloured bin) found in mode described by ê†. In both cases, the full phase
information contained in the entangled state is mapped onto the first moment of the output
population distribution.
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To be consistent with the previous section we choose a total atom number of 20 (the
pioneering experiment was performed with three beryllium ions). After differential phase
accumulation the same nonlinear process that produced the entangled state in the first
place is reapplied before readout. It maps the phase dependence onto only two possible
outcome states: all atoms identically leave either of the two output ports. Such an output
signal is maximally robust towards detection inefficiencies. The three lower histograms
show the output statistics of mode described by ê for different phase settings. Compared
to the linear readout scheme, no single-atom resolved measurements are necessary. Instead,
a global measurement suffices and the super-resolving phase signal can be recovered by
determining the average mode population.

The nonlinear readout harnessing the two-mode squeezed vacuum state works in a
similar fashion. However, as emphasized above, while the N00N state has a fixed number
of particles the generation of the two-mode squeezed vacuum state involves superpositions
of twin-Fock states with different total atom numbers. Therefore, the atom number of the
two-mode squeezed vacuum state is defined only by an average. The two-mode squeezed
vacuum state is shown in panel c). The population distribution at both, the probe stage
(top) as well as the readout stage (lower panels) follow a distinctive thermal-like skewed
distribution. Their average value (indicated by the dark coloured bin) constitutes the
phase sensitive signal. Measurements of this average value suffice to fully exhaust the
quantum resource up to the fundamental Heisenberg limit [89].

Sensitivity-maintaining amplification of the output signal

Furthermore to the mapping onto global observables the two-mode squeezed vacuum
state is amplified during the nonlinear readout. This intrinsic amplification of the output
signal facilitates additionally the detection. This stands in contrast to the N00N state
whose passive scheme redistributes an ever-fixed number of atoms for readout. Apart
from the inherent amplification when using the two-mode squeezed vacuum state in the
symmetric arrangement of Figure 1.4 the output signal can be amplified even further.
For this the nonlinear readout is extended by an additional period of nonlinear evolution
as illustrated in Figure 1.5 a). Panel b) shows the atom number distribution at the
probe stage (red), after (symmetric) time-reversal (blue) and after additional amplification
(green). During the final amplification stage the output signal is magnified nonlinearly
once more. Remarkably, the phase sensitivity of the interferometer is not degraded by
the additional amplification and Heisenberg limited phase sensitivity can still be retained.
This counterintuitive behaviour is the consequence of the entanglement present during
amplification [87, 88].

Therefore, the resource entanglement is harnessed twice in this scheme: first, it enables
a nonclassical phase measurement which surpasses the classical precision bound. For
this purpose, entanglement has to be present at the probe stage [21]. Secondly, during
nonlinear readout the entanglement enables the amplification of the output without signal
degradation. The ability to amplify the output signal allows for detection noise resilient
phase estimation approaching the ultimate Heisenberg limit [90]. This is because, in
principle, any amount of technical noise that is added during the detection process can be
rendered negligible by choosing sufficiently large amplification.
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Figure 1.5: Amplifying nonlinear readout. a) The intrinsic amplification of the nonlinear
readout can be enlarged by extending the scheme with an additional period under nonlinear
dynamics (green). This extra amplification is noiseless in the sense that it does not degrade the
phase sensitivity. Regardless of the amplification factor a phase sensitivity at the Heisenberg
limit can be retained. b) Counting statistics at three different stages (indicated by colour) of the
interferometer similar to Figure 1.4. The dark coloured bins indicate the average value.

1.7 Organisation of this thesis
To experimentally realize the nonlinear readout scheme we use spin exchange among
three states which altogether form an effective spin-1 system. We therefore devote the
first chapter to the theoretical description of quantum mechanical spins. We begin with
the conceptually simplest case of a spin-1/2 object before presenting the peculiarities of
spin-1 systems on that basis. Next, we detail the collisional interactions that arise in
ultracold spinor systems which eventually leads to the Hamiltonian description of spin
exchange. Before discussing the inherent quantum features of this Hamiltonian we provide
an intuitive picture based on classical approximations. In chapter 4 we reexamine the
Hamiltonian description in view of parametric amplification. This analogy is based on an
approximation that is central to this work – a highly populated spin mode which acts akin
a undepleted reservoir. The comprehensive possibilities of control promote the process of
parametric amplification to the central building block of the nonlinear readout scheme –
which will be described in depth. Chapter 5 provides a more formal treatment that builds
on the so-called SU(1,1) framework. In this mathematical framework the common and
distinctive features of the nonlinear readout when comparing it to routinely employed
interferometers are especially evident. With this we conclude the conceptual part of the
thesis.

Our experimental apparatus to study spinor Bose-Einstein condensates is presented in
chapter 6. In particular we detail the techniques employed to control spin exchange reliably.
The experimental results are the subject of the chapters that follow: we characterize the
process of spin exchange in chapter 7. For this the essential parameters, i.e. nonlinear
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coupling strength, detuning, and spin relaxation rates are determined. Special attention is
paid to the nascent spin state and its distinguishing features – chiefly its coherent spin
fluctuations. Finally, we probe the conditions that have to be met in order to achieve
prototypical parametric amplification.

In chapter 8 we present the results of time reversal interferometry. Here, the nonlinear
readout is matched to the initial preparation of an entangled state. We explicitly show
that the phase sensitivity is better than classically allowed. Subsequently – in chapter 9
– we extend the scheme and characterize the amplifying nonlinear readout. Here an
additional amplifier stage is added before detection. We show that quantum-enhanced
phase sensitivity is not only preserved but made more robust.

We employ the nonlinear readout as an instrument in chapter 10 and present two
applications: first, motivated by theoretical studies of phase diffusion in Bose-Einstein
condensates, the nonlinear readout is used to investigate the mechanisms of phase damping.
In the second application the nonlinear readout is employed to characterize its input state.
Specifically, it serves as a witness for Einstein-Podolsky-Rosen entanglement.

Finally – in the outlook – we present a method to extend the nonlinear readout such
that time reversal is achieved even when going beyond the restrictive approximation
of an undepleted reservoir. Recently, the study of out-of-time order correlations has
attracted considerable interest. We show that the nonlinear readout in fact realizes such a
measurement.
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stage is treated in the framework of the so-called SU(1,1) interferometer. Therein we
discuss the characterising features by comparing it to routinely used passive interferometry
schemes. Parts of this thesis’ chapter 5 and chapter 7 are published in this paper.

1.9 Overview of related experiments

Here, we review related work to put this thesis’ content into perspective and to provide
a broader overview. With science being rarely disruptive, advances in diverse areas are
made in parallel. The basic idea of using two nonlinear processes in sequence with a phase
accumulation stage in between has been realized using different experimental platforms.
In this section we present the most relevant experiments. We start with those that are
dealing with photons. For these experiments the nonlinear mechanism is implemented
by parametric amplification, a Hamiltonian that is formally equivalent to the one used
in this thesis (Equation 1.1). Therefore, from a procedural point of view, these photonic
experiments bear greatest resemblance to the atomic spin exchange experiments of this
thesis.

Quantum optics

Using parametric down-conversion in a nonlinear crystal, the authors of reference [91]
retroreflected the signal and idler beam to traverse the nonlinear crystal once more.
Depending on a phase imprint, the intensity of the signal and idler beams after passing the
crystal twice is either enhanced or diminished. By systematically changing the phase of all
three involved beams individually (pump, signal, and idler) the overall phase dependence
was inferred. In our atomic spin system this phase is called spinor phase and will be
introduced in chapter 2.

With the bulk crystal being substituted by a photonic crystal fibre (to achieve larger
nonlinearities) a similar experiment arrangement was studied in reference [92]. Special
attention is paid to the fact that the second fibre passing comprises a detection which is
sensitive only to biphotons [93]. The modulation depth of this biphotonic signal was used
to study qualitatively the transition from classical to quantum nonlinear behaviour.

Parametric amplification can be realized by three (four) wave mixing in alkali vapour
gases. For this one exploits the strongly nonlinear response to light being close to two-
photon resonance of an atomic three level system. In references [94, 95] vapour cells filled
with Rubidium-85 operated at thermal temperatures are used. Using two such vapour cells
in sequence, an interferometer was realized in [96, 97]. Using a bright seed for parametric
amplification, quantum-enhanced phase sensitivity could be inferred [98]. In a similar
setup the authors of reference [88] surpassed the quantum noise limit for amplification
by using an entangled state. We will elaborate on this aspect of noiseless amplification
and interferometry in chapter 8. Similar to our atomic experiments which start with
vacuum initially, quantum-enhanced performance was recently observed for unseeded
optical parametric amplification [99]. This operation regime where amplification is not
predetermined by classical seeds is more challenging. Subsequent additional amplification
is employed additionally which we detail in chapter 9.

14



1.9. Overview of related experiments

Superconducting qubits
In a cryogenic environment, a Josephson mixer is used to realize the parametric amplifica-
tion Hamiltonian for microwave photons [100]. The emerging entangled state is distributed
over two transmission lines. Reversibility under a second Josephson mixer was used as an
entanglement witness. We will detail the procedure in chapter 10 and extend it such that
a particular strong form of Einstein-Podolsky-Rosen entanglement is witnessed [101].

In reference [102] entangled microwave photons are employed to interrogate an en-
semble of electronic spins via their magnetic resonance. Entangling and readout are both
implemented by Josephson mixers. Quantum-enhanced performance was demonstrated.

Trapped ions
Beyond question cooled and trapped ions offer the highest degree of experimental control
with impressive single gate fidelities surpassing ’six nines’ [103] and entangling gates at the
’three nines’ level [104, 105]. Additionally, their high fidelity readout makes them ideally
suited for quantum information processing tasks [106, 107]. As detailed in the previous
section a nonlinear readout scheme harnessing a N00N state for quantum-enhanced
interferometry was realized with three beryllium ions. In this pioneering work [81],
the authors directly compare the outcome obtained under linear and nonlinear readout.
They stress the advantage of the latter if detection infidelities were present. While
the previous photonic experiments leveraged parametric amplification, here a different
nonlinear mechanism is employed which generates an N00N state in the spin degree of
freedom [108]. Charged ions, however, suffer one drawback: the two-gate interactions
(among two specific ions) are (usually) mediated via collective vibrational modes which
become narrowly spaced as more and more ions are used. Therefore, the extension to
large arrays of many ions while maintaining the high speed of gate operations remains
challenging [109–111].

Giving up the individual addressability a large two-dimensional crystal of more than
100 ions with collective interactions among them was realized recently [112, 113]. In this
system a time reversal sequence was implemented to study out-of-time-ordered correlators
[114]. With the ability to accurately determine the overlap of the final and initial state,
the multiple quantum coherence spectrum could be extracted.

Cold gases in optical cavities
The authors of reference [115] use nonlinear interactions to magnify a quantum state
before readout. A similar nonlinear process is employed to, first, generate an entangled
spin-squeezed state, which is subsequently magnified to ease detection. An ensemble
containing half a million laser cooled Rubidium atoms is used. The collective nonlinear
interactions are mediated by an optical cavity [116]. Comprehensive theoretical studies
are focussed on similar experimental setups [84, 117].

Ultracold gases
The collisional interactions inherent to degenerate quantum gases provide a strong nonlinear
mechanism which promotes them to an ideal testing bed for nonlinear quantum atom
optics [118]. Early on phase-sensitive amplification of matter waves was observed [119, 120].
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Chapter 1. Introduction

In these experiments Raman scattering is used to couple out atoms of the condensate
spatially.

More recently, experiments conducted within the spin degree of freedom reach the
quantum noise limit of amplification. The authors of reference [121] studied how spin
exchange is inhibited by imprinting phase shifts stroboscopically. To this end the sequence
contains periods of nonlinear evolution with subsequent quasi-instantaneous phase imprints.
The authors investigate the results in the context of stabilization theory.
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Part I

Theoretical basics
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Chapter 2

Quantum mechanical spin

We start our theoretical treatment with one of quantum mechanics most paradigmatic
systems, the spin-1/2. To this end we introduce a set of spin operators that exhaustively
describe such elementary systems and detail the Bloch sphere representation. Characteristic
features of three level systems are developed on that basis.

2.1 A spin-1/2 system
Following a reductionism approach we first introduce the most fundamental entity, the
quantum bit (qubit). Such a qubit describes the quantum mechanical state of a two
level system. In particular a spin-1/2 particle falls into this category where two basis
states might be identified with spin-up (|↑〉) and spin-down (|↓〉). To characterize its wave
function we introduce the following set of spin operators

Ĵ =



Ĵx
Ĵy
Ĵz


 = 1

2




â†↑â↓ + â†↓â↑
(â†↑â↓ − â†↓â↑)/i
â†↑â↑ − â†↓â↓


 . (2.1)

Using the second quantisation formalism even for a single particle at this point, â†↑ and â
†
↓

denote the bosonic creation operators for mode |↑〉 and |↓〉, respectively. The operator Ĵz
quantifies the population imbalance (magnetization) between both basis states while Ĵx
and Ĵy contain the coherences. Because of the rotational symmetry retained by angular
momenta these spin operators satisfy the defining commutation relations of SU(2), i.e.
[Ĵx, Ĵy] = iĴz and cyclic permutations thereof.

Every spin-1/2 wave function |ϑ, ϕL〉 can be associated with a unit vector 2r via the
identity

〈ϑ, ϕL| Ĵ · r |ϑ, ϕL〉 = 1/2 . (2.2)

This visualisation of wave functions in terms of points spanning the surface of a unit ball
is called Bloch sphere representation; it is shown in Figure 2.1. A pure spin-1/2 system is
characterized completely by the direction into which its mean spin 〈Ĵ〉 points. Often this
orientation is parametrized by two angles: while the polar angle ϑ encodes the population
imbalance, the azimuthal angle is given by the Larmor phase ϕL. This Larmor phase is
the dynamic phase associated to the energy difference between the two basis states |↑〉
and |↓〉 and is therefore responsible for spin precession. Advancing the Larmor phase by
ϕL = π/2 rotates Ĵx into Ĵy, which in terms of individual mode operators is described by
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x
y

z

〉Ĵ〈
ϑ

Lϕ

Figure 2.1: Bloch sphere representation of a spin-1/2 system. The state space spanned
by the two states spin-up |↑〉 and spin-down |↓〉 can be visualized on the surface of a sphere.
In this Bloch sphere representation, the orthogonal states |↑〉 and |↓〉 are identified with the
north and south pole, respectively. Any pure state describing a coherent superposition can
be represented by the direction of its mean spin 〈Ĵ〉, often parametrized through two angles
as indicated. The blue area denotes the intrinsic indetermination imposed by the uncertainty
principle.

the substitution â↑ → â↑ exp iϕL. Transformation of this form will become important later
on. The inner volume within the Bloch sphere becomes accessible only for mixed states.

According to Heisenberg’s uncertainty relation there is a fundamental lower bound on
how well two non-commuting spin components can be determined. This bound is indicated
by the blue shaded area in Figure 2.1. It follows from

(∆Ĵx)2(∆Ĵy)2 ≥ | 〈Ĵz〉 |2/4 (2.3)

which holds similarly for the other spin components. Here, (∆·)2 denotes variance.

2.2 A spin-1 system
The wave function of a spin-1 object involves three states, for instance the three Zeeman
levels. In direct analogy to the spin-1/2 case we first introduce spin operators which
characterize the spin’s orientation. However, in contrast to the two-level system more
operators are needed to completely describe spin-1 states. We motivate this by considering
composite wave functions made up by two antipodal spin-1/2 particles. The additional
operators characterize the alignment of spin fluctuations.

Spin operators – orientation
We treat the spin-1 object in the Zeeman basis consisting of the three states |m = 1〉 ≡ |↑〉,
|m = 0〉 ≡ |0〉, and |m = −1〉 ≡ |↓〉. These three levels might have an unequal energy
spacing. The possible two independent energy differences call for two distinct (dynamic)
phases, ϕ1 = ϕ0 − ϕ↑ and ϕ2 = ϕ0 − ϕ↓ as indicated in Figure 2.2. Here ϕ↑ denotes the
phase of state |↑〉 with a similar notation for the other states. The Larmor phase of this
three level system is given by ϕL = ϕ2 − ϕ1. Similar to the spin-1/2 case it is related to
the energy difference between states |↑〉 and |↓〉 and generates rotations of the mean spin
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1ϕ

2ϕ

|↑〉

|↓〉

〉0|

m 1− 0 1

Figure 2.2: Phases of a spin-1 system. As a three level system, a spin-1 accommodates
two distinct phases, e.g. ϕ1 = ϕ0 − ϕ↑ and ϕ2 = ϕ0 − ϕ↓ as indicated. The decomposition into
a Larmor phase contribution, ϕL = ϕ2 − ϕ1, and spinor phase, ϕ = ϕ1 + ϕ2, is particularly
insightful. This is because each phase is responsible for qualitatively different dynamics of
the three level system. Similar to the situation encountered in a spin-1/2 system, the Larmor
phase rotates an oriented spin. In contrast, the spinor phase drives orientation-to-alignments
oscillations.

direction. The additional phase, called spinor phase ϕ = ϕ2 + ϕ1, is in turn related to the
energy difference with respect to state |0〉. It is given by

ϕ = 2ϕ0 − ϕ↑ − ϕ↓ . (2.4)

It is useful to introduce the shorthand notation for the symmetric and antisymmetric
combination of spin-up and spin-down annihilation operators,

ŝ+ = (â↑ + â↓)/
√

2 ŝ− = (â↑ − â↓)/
√

2 . (2.5)

These definitions allow constructing the spin operators of a three level system in a manner
mnemonic to the spin-1/2 case [122], namely

Ŝ =



Ŝx
Ŝy
Ŝz


 =




â†0ŝ+ + â0ŝ
†
+

(â†0ŝ− − â0ŝ
†
−)/i

â†↑â↑ − â†↓â↓


 . (2.6)

Here, the definition of Ŝy involves the operators of ŝ− rather than ŝ+. This is because
the spin operators Ŝx and Ŝy need to be connected via a rotation of the Larmor phase
which transforms ŝ+ into iŝ−. By such a construction these operators automatically fulfil
the rotational SU(2) commutator relations. However, a spin-1 object is not exhaustively
described by its mean spin direction 〈Ŝ〉. We motivate the need for further operators by
an example in the following section.

Quadrupole operators – alignment
Let us imagine, cum grano salis, that the spin-1 is composed of two fictitious fundamental
spin-1/2 particles. Due to bosonic exchange symmetry we can explicitly construct the wave
function out of two spin-1/2 wave functions in the following way, Ψ = 1√

2(|ϑ1, φ1〉1 |ϑ2, φ2〉2+
|ϑ2, φ2〉1 |ϑ1, φ1〉2) [61, 123]. Here the state’s subscript labels the individual spins. These
two spin-1/2 can point into arbitrary direction, in particular into diametrically opposite
ones. Such a case is shown in Figure 2.3 where one spin-1/2 points to the north pole and the
other to the south pole. The combined state is then given by Ψ = (|↑〉1 |↓〉2 + |↓〉1 |↑〉2)/

√
2.

This is the state with total spin S = 1,m = 0. It thus corresponds to the situation with
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+ →

x y

z

x y

z

x
y

z2/spin-1 2/spin-1
spin-1

Figure 2.3: Majorana representation. A spin-1 object can be thought of as being composed
of two fundamental spin-1/2. A particular interesting case arises when two antipodal spins
are combined. Shown are the Bloch sphere representations of a spin-1/2 in state |↑〉 and |↓〉
with associated uncertainties indicated as blue shading. The resulting spin-1 has no orientation,
however its fluctuations (blue area) have the shape of a disc and are thus anisotropic.

only the m = 0 component populated. Such a state is the starting point for all experiments
reported on in this thesis. As the superposition of two antipodal states its mean spin
length vanishes. However, its spin fluctuations are anisotropic as shown in the right panel
where the Bloch sphere representation of the spin Ŝ is shown. The fluctuations amount to

(∆Ŝx)2 = (∆Ŝy)2 = 1, (∆Ŝz)2 = 0 . (2.7)

Similarly, the resulting state of two antipodal spins lying on the equator, say along
the x and −x direction, gives anisotropic spin fluctuations with (∆Ŝy)2 = (∆Ŝz)2 = 1
and (∆Ŝx)2 = 0 which can be understood as a rotation of the previous spin-up and
spin-down case. Therefore both states have vanishing mean spin length 〈Ŝ〉 = 0 but
describe different states as witnessed by their coherent fluctuations. Such states are known
under different names: in spinor condensates, they are predominantly called polar states,
in solid state physics spin-nematic, in nuclear physics quadrupolar, and in atomic physics
aligned. The contrastive pair of orientation versus alignment is particularly illustrative.
Here, orientation describes an object having one direction. In contrast, alignment describes
objects having an axis.

The previously introduced spin-1/2 operators can be regarded as a consequence of
transformations under Larmor phase rotations. In a similar manner we can construct
additional sets of operators that satisfy SU(2) symmetry by construction. For this we
impose a rotation with the spinor phase: starting with the operator Ŝx and substituting
â0 → â0 exp iϕ we obtain:

F̂ =



F̂x
F̂y
F̂z


 =




â†0ŝ+ + â0ŝ
†
+

(â†0ŝ+ − â0ŝ
†
+)/i

â†0â0 − ŝ†+ŝ+


 . (2.8)

A similar procedure can be done by starting with Ŝy:

Ĝ =



Ĝx

Ĝy

Ĝz


 =




â†0ŝ− + â0ŝ
†
−

(â†0ŝ− − â0ŝ
†
−)/i

â†0â0 − ŝ†−ŝ−


 . (2.9)
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2.2. A spin-1 system

With the help of these operators, a spin-1 wave function is completely characterized. The
additional operators measure the anisotropy of spin fluctuations. Expressed in terms of
spin orientation operators they take the form of anticommutators {Si, Sj}. Therefore the
name quadrupole operators is justified [64]. For a spin-1/2 these products of spin operators
vanish as a consequence of the Pauli matrices satisfying {σi, σj} = 0 for i 6= j, see appendix
(section C.1). This is in accordance with the Wigner-Eckhart theorem stating that a wave
function describing an angular momentum J object has vanishing expectation values for
all moments of the multipole expansion greater than 2J . Turning the argument around
shows that the spin-1 is fully characterized by Ŝ and the alignment operators F̂ and Ĝ,
respectively.

In the language of atomic physics, the operators F̂y and Ĝy measure the alignment
of the spin. This is opposed to the orientation which is characterized by the operators
belonging to Ŝ: the spinor phase ϕ drives alignment-to-orientation oscillations while the
Larmor phase rotates an oriented spin. Because of the rotational symmetry the alignment
operators can be visualized on a Bloch sphere in exactly the same manner as the oriented
spin. In such a representation the aforementioned state S = 1,m = 0 (as shown in
Figure 2.3) corresponds to the north pole of the Bloch sphere belonging to F̂ and Ĝ,
respectively. We will come back to this representation in the next chapter.
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Chapter 3

Hamiltonian of a spin-1
Bose-Einstein condensate

In this section we present the Hamiltonian description of a spinor Bose-Einstein condensate.
With the motional degrees of freedom frozen out, the dynamics are within the spin. We
detail the collisional interactions that lead to spin exchange among three modes. For
developing intuition about the dynamics induced by spin exchange the classical phase
space is discussed before the quantum mechanical treatment follows. Finally, we give an
overview of the employed semi-classical simulation methods.

3.1 Spinor BEC in a single spatial mode
In our experiments we employ mesoscopic Bose-Einstein condensates (BEC) containing
about 400 atoms that are tightly trapped in an optical lattice potential. In such a situation
the external degrees of freedom are frozen out and the ensuing dynamics is restricted to
the spin. Furthermore, the trapping potential treats all spin components equally. Under
these conditions the spatial wave function of the condensate φ(r) is common to all spin
states. Formally, this means that the three spin components j have wave functions given
by

Ψ̂j(r) = φ(r)âj . (3.1)

The shared mode function φ(r) can be determined by solving the Gross-Pitaevski equation
in the external potential. Depending on the atomic density two qualitatively different
regimes arise. For very low atomic densities interactions among the particles can be
neglected and the BEC wave function is given by the corresponding single-particle wave
function. In the opposite case of high density and thus dominant interactions the kinetic
energy contribution can be neglected. In this Thomas-Fermi approximation the chemical
potential takes the shape of the (inverted) trapping potential [124, 125].

3.2 Collisional interactions
Due to the diluteness of atomic gases it suffices to only treat two-body collisions. To
describe the interactions of any general three component BEC all pairwise scattering
processes need to be considered. This amounts to three inter- and three intra-component
scattering channels. However, in our case the three components are not independent of
each other but constitute a physical spin. As such it has well defined properties upon
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Chapter 3. Hamiltonian of a spin-1 Bose-Einstein condensate

rotation. By exploiting symmetries, in particular the conservation of angular momentum,
the treatment of interactions can be greatly simplified [61].

Within the ultracold temperature regime, only head-on collisions occur. This is because
two low energy atoms with finite orbital angular momentum l 6= 0 in their centre-of-mass
reference frame cannot overcome the centrifugal barrier to probe the short range interatomic
potential. Therefore, only s-wave collisions with l = 0 need to be considered. This s-wave
entrance channel cannot be left (by interconversion of internal angular momentum) because
the scattering potential is assumed to be spherically symmetric. Here, we explicitly exclude
effects due to dipole-dipole interaction1 which is anisotropic. Under these conditions, the
conservation of total angular momentum (external and internal) stipulates the conservation
of spin alone. Two indistinguishable bosonic atoms with spin F = 1 can couple to a
combined spin of either F = 2 or F = 0. Each of these channels is associated with a
scattering length aF . Therefore, the interaction takes the form

V = a0P0 + a2P2 (3.2)

where PF are projectors onto the coupled spin, i.e. PF = ∑F
m=−F |F,m〉 〈F,m|.

Analogy to solid state magnetism

To gain insight into the microscopic interaction between two spins, we express the in-
teraction potential (Equation 3.2) in terms of the two individual spins F1 and F2. For
this we note that the operator F1 · F2 has eigenvalue 1 if the two spins F1 and F2 are
coupled to F = 2 and eigenvalue −2 correspondingly for F = 0. Therefore, we have
F1 · F2 = P2 − 2P0. Together with the resolution of identity the interaction potential can
then be written as

V = c0 + c1F1 · F2 . (3.3)

Here the coefficient c0 quantifies the spin-independent interactions. In terms of s-wave
scattering lengths the coefficients are given by c0 ∝ a0 + 2a2 and c1 ∝ a2 − a0. Therefore,
the spin-dependent interaction is mediated by the scattering length difference between
singlet and triplet channel. The above scattering potential emphasises that the underlying
interaction is of pairwise nature and has the form of (anti-) ferromagnetic spin exchange.
For c1 < 0 aligned spins are favoured (ferromagnetic) while for c1 > 0 energy is minimized
for an antiparallel spin configuration [129]. While this resembles the interaction in solid
state magnetism, one has to keep in mind that the indistinguishability of identical particles
is crucial. In a Bose-Einstein condensate the particles, being delocalized, are described by
a spatial mode. In solid state physics one often considers the interactions among spins
localized to specific lattice sites.

1We estimate the importance of dipolar interactions by comparison to the collisional interactions. For
this purpose we assume a uniform particle density and integrate both contributions over a sphere. The
ratio of dipolar energy Ed to collisional energy Es reads Ed/Es = µ0µ

2m/12πa~2 [126]. Here µ0 denotes
the vacuum permeability, µ is the magnetic moment, m the mass and a the s-wave scattering length. For
the background scattering length of Rubidium-87 the ratio is 2%�. Having said that, spin exchange is
driven by smaller scattering length differences such that the weak dipolar effects can become important
[127, 128]. However, in our case the relevant scattering length amounts to 6 Bohr radii such that the ratio
is 2% which we neglect.
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3.3. Hamiltonian

3.3 Hamiltonian
The projection operators onto the coupled spin (Equation 3.2) can be expressed in terms
of the individual spin components. We call N↑ the population of state |↑〉 with a similar
notation for the other states. We assume a fixed number of N atoms in total. Considering
only the spin-dependent terms as quantified by c1 we obtain the Hamiltonian

H = HSCC +Hel
HSCC = ~g(â0â0â

†
↓â
†
↑ + h.c.)

Hel = ~g(N0 − 1/2)(N↑ +N↓)
(3.4)

Here, HSCC describes the spin exchange process by which a pair of atoms in the pump mode
|0〉 scatters coherently into the side modes, i.e. |↑〉 and |↓〉, such that the magnetization
(N↑ − N↓) remains conserved. As a coherent process the reversible effect of two atoms
scattering into the pump mode is allowed on equal footing. We call g the microscopic
nonlinear coupling strength. It quantifies the rate at which atoms undergo these spin-
changing collisions. In terms of s-wave scattering lengths it is given by g ∝ c1. Additionally,
this nonlinear coupling strength depends on the overlap of the external wave function
g ∝ ∫d3x|φ(x)|4, as defined above in Equation 3.1.

Generally, Hamiltonian terms of the form ∆E(N↑ + N↓) = −∆EN0 describe energy
shifts of the pump mode by ∆E with respect to the side modes. The previous equality
holds because a constant term – in this case ∆EN – can be added or subtracted from the
Hamiltonian. The second part, Hel, is of this kind and describe collisional energy shifts.
Notably, the size of these shifts is given by ~g, the same quantity which characterizes the
spin exchange coupling strength.

Altogether, these two terms result directly from the scattering potential, Equation 3.2.
Additionally, energy shifts arise due to externally applied fields. Most importantly, we have
to consider magnetic bias fields and the thereby caused Zeeman shifts. For alkali atoms
these energy shifts are described by the Breit-Rabi formula. Its predominant contribution
is linear in magnetic field strength and shifts the levels proportional to their magnetic
quantum number, ∆E ∝ m. It therefore treats the two m = ±1 asymmetrically: while
one of the levels is raised in energy, the other is lowered by the same amount. Level shifts
of this kind play no rôle for the spin exchange dynamics because both levels are populated
in a pairwise fashion. Therefore, the Larmor phase is inconsequential for the ensuing
dynamics. However, expanding the Breit-Rabi formula to higher orders in magnetic field
strength B yields the quadratic Zeeman shift. To capture this energy shift we supplement
the Hamiltonian with the following term HB = ~qBB2(N↑ + N↓) where qB quantifies
the strength of the quadratic shifts. Any additional level shifts are included in a similar
manner. In particular we use dispersive microwave dressing which predominantly shifts
the m = 0 level in energy. As such it acts in a similar fashion as the applied magnetic bias
field. We describe the total energy shift by

Hq = −~q(N↑ +N↓) (3.5)

and call q the spin exchange detuning. It incorporates all external level shifts. Since the
Hamiltonian cannot build up or change magnetization, we restrict our discussion to the
case of vanishing magnetization throughout the unitary evolution. This is appropriate
because in our experiments the initial populations of m = ±1 are carefully emptied.
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Hamiltonian in collective spin representation
The Hamiltonian H can be expressed in terms of the spin-1 operators. Although these
operators have been introduced before for a single particle they retain their form for
many particles. This is a consequence of the indistinguishability of identical Bosons (see
section C.1). Within this Schwinger Boson representation, the spin operators describe a
collective spin made up by N individual spin-1 particles: for instance, the collective spin
operator Sx is obtained by summing up all single-particle spin operators of each individual
particle. Therefore the resulting spin has a size of S = 0 . . . N . Similar expressions hold
for the alignment operators F̂ and Ĝ [61].

Taking the following combinations of collective spin operators we recognize the dis-
tinctive terms of the spin exchange Hamiltonian,

F 2
x +G2

y ≡ S2
x + S2

y = 1
2(â0â0â

†
↓â
†
↑ + h.c. + 2N0(N↑ +N↓) +N0 +N) (3.6)

and
Fz +Gz = N0 − (N↑ +N↓)/2 . (3.7)

The first describes the spin exchange process and the associated collisional shifts, while
the latter contains the detuning terms due to externally applied fields, e.g. a magnetic
bias field. Therefore the Hamiltonian can be cast into

H/2~ = g
(
F̂ 2
x + Ĝ2

y

)
+ q

3
(
F̂z + Ĝz

)
. (3.8)

Rearranging the terms such that the operators belonging to one common SU(2) space
stand together we arrive at

H/2~ =
(
gF̂ 2

x + q

3 F̂z
)

+
(
gĜ2

y + q

3Ĝz

)
. (3.9)

This can be understood as nonlinear dynamics within the SU(2) space of {Fx, Fy, Fz} and
similar dynamics in the space of {Gx, Gy, Gz}. These two SU(2) spaces are connected by
a fixed Larmor phase rotation such that it suffices to discuss the dynamics in one of the
two spaces [64, 130]. In the following we thus treat the following Hamiltonian

H/2~ = gF̂ 2
x + q

3 F̂z . (3.10)

When deriving the Hamiltonian we assumed a vanishing magnetization and neglected
terms of the form (N↑−N↓). As a side remark: when keeping these terms, the Hamiltonian
in absence of any external fields can be written in the elegant form of H/2~ = gŜ2. Such
a formulation is beneficial for discussing the quantum mechanical ground state [131]: for
ferromagnetic interactions g > 0 the ground state has maximal spin length, S = N ; all
2N + 1 sub states are degenerate. In contrast, for antiferromagnetic interactions g < 0 the
ground state is unique and has S = 0. Here pairs of atoms (for N even) form spin singlets
[61, 132].

3.4 Mean-field description and classical phase space
Before discussing the Hamiltonian and its peculiarities in a quantum mechanical framework
we first present its classical approximation. For this we consider the mean-field limit which
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Figure 3.1: Classical phase space of the spin operators F . Mean-field trajectories for
different ratios between spin exchange detuning q and effective coupling strength gN (from top to
bottom). The right column shows the dynamics in the cylindrical phase space spanned by N0/N
and the spinor phase ϕ (see Equation 3.12). It is a projection of the Bloch sphere representation
with N0 = N and N0 = 0 corresponding to the north and south pole, respectively. For spin
exchange detuning q = 0 (top row) the mean-field trajectories are confined (oscillatory) orbits.
In contrast, for a spin exchange detuning exceeding q = 2gN , only running phase solutions
exist as exemplified in the row at the bottom. At this point, the phase space gets bifurcated
for smaller detuning. Henceforth, a separatrix (thick line) divides the running phase solutions
from oscillatory trajectories. At q = gN the branches of the separatrix encloses an angle of 90◦
(middle row).
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Figure 3.2: Structural stability of the phase space. a) The mean-field phase space is
shown for two different atom numbers, N = 400 (blue) and N = 350 (red), respectively with
otherwise identical parameters. Each phase space is drawn on the correspondingly sized Bloch
sphere. To directly compare both phase space portraits the Bloch spheres are rescaled to a
common size in panel b). While the angle enclosed by the separatrix (bold) changes, the position
of the hyperbolic fixed point remains unaltered at the corresponding north pole.

is valid for large particle numbers, N →∞ and all of them share an identical single-particle
state. Then no quantum mechanical correlations among them can exist. Additionally, the
quantum nature of any single particle, which might for instance show up in fluctuations,
becomes unimportant due to the infinitely large ensemble. Therefore, the mean-field
limit essentially amounts to a classical approximation. Formally we substitute the mode
operators by complex numbers. Motivated by the previous discussion we anticipate the
importance of the spinor phase and only consider states with vanishing magnetization
such that the Larmor phase is rendered unimportant:

â↑ →
√
N↑ =

√
(N −N0)/2

â0 →
√
N0 exp iϕ (3.11)

â↓ →
√
N↓ =

√
(N −N0)/2 .

Conventionally, the phase space is expressed in the cylindrically symmetric space of N0/N
and spinor phase ϕ. Then, the mean-field energy per particle reads

E

N
= ~gN

N0

N

(
1− N0

N

)
(cosϕ+ 1) + ~q

(
1− N0

N

)
. (3.12)

The shape of the energy landscape depends on the relative strength of the spin exchange
detuning q compared to the effective nonlinear coupling strength given by gN . Phase space
portraits for different choices of parameters are shown in the right column of Figure 3.1.
For parameters 0 < q < 2gN the phase space portrait shows running phase solutions as
well as confined orbits. Both structurally different regions are divided by a separatrix
which is indicated as the bold trajectory. For a vanishing spin exchange detuning q = 0
only confined orbits occur as shown at the top. In contrast, for a detuning exceeding
q > 2gN as depicted at the bottom only running (spinor) phase trajectories exist.

The two variables N0/N and spinor phase ϕ are given by projections of the Bloch
sphere representation of F̂ . In the language of spins the substitutions of Equation 3.11
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amount to

F → N




sinϑ cosϕ
sinϑ sinϕ

cosϑ


 (3.13)

where cosϑ = N0/N parametrizes the fractional population in the pump mode. The
mean-field solutions in terms of these spin variables are shown on a Bloch sphere in the
first two columns of Figure 3.1. In this representation the angle ϑ corresponds to the
polar angle while the spinor phase ϕ defines the azimuthal position on the Bloch sphere.
Evidently, the cylindrical phase space, Equation 3.12 is a projection of this Bloch sphere
representation.

At large spin exchange detuning q > 2gN as shown exemplary at the bottom, the
north and south pole of the Bloch sphere host a (neutrally) stable fixed point. These two
fixed points are enclosed by phase running trajectories. This structure of the phase space
changes once the spin exchange detuning is reduced. At q = 2gN the system undergoes
a (supercritical) pitchfork bifurcation. Thereby, the formerly stable fixed point located
at the Bloch sphere’s north pole splits up into two stable and one unstable fixed point.
The latter remains at the north pole while the two stable fixed points as enclosed by the
separatrix move towards the equatorial plane which they asymptotically reach at vanishing
detuning q → 0. The unstable fixed point at the north pole corresponds to a saddle
point (hyperbolic fixed point) at which the stable and unstable manifold of the separatrix
meet. At q = gN the separatrix’ two branches enclose an angle of 90◦. At this point the
bifurcated phase space is structurally particularly stable.

Let us investigate this structural stability when considering different total atom numbers.
Such considerations are important in view of particle loss which is inevitable in experimental
realizations. Figure 3.2a) shows the classical phase space for total atom numbers ofN = 400
and N = 350 in blue and red, respectively. Here the phase space of N = 400 atoms
corresponds to the parameter setting q = gN . As the atom number is reduced the
associated Bloch sphere shrinks. For clarification, panel b) shows both phase spaces on a
fixed-size Bloch sphere. While the angle enclosed by the separatrix changes, the position of
the hyperbolic fixed point remains at the north pole. Therefore, starting at parameters for
which q ≈ gN mild particle loss will not lead to structural changes of the classical phase
space. Of course such an approach to particle loss is greatly oversimplified. However, it
highlights two aspects: the topological structure is described by a single parameter, q/gN ,
and, within the bifurcated phase space the position of the hyperbolic fixed point does not
change. The latter point is particularly important for the experiments reported on in this
thesis. All experiments start with only the m = 0 spin state populated which corresponds
to the Bloch sphere’s north pole. Such a state can experimentally be generated reliably.
In the associated classical system this amounts to a preparation precisely onto an unstable
fixed point.

A bifurcation occurring in the classical dynamics is often connected to a quantum
phase transition of the corresponding Hamiltonian. One should keep in mind that while
within mean-field theory the bifurcated regime extends from q = 0 . . . 2gN a quantum
calculation (under conserved magnetization) reveals that the region extends symmetrically,
−2gN < q < 2gN with a quantum phase transition at the respective edge [133, 134].
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Figure 3.3: Constitution of the phase space as the interplay of rotation and shear-
ing dynamics. Expressing the Hamiltonian in terms of spin operators allows for an elegant
interpretations of the dynamics on the Bloch-sphere. The spin operators are the generators of
rotations. Therefore the term F̂z describe rotations about the z−axis. Terms akin to F 2

x yield
a shearing which can be understood as a rotation with an angular velocity depending on the
projection of Fx itself. The combination of these two operators generates the dynamics shown on
the right Bloch sphere.

Structure of the phase space
The topological structure of the phase space is a consequence of the interplay between the
two constituent terms F̂z and F̂ 2

x , respectively. Such a combination of spin operators is often
referred to as Lipkin-Meshkov-Glick Hamiltonian [135]. The action of both operators can
intuitively be understood: very much like the momentum operator generates translations,
angular momentum operators are generators of rotation. Therefore, when viewed on the
Bloch sphere the term qF̂z describes a rotation about the z-axis with angular velocity
given by q. This is illustrated in Figure 3.3. Similarly, the action of F̂ 2

x can be understood
as a rotation about the x-axis with an angular velocity given by F̂x itself. Thus, the
angular velocity increases when leaving the plane x = 0. Additionally the sense of rotation
is different on the two hemispheres with x < 0 and x > 0, respectively as indicated by the
arrows in Figure 3.3.

Therefore, the spin exchange detuning q drives oscillations between F̂x ≡ Ŝx (orient-
ation) and F̂y (alignment). In contrast the quadratic spin term F̂ 2

x is responsible for
population transfer among the three involved modes.

3.5 Fluctuations
We can go one step further than the mean-field approximation by additionally considering
quantum mechanical fluctuations. For this discussion we consider the Hamiltonian in
terms of collective spin operators. By virtue of their angular momentum nature these
operators satisfy the SU(2) commutator relations which in turn imposes a Heisenberg
uncertainty relation for the individual spin components, e.g.

(∆F̂x)2(∆F̂y)2 > | 〈F̂z〉 |2 (3.14)

Therefore there is an inherent uncertainty associated to the spin as well as the alignment
operators. Starting point of all experiments is a state in which all N atoms are prepared
in m = 0. As stated above, such a state has 〈F̂z〉 = N (and similarly 〈Ĝz〉 = N) as it is
fully aligned. In the absence of quantum mechanical correlations among the individual
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atoms the uncertainty imposed by Equation 3.14 is shared equally between Fx and Fy.
Therefore, (∆Fx)2 = (∆Fy)2 = N .

In a microscopic point of view these fluctuation can be traced back to the quantum
fluctuations of a single spin-1. For uncorrelated particles the variances of these individual
spins add up to give the total uncertainty of the collective spin. Since a single spin-1
has uncertainty 1 the uncertainty of the collective spin is

√
N . However, one has to

keep in mind that the associated Bloch sphere has a radius of size N . Therefore the
relative fluctuations become smaller ∝ 1/

√
N as more particles constitute the spin. In the

mean-field limit these fluctuations vanish.
Equation 3.14 is often compared to the canonical uncertainty relation for one individual

spin. In this case, the right hand side reads ~/4. Therefore, one might argue that the
collective spin system features an effective Planck constant that depends on the number of
atoms, ~eff =

√
2/N . Then the mean-field limit formally corresponds to ~eff = 0 which is

the limiting case that is routinely used to recover the laws of classical mechanics out of
the more fundamental laws of quantum physics.

3.6 The Wigner function as a quasiprobability distri-
bution

To simulate and visualize the quantum dynamics we make use of phase space methods
[136]. A central object is the representation of a state using the Wigner quasiprobability
function [137]. This is the generalization of classical probability distributions into the
realm of quantum mechanics. For simplicity we first consider the single mode case, before
discussing the multimode extension in the next section. The mode is described by creation
operator â†. Starting point is the definition of a characteristic function; these functions are
widely used in stochastics as they provide means to generate the moments of a probability
distribution. The moments are then obtained as derivatives of the characteristic function.
In quantum mechanics a characteristic function χW can be defined as the expectation
value of the mode’s displacement operator, i.e.

χW (λ, λ∗) = 〈eλâ†−λ∗â〉 . (3.15)

Average values are then obtained formally by taking derivatives with respect to λ and λ∗,
respectively, which are treated independently

〈âk(â†)l〉W =
(

d
dλ

)k ( d
dλ∗

)l
χW (λ, λ∗)

∣∣∣∣∣∣
λ→0

. (3.16)

Here 〈·〉W denotes the expectation value of the symmetrized combination of destruction and
creation operators. This symmetrisation occurs because the exponential of the characteristic
function contains two non commuting operators. Then their ordering is important. The
single exponential yields the symmetric ordering of â and â†. Therefore the expectation
values generated by χW are symmetrically ordered. For example 〈â†â〉W = 〈â†â+ ââ†〉 /2.

The Wigner quasiprobability function is defined as the Fourier transform of the
symmetrically ordered characteristic function χW ,

W (α, α∗) = 1
π2

∫
d2λ eλ∗α−λα∗χW (λ, λ∗) . (3.17)
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Figure 3.4: Illustration of the simulation method within the truncated Wigner
approximation. To simulate the quantum dynamics an initial Wigner function is sampled in
phase space (indicated by the red ellipse). Each of these initial conditions is propagated in time
using the classical equations of motion as shown by the black arrows. The resulting distribution
coincides with the Wigner function. Although the time evolution of each trajectory is classical,
beyond mean-field effects are included by the initial stochastic sampling. However, decisively
nonclassical effects leading to negativities are not captured and the method is restricted to
positive Wigner functions throughout the evolution.

Symmetrically ordered operator averages are then given by the phase space averages over
the Wigner function

〈âk(â†)l〉W =
∫

d2ααk(α∗)lW (α, α∗) . (3.18)

Another widely used characteristic function is the one corresponding to antinormal
ordering. The difference between the symmetrically ordered characteristic function χW and
the antinormal ordered one, i.e. χa = 〈e−λ∗âeλâ†〉 is given by χa = e−|λ|2/2χW . The Fourier
transform of the antinormal ordered characteristic function gives the often employed
Husimi representation. Therefore, the Husimi function can be obtained from the Wigner
function by convolution with the Gaussian e−|λ|2/2.

3.7 Simulation method based on the Wigner function
We simulate the spin exchange dynamics semi-classically using phase space methods which
make use of the Wigner representation [136]. At the core of this simulation method
lies the correspondence between the action of mode operators and derivatives of the
corresponding Wigner function. While this correspondence is exact, the resulting set
of differential equations is often only tractable when applying the so-called truncated
Wigner approximation. This restricts the method to Wigner functions that remain positive
throughout the evolution. Vigorous nonclassical effects that lead to negativities of the
associated Wigner function are therefore not captured.

From a practical point of view, the procedure is surprisingly simple and intuitive: the
initial Wigner function is stochastically sampled; each sample is then propagated in time
according to the classical mean-field trajectories and finally averaged to give the Wigner
function at a later point in time. While the time evolution proceeds according to the
deterministic classical equations of motion, quantum fluctuations are effectively taken into
account by the uncertainty of the initial state [136, 138].
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We now summarise the procedure in more detail. The von Neumann equation gov-
erns an operator’s time evolution. For a density matrix ρ it reads i~ dρ/dt = [H, ρ]
which can be reexpressed in terms of the Wigner function. In this framework the com-
mutator terms like Hρ and ρH correspond to derivatives of the corresponding Wigner
function. For a single mode with annihilation operator â we have the correspondence of
âρ↔

(
α + 1

2
d

dα∗
)
W (α, α∗). In this manner, Hamiltonians bilinear in â and â† lead to a

differential equation with first and second derivatives. As such they are similar to a drift
and diffusion equation. If the initial Wigner function is positive, it remains so during the
entire evolution. This, however, only holds in the Gaussian regime, i.e. for Hamiltonians
bilinear in mode operators.

The spin exchange Hamiltonian is quartic in mode operators which gives rise to a third
derivative in the differential equation. The truncated Wigner approximation consists in
neglecting this third derivative. Within this approximation time evolution is governed by
the deterministic trajectories according to mean-field. Effects that go beyond mean-field
are captured by stochastically sampling the initial condition, i.e. the initial Wigner
function. This is illustrated in Figure 3.4. The experiments reported on in this thesis
start with a single occupied spin component: all N atoms populate the |0〉 component.
The Wigner function of each spin state is a Gaussian with width reflecting the quantum
fluctuations – we detail the description in the space of quadrature at a later point. Our
initial condition is constructed in the following manner; to sample the initial state, for
each run and spin component, we draw phases β and γ from a normal distribution. The
initial state for either mode |i〉 is then given by αi =

√
Ni + 1

2(β + iγ) where Ni is the
population of the mode in question (N0 = N and N↑ = N↓ = 0). After time propagation
we calculate phase space averages of the desired observable. As detailed above, these
phase space averages correspond to symmetrically ordered operators. The average mode
population therefore reads 〈N̂i〉 = 〈α∗iαi〉 − 1/2 while the corresponding variance is given
by (∆N̂i)2 = (∆α∗iαi)2 − 1/4.

This procedure is often summarised in the following simplified terms: to take into
account quantum effects, initially half a quantum of noise is added to each mode which –
after classical time evolution – is again subtracted from the final result. One has to keep in
mind though that single trajectories do not necessarily resemble experimental realizations
[139].

This method’s region of validity cannot easily be assessed in general. In the case
of spin exchange, the authors of reference [140] compared the results obtained via the
truncated Wigner approximation to solving the exact quantum dynamics. For sufficiently
short durations, the predominant process is scattering from the highly populated pump
mode into the sparsely populated side modes. Only for later times the pump mode might
be emptied and repopulated by backscattering from the then increasingly populated side
modes. Up to this point in time the truncated Wigner approximation seems to remains
valid. All experiments reported on in this thesis are restricted to such short durations
and we routinely use numerical simulations that are based on the truncated Wigner
approximation.

3.8 Visualisation of the quantum dynamics
In this section we use the Wigner representation to illustrate the quantum dynamics on
the Bloch sphere of spin F . For this, the above single mode treatment of the Wigner
function is extended to three levels by using vectors α = (α↑, α0, α↓)t and similarly for
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λ = (λ↑, λ0, λ↓)t. Finally, we transform the phase space variables α into spin variables,
e.g. Fx = α0(α↑ + α↓) + c.c..

Figure 3.5 shows the corresponding Wigner functions for four different durations
under spin exchange. For this purpose we simulate the dynamics with the experimentally
extracted parameters. While the experimental characterisation of spin exchange is the
subject of a later chapter, here we merely state that the parameters amount to a coupling
strength of gN = 2π × 22Hz and a spin exchange detuning of q = 2π × 24Hz which
corresponds to q = 1.1gN . The initial state contains N = 400 atoms that are prepared
in state |0〉. The associated Wigner function is an isotropic Gaussian centred at the
Bloch sphere’s north pole. Subsequent nonlinear evolution deforms the state in a fashion
which can intuitively be understood by following the mean-field solutions. These classical
trajectories are drawn as grey lines. As the north pole corresponds to a hyperbolic
fixed point, the state’s centre of gravity remains unchanged during the ensuing nonlinear
evolution. However, as the state’s quantum uncertainty extends into the surrounding space,
it is dynamically redistributed. For short durations this yields a squeezed state which is
shown in the respective panels for 5 and 10ms of spin exchange [64]. Clearly, the width
along the squeezed direction is narrower than the extension of the original isotropic state.
In a semiclassical description this redistribution is a consequence of the compression along
the converging manifold of the separatrix while at the same time the state is elongated
along its diverging branch. For longer durations the state progressively wraps around the
Bloch sphere as expected from the infinity-sign shaped mean-field trajectories [141]. The
experiments reported in this thesis involve such extended states up to evolution times of
≈ 15ms as exemplified in the last panel.

3.9 Mexican hat analogy of increased spin fluctuations
Complementary, to the above Bloch sphere description based on the orientation and
alignment operators belonging to ˆ̂

F , the spin exchange dynamics can be visualized in
the space of spin S alone. In this space there is no oriented spin since the mean spin
length vanishes 〈Ŝ〉 = 0. This corresponds to a state lying at the centre of the associated
Bloch sphere. The spin exchange dynamics becomes manifest in the size of fluctuations.
As shown for the oriented state these fluctuations take the form of a disc as depicted in
Figure 2.3.

During spin exchange, the radius of this disc increases which is detailed in Figure 3.6.
Here panel a) shows an accounting of the forces that are exerted by, both, the nonlinear
term F̂ 2

x ≡ Ŝ2
x (purple), and the rotation F̂z (green) when plotted against Ŝx. The resulting

force is cubic (black line). This corresponds to a double-well potential that is drawn in
panel b). When preparing a wave packet (blue) in this double-well potential its width
increases (red) as a result of dispersion while its average positions stays ideally fixed at
〈Ŝx〉 = 0. Because of the symmetry with respect to Larmor phase rotations this simple
picture has to be generalized to the rotationally symmetric case (panel c). Dynamics under
nonlinear spin exchange is then similar to preparing a narrow wave packet on the unstable
fixed point of a Mexican hat-like potential. In a Bloch sphere representation the spin
fluctuations take the shape of a disc whose diameter grows as nonlinear dynamics proceeds
(panel d). The Mexican hat-like potential is prototypical for spontaneous symmetry
breaking [142], it supports two excitations [143] which has been studied experimentally in
reference [144].
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Figure 3.5: Simulated Wigner functions for spin exchange. The initial state in which
all N = 400 atoms are prepared in the |0〉 state has an isotropically extending Wigner function
centred at the Bloch sphere’s north pole (panel top left). The grey lines indicate the mean-field
trajectories. Tracing these classical solution allows for an intuitive explanation of the ensuing
dynamics: as the north pole corresponds to a hyperbolic fixed point the state’s centre of gravity
remains unchanged. However, the fluctuations extend into the surrounding area and are thus
compressed or enlarged as described by the converging or diverging manifold of the separatrix.
Consequently, after allowing for 5ms of spin exchange a squeezed state emerges. For longer
evolution times (t = 10ms) this process is even more pronounced before the state eventually
experiences the curvature of the underlying Bloch sphere. At evolution times exceeding t > 15ms
the state starts to bend around the sphere.
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Figure 3.6: Mexican hat potential analogy to spin exchange. a) The forces arising
due to the shearing interaction (purple) and rotation (green) are shown along the axis of Sx.
Subtraction of both contributions results in the solid black line. b) This interplay between
shearing and rotation leads to a double-well potential. The uncorrelated initial state can be
imagined as a narrow wave packet that dynamically expands in the potential of spin exchange.
c) As a consequence of the inconsequential Larmor phase the potential is rotationally symmetric
in the space of Sx and Sy. The resulting potential therefore resembles a Mexican hat. d) Within
a Bloch sphere representation the initial state corresponds to the blue disc with diameter

√
N .

Under spin exchange this diameter gets enlarged. Since the magnetization vanishes throughout
the evolution, the disc has no corresponding extension in z-direction.

3.10 Comparison to spin squeezing of a two-level sys-
tem

The squeezing of spin-1 objects as described above occurs in the space spanned by both,
orientation (spin) and alignment (quadrupole) operators [145]. As such it is markedly
different from the corresponding squeezing exhibited in two-level systems. In this section
we first review such two-level spin squeezing, before we compare its characteristics to the
present spin-1 situation.

Atomic spin squeezing was first proposed for two-level systems [146, 147] and later
generalized to larger spins [145]. For two-level systems, one studies the fluctuations of a
collective spin which has total size N/2 as it is formed by N indistinguishable spin-1/2
objects. The constituent spin-1/2 can be made up by any two levels – often called a
pseudo spin-system. The necessary nonlinear interactions have been engineered in a variety
of experimental platforms. For ultracold atoms, two methods have proven successful:
nonlinearities mediated via light matter interaction [148], or via collisional interactions of
the atoms themselves [122]. The first uses the dispersive energy shift exerted on a two-level
atom by the dipole force of off-resonant light. In spin language such energy shifts can be
captured by a term akin to Ĵz. By engineering an appropriate feedback mechanism the
strength of this rotation term can be made to depend on Ĵz itself [149, 150]. For this a high
finesse cavity is used and the nonlinear spin term of the form χĴ2

z arises where χ describes
the nonlinear coupling strength. The method building on collisional interactions relies
on controlling the intra- or inter-component scattering rates to tune χ. These collisional
rates can be manipulated by employing magnetic Feshbach resonances or by tuning the
spatial overlap of both atomic spin states [151–153]. Either method has been used for spin
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squeezing in mesoscopic Rubidium Bose-Einstein condensates.
Additional to these spin-squeezing techniques that deterministically produce a squeezed

state at an a priori known position in phase space, methods exist for so-called conditional
spin squeezing. Such conditional spin squeezing arises in measurement based protocols,
i.e. when performing quantum nondemolition measurements. This procedure is called
conditional because it depends on the individual measurement outcome. Only by using
feedback on the measurement outcome deterministic spin squeezing can be generated [154].
The nondemolition measurements can be performed by using the dispersive phase shift
of off-resonant light when travelling through an atom cloud [155]. To enhance the effect
a high finesse optical cavity can be used [156–158]. Similarly the polarization rotation
of light via the Faraday effect can be employed [159]. In fact the strongest atomic spin
squeezing which amounts to 20 dB was achieved using a combination of both, conditional
and unconditional squeezing techniques that use a shearing interaction [116].

All these techniques lead to an effective Hamiltonian that contains a single squared
spin operator. Therefore, the squeezing is generated under shearing dynamics. By adding
linear coupling to these systems – characterized through its strength Ω and detuning δ – a
Hamiltonian similar to the spin-1 system can be engineered: the interplay between the
shearing interaction and the rotation yields a Hamiltonian of the form χĴ2

z − ΩĴx + δĴz
[160, 161]. If the linear coupling is resonant (δ = 0) this system structurally resembles
the spin exchange Hamiltonian (Equation 3.9) and thus leads to similar dynamics, in
particular to squeezing. This method was realized in Bose-Einstein condensates where it
was coined twist-and-turn spin squeezing [162]. Alternatively, a discretized way of repeated
squeezing with subsequent rotation has been suggested [163]. For squeezing within optical
cavities similar mechanisms are proposed [117]. Finally, in nuclear magnetic resonance,
the interaction of the spin-quadrupole with intrinsic electric field gradients generate a
similar Hamiltonian combining shearing interaction and linear coupling [164, 165].

For (pseudo) spin-1/2 systems spin squeezing occurs within the space of the collective
spin Ĵ . As defined in Equation 2.1 these are single-particle operators. Therefore each
point of the associated Bloch sphere representing the spin J can be reached by routinely
employed single-particle operations, e.g. linear coupling of the two constituent levels. For
the above mentioned experiments this is typically achieved by rf-pulses which perform
single-particle spin rotations.

In contrast, the squeezing of a spin-1 system occurs in the SU(2) space spanned
by operators F̂ (or equivalently Ĝ). Here, only the F̂x ≡ Ŝx component is a single-
particle operator. The operator F̂y describes particle pairs. Therefore, the state space
corresponding to the Bloch sphere of operators F̂ cannot be accessed via linear coupling.
To experimentally explore this state space different control mechanism which involve
particle-interactions are needed as demonstrated in reference [166]. Albeit, this state space
which exhibits squeezing lacks the well-established control techniques, the pair character
leads to an additional symmetry. The structural stability of the classical phase can be
traced back to this symmetry; compared to the spin-1/2 Hamiltonian shown above, this
symmetry enforces δ = 0.
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Concepts of time reversal
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Chapter 4

Spin exchange as an amplifier

In this chapter we describe how spin exchange can be employed as an amplifier. The
nonlinear readout scheme is based upon such elementary amplification processes. In
principle, one heavily populated spin component acts as a reservoir which enables the
amplification of the two remaining. We detail which conditions have to be met in order to
maintain and control the amplification process. Comprehensive control of both, the gain
of the amplifier as well as the sign of the associated nonlinearity are crucial for realising
the quantum-enhanced interferometry protocol.

First, we focus on the central approximation under which spin exchange transforms
into the well-known Hamiltonian of parametric amplification. Being extensively studied
especially in quantum optics we will draw on photonic analogues. Special attention is paid
to the characteristic spin populations that arise during spin exchange. This description of
spin exchange in terms of individual mode populations is connected to the complementary
view of collective spins as developed in the previous section.

4.1 Undepleted pump approximation
The description of spin exchange in terms of collective spins is particularly enlightening as
it uncovers the underlying rotational SU(2) symmetry. We will come back to this elegant
representation at a later point. Now, we consider the spin exchange process in terms of the
individual mode populations (Equation 3.4): the Hamiltonian consists of three parts: the
first, HSCC is responsible for the population transfer during the actual scattering process.
This scattering is intrinsically connected to collisional shifts as embedded in Hel. Finally,
exogenous energy shifts are described by Hq.

If operated within the appropriate limits – which will be the subject of this section –
the latter two contributions can be made to compensate each other. The ensuing dynamics
is then fully governed by

HSCC = ~g â0â0â
†
↑â
†
↓ + h.c. (4.1)

As initial state we consider a large population residing in mode |0〉 and empty side
modes. For sufficiently short evolution times only few atoms are scattered out of the
largely populated pump mode. Then the undepleted pump approximation applies by which
the operator â0 is approximated by a complex number, â0 →

√
N0 effectively treating

the pump mode classically. The Hamiltonian HSCC, from initially being quartic in mode
operators then simplifies to the quadratic one describing parametric amplification,

HPA = ~κ â†↑â
†
↓ + h.c. (4.2)
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Figure 4.1: Parametric amplification (PA) in quantum optics. By means of a nonlinear
crystal photons of a strong pump beam are converted into signal and idler, respectively. Both
of these modes are initially in the vacuum state (indicated by dashed circles), as shown by
the quadrature diagrams (left). After parametric amplification (PA) both modes show excess
fluctuations (right). The quantum mechanical correlations generated in the pairwise process
show up in the two-mode quadratures as indicated in purple: a (vacuum) squeezed state emerges.

Here κ = gN0 quantifies the effective nonlinear coupling strength. It builds on the
microscopic nonlinearity g and is enlarged by the number of pump atoms. Note, that a
similar parameter proved already decisive in the mean-field treatment. In the undepleted
pump approximation the pump mode merely provides an unlimited particle reservoir for
parametric amplification of the side modes. In contrast to the mean-field approximation,
the two side modes are treated quantum mechanically.

The action of any Hamiltonian that is at most quadratic in mode operators can be
captured by linear mode transformations [77, 167]. For the parametric amplification
Hamiltonian (Equation 4.2) they read


a↑
a†↓


→

(
cosh κt sinh κt
sinh κt cosh κt

)
a↑
a†↓


 (4.3)

where t denotes the evolution time under spin exchange.
Parametric amplification in the quantum regime was first realized with photons and

evolved quickly into an indispensable tool of quantum optics. First we give a short
accounting of this process in the realm of quantum optics and detail how the emerging
entangled state is characterized experimentally. The analogy between the atomic and
photonic experiments will then be tightened by giving the appropriate formal limiting
cases.

4.2 Parametric amplification in quantum optics
Parametric amplification is the textbook example of a nonlinear process that generates
an entangled state. Most prominently, it is realized in quantum optics by the process of
parametric down conversion. Here, mediated by a nonlinear crystal a strong coherent
pump beam is converted into signal and idler beam. The resulting state, called two-mode
squeezed vacuum, is the archetype of continuous variable entanglement.

In quantum optics a mode is usually characterized by its quadratures, e.g. X↑ =
(â↑+â†↑)/

√
2 and Y↑ = (â†↑−â↑)i/

√
2 and similarly for mode |↓〉. They fulfil the commutator

relation [X↑, Y↑] = i and therefore have to satisfy a mutual uncertainty bound. This so-
called vacuum noise limit is shown as a dashed circle in Figure 4.1 which illustrates the
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characteristics of parametric amplification in the space of these quadratures drawn in
blue and red, respectively. Measurements of the quadratures are a routine task which
involve a technique dubbed balanced homodyne detection: here the mode in question
is overlapped with a strong coherent light field at a beam splitter. Measuring the light
intensity at both exit ports before subtracting them gives I ∝ eiφâ↑ + e−iφâ†↑. By scanning
the phase φ of the coherent light field both quadratures X↑ and Y↑ can successively be
measured. The two-mode squeezed vacuum state is characterized by 〈X↑〉 = 〈Y↑〉 = 0 from
which the vacuum part in its name derives. However, although the mean quadratures
vanish for both modes they exhibit excess fluctuations, which is shown in Figure 4.1. The
quadrature’s variance is connected to the number of photons in that particular mode
(∆X↑)2 = 〈N↑〉+ 1/2.

Due to the pairwise generation process, the large fluctuations of each mode are strongly
correlated. This is witnessed by the so-called two-mode quadratures which are the sum
and difference of the single mode quadratures,

√
2X = X↑ + X↓, and

√
2Y = Y↑ − Y↓.

These two-mode quadratures satisfy a similar uncertainty relation, [X, Y ] = i (dashed
circle). The squeezed and enlarged fluctuations become visible only in the space of these
two-mode quadratures as indicated in purple. The fact that a heavily fluctuating mode
becomes quiet by adding another heavily fluctuating mode is the hallmark of entanglement.
That is: entropy is reduced by taking into account an additional system.

In this context, the substitution of Equation 2.5 introduced merely as a shorthand
is well known in quantum optics and provides an alternative practical path to achieving
two-mode squeezing. To see this, we rewrite the time evolution for parametric amplification
in terms of these operators. One can show that the following identity holds [168],

e−iHPAt/~ = eiκ2
(
s†2+ −s2

+

)
e−iκ2

(
s†2−−s2

−

)
. (4.4)

The two separate exponentials on the right hand side describe single-mode squeezing of
the modes ŝ− and ŝ+, respectively. The operation of obtaining these modes in terms of
the fundamental modes (â↑ and â↓) can be achieved by a beam splitter. Therefore, the
two-mode squeezed vacuum state can also be generated by superimposing two single-mode
squeezed states at a beam splitter. Indeed, this technique is used to generate the highest
reported amount of optical squeezing (15 dB [169]).

Besides the generation of entangled states within the continuous-variable limit [170], the
pairwise nature is routinely exploited for heralded single photon sources [171]. Similarly,
using a cascade of down-conversion stages, heralded photon-pair sources can be realized.
This technique is also employed to generate entangled photon pairs in one of the maximally
entangled Bell states, which are the resource of digital quantum computation [16, 172].
For these applications the parametric down-conversion is operated in a regime for which
the probability of creating twin-Fock states with populations exceeding a single pair of
photons can be neglected.

4.3 Optical phase matching and atomic resonance
condition

For parametric down-conversion in optics care has to be taken to ensure the spatial overlap
of the pump mode with the signal and idler beam, respectively. Above all, a fixed phase
relation between these three beams has to be maintained, the so-called phase matching
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Chapter 4. Spin exchange as an amplifier

condition [173]. However, the emerging signal and idler beams typically have different
frequency or polarizations. Due to dispersion and birefringence, respectively, the locked
phase relation of these two beams with respect to the pump beam will eventually be lost.

An analogous situation is encountered in the atomic case where energy detunings of
the three levels yield phase mismatches: the atomic Hamiltonian contains additional terms
besides the sought-after parametric amplification part. Most importantly, these other
parts include collisional energy shifts which depend on the exact partition of atoms among
the three levels, as described by

Hel = ~g(N0 − 1/2)(N↑ +N↓) . (4.5)

As atoms are dynamically scattered from the pump into the side modes, these energy shifts
become time dependent. In optical terms, such collisional shifts would corresponds to Kerr
nonlinearities. For sufficiently short evolution times these energy shifts can approximately
be compensated [174]. For this the collisional shifts have to match the external detuning

Hq = −~q(N↑ +N↓) . (4.6)

Such a cancellation requires q = g(N0 − 1/2) ≈ gN0 since the pump mode is largely
occupied. When collisional shifts and external detuning exactly cancel each other, the
energy difference driving spinor phase rotations vanishes. Therefore the spinor phase
remains stable which corresponds to the phase matching condition in quantum optics.
Referring to the classical phase space in terms of collective spins this situation corresponds
to the separatrix having perpendicular branches.

4.4 Correspondence between atomic spin squeezing
and optical two-mode squeezing

Within the undepleted pump approximation, the spin squeezing experienced in the space
of F̂x, F̂y, and F̂z (and, identically, also in the other alignment operators belonging to Ĝ)
is equivalent to the two-mode squeezing encountered in quantum optics [122]. Indeed the
curvature of the Bloch sphere describing the spin F̂ is inversely proportional to the number
of atoms which compose this collective spin in the first place. Thus for a sufficiently large
total atom number the phase space can be approximated to be locally flat, which is shown
in Figure 4.2. Furthermore, since only few atoms are scattered out of the pump mode only
a small area of the surrounding phase space is explored.

Within this locally flat phase space the spin operators transform to F̂x →
√
N0(s+ s†)

and F̂y →
√
N0(s−s†), respectively. Formally, this substitution of â0 by a complex number

can also be understood by truncating the Holstein-Primakoff transformation to first order.
Then the spin operators F̂x ∝ X = X↑ + X↓ and F̂y ∝ Y = Y↑ − Y↓ directly transform
into the two-mode quadrature operators from quantum optics. This analogy is shown in
Figure 4.2 panels a) and b). Within the undepleted pump approximation the squeezing
observed in the spin corresponds to the mode populations shown in the histograms of
panel c). These distinctive mode populations are the subject of the next section.
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Figure 4.2: Undepleted pump approximation. a) For a largely populated pump mode
which is only weakly depleted, the sphere can locally be approximated to be flat. Under this
assumption spin exchange generates the two-mode squeezed vacuum state shown in b). The
space spanned by Fx and Fy corresponds to the two-mode quadratures in quantum optics. The
uncorrelated initial state is isotropic (gold) which corresponds to a pure m = 0 population
without any excitations of the side modes m = ±1. The side mode population is shown in the
histograms of panel c). As correlations build up the state is squeezed which is accompanied by a
rising population of the side modes. This side mode population follows a thermal distribution
with a distinctive slowly decaying power-law tail. The average side mode population is indicated
by the dark coloured bin in the respective histogram.
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Figure 4.3: Parametric amplification in quantum and atom optics. In quantum optics
the process of parametric amplification is usually analysed in the space of quadratures. The
individual modes |↑〉 (blue) and |↓〉 (red) exhibit excess thermal-like fluctuations (vacuum noise
indicated as dashed line). The fluctuations are squeezed in the space of the two-mode quadratures
(purple). Spin exchange furnishes an atom optics analogue. In this thesis we investigate this
nonlinear process and the resulting state by measuring the spin populations. These individual
spin populations show thermal-like fluctuations as witnessed by the broad and characteristically
skewed histograms (red, blue). The strong correlations become apparent when considering the
sum and difference spin populations shown in purple, respectively.
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4.5 Population statistics generated by parametric amp-
lification

In this section we discuss the process of parametric amplification in terms of mode
populations. The squeezing observed in the space of spins is directly related to these
populations of the two side modes. On the Bloch sphere, the mode populations of the
two-mode squeezed vacuum correspond to the state’s projection along the z-axis. However,
we note that this direct relationship holds only if the coherences 〈â†↑â↓〉 vanish, which
is fulfilled by the two-mode squeezed vacuum state. Then, the squeezed fluctuations
exhibited in the space of F̂x and F̂y translate in orthogonal direction into atom number
populations and their corresponding variances – these quantities are the main observable
for the experiments described in this thesis.

Generally, spin squeezing requires excitations of particle pairs. Within the parametric
amplification approximation, the average side mode population grows nonlinearly according
to

〈N↑〉 = 〈N↓〉 = sinh2(κt) (4.7)

when the states |↑〉 and |↓〉 are both empty initially. This nonlinear growth of the side
mode population is accompanied by large fluctuations. The underlying atom number
distributions are shown in Figure 4.2c). In these histograms, the corresponding average
value is indicated by the dark coloured bin. Evidently, the distribution is not centred
symmetrically at this average value and extends far into large atom numbers.

Due to the pairwise scattering into the side modes their emerging state can be expressed
by∑∞n=0

√
pn |n〉↑ |n〉↓, i.e. a coherent sum of twin-Fock states. Within the undepleted pump

approximation, the weights take the form of a thermal-like distribution pn = (1− e−β)enβ
in which β−1 stands for an effective temperature given by e−β = tanh2(κt). Expressed in
terms of average mode populations these weights read pn = 〈N↑〉n /(1 + 〈N↑〉)n+1. These
distributions are drawn in Figure 4.2c): as characteristic for a thermal state, the vacuum
state has the highest weight while a characteristically skewed distribution with a slowly
decaying wing towards high atom number populations arises. Often the two-mode squeezed
vacuum state is written as

1
cosh (κt)

∞∑

n=0
tanhn (κt) |n〉↑ |n〉↓ (4.8)

for which the thermal weights are reexpressed as √pn = tanhn (κt)/ cosh (κt).
As a result of the thermal-like distribution, the variance of each mode exhibits super-

Poissonian fluctuations given by (∆N↑)2 = 〈N↑〉 (〈N↑〉 + 1). This follows directly from
noticing that Equation 4.8 has the form of a Schmidt decomposition. Tracing out one
mode leaves the other in the mixed state describing a thermal state, i.e. ∑n pn |n〉 〈n|.
Thermal states have the largest possible entropy for a given mean population, yielding the
characteristic variance stated above [168, 175]. In this sense, the two-mode squeezed vacuum
state can be considered the purification of a thermal state. This thermal-like population
of each side mode is a distinguishing feature of the two-mode squeezed vacuum state, as
shown in Figure 4.2c). Figure 4.3 shows the juxtaposition of parametric amplification
investigated either in the space of quadratures (top) or via mode populations (bottom).
The analogy between parametric down-conversion and spin exchange is shown additionally.
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Chapter 4. Spin exchange as an amplifier

4.6 Amplification of vacuum fluctuations
Performing parametric amplification with initially empty side modes can be understood
as amplifying vacuum fluctuations [65, 66]. When constructing the Heisenberg equations
of motion for the side modes, e.g. â↑, one arrives at the differential equation d

dt â↑ ∝
â↓. Therefore when starting with empty modes this process cannot grow in a purely
classical framework. Instead, quantum mechanical fluctuations are necessary to trigger
the amplification process initially [67]. In the Mexican-hat potential of Figure 3.6, this
situation corresponds to the classically unstable fixed point at Ŝ = 0. This analogy
also elucidates that the quantum mechanical fluctuations which are the incentive for
amplification are due to atomic projection noise of all atoms. As the name suggests, the
fluctuations are due to the inherent quantum mechanical fluctuations that trace back
to commutators being equal to ~ 6= 0. In the atomic case, the size of these fluctuations
corresponds to the effective Planck constant ~eff =

√
2/N .

Rather than being triggered by the quantum fluctuations, spin exchange can also be
initiated by any initial population of the side modes [174]. This can most easily be seen by
resorting to the input-output mode transformations, Equation 4.3. The atom number in
the side modes is given by 〈Nout

↑ 〉 = cosh2(κt) 〈N in
↓ 〉+ sinh2(κt)(〈N in

↑ 〉+ 1) and similarly
for the other mode. Here, 〈N in

↑ 〉 corresponds to the average atom number in state |↑〉
before parametric amplification took place with a similar definition for |↓〉. The terms
proportional to cosh2(κt) describe processes due to Bose stimulated emission while the
sinh2(κt) part is the spontaneous contribution. In a symmetric situation, where both side
modes are initially populated by 〈N in

↑ 〉 = 〈N in
↓ 〉 = 〈N in

+ 〉 /2 the ensuing population growth
during parametric amplification is described by

〈Nout
+ 〉 = 〈N in

+ 〉+ 2(1 + 〈N in
+ 〉) sinh2(κt). (4.9)

If the spin dynamics are triggered by such a classical seed (〈N in
+ 〉 6= 0) rather than the

spontaneous quantum mechanical fluctuations the spin exchange process is sped up.

4.7 Tailorable Hamiltonian
The mechanism of parametric amplification allows for substantial experimental control.
Manipulations over the nonlinear dynamics can be achieved by solely affecting the pump
mode. Since this mode is classically populated its control in terms of technical feasibility is
routine. This exploits the fact that the pump mode defines the effective nonlinear coupling
strength.

Magnitude of the nonlinear coupling
The magnitude of the effective nonlinear coupling strength κ = gN0 can be adjusted by
changing the number of pump atoms. In particular, the pump atoms can rapidly be
transferred to an ancilla state which does not participate in the nonlinear process. This
shelving technique allows quickly interrupting the nonlinear dynamics. A subsequent
transfer back reinitiates the nonlinear dynamics.

Additionally, controlled phase imprints onto the pump mode allow to change the
relative phase between the two constituent Hamiltonian terms â†↑â

†
↓ and â↑â↓. This phase

regulates whether the side mode population is magnified or degraded in an ensuing period
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of parametric amplification. This phase imprint therefore gives experimental access to
time reversal.

Time reversal
As time and energy are intimately connected, time reversal is equivalent to evolution
under an inverted Hamiltonian. This notion of time reversal is particularly evident
when examining the quantum mechanical time evolution operator, e−iHt/~. Therefore
to experimentally realize a time reversal sequence, a system’s energy spectrum has to
be inverted. Inversion of the parametric amplification’s nonlinear coupling strength has
this effect. To maintain spin exchange the resonance condition has to be met such that
the spinor phase remains locked [176]. Non-adiabatically changing this phase inverts the
nonlinear coupling strength such that a subsequent period of spin exchange reverses the
effect of the first. For this a controlled phase of ϕ = π has to be imprinted such that
κ → eiϕκ = −κ. This method inverts the sign of HPA. In fact, this can most easily be
seen from the complete spin exchange Hamiltonian which reads

HSCC = ~g â0â0â
†
↑â
†
↓ + h.c. (4.10)

Phase changes can be captured by modifying the individual mode operators in the following
manner, â↑ → â↑eiϕ↑ and similarly for the remaining two modes. Evidently, to invert the
entire Hamiltonian the decisive phase is 2ϕ0 − ϕ↑ − ϕ↓ which amounts to the spinor phase.
If the phase of the side modes remains unchanged, the phase of the pump mode gives
control over the sign of κ. This mechanism can be extended to cover an interferometer
which measures a phase imprint onto the side modes: by determining the pump phase
ϕ0 for which time reversal is achieved the phase ϕ↑ + ϕ↓ can be inferred. We detail this
interferometer scheme in the the next section.

It might seem that the undepleted pump approximation merely guarantees the gener-
ation of the two-mode squeezed vacuum state but is not imperative for achieving time
reversal. This, however, is not the case. The reason being that the collisional shifts are
unaffected by such phase imprints. Therefore, the method is limited to the undepleted
pump regime in which cancellation of the collisional shifts is achieved.

The work presented in this thesis builds on this approximate time reversal. In the
outlook we present a different approach of achieving time reversal by inverting the mi-
croscopic nonlinear coupling strength g. In contrast to the aforementioned method of
changing the effective coupling via phase imprints, this extended time reversal does not
rely on the undepleted pump approximation.

4.8 Interferometry based on time reversal
The time reversal sequence achieved for a spinor phase imprint of π can be extended to
cover a full interferometer. For this we consider the case of intermediate phase imprints
between ϕ = 0 (which corresponds to forward time propagation) and π (backward time
propagation). This is the essence of the so-called SU(1,1) interferometer. It was first
proposed in the field of quantum optics [89]. Figure 4.4 shows the optical setup of such an
interferometer. The atom optics analogy using spin exchange for parametric amplification is
shown underneath [177]. At the interrogation stage, the energy mismatch ∆E is measured
by its effect onto the spinor phase. Before we treat this interferometry concept in a more
formal manner in chapter 5, we visualize the working principle in the classical phase space.
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Figure 4.4: Interferometry based on (dis-) entangling nonlinear dynamics. The
interferometry scheme involves two cascaded periods of parametric amplification (PA), matched
in length, with phase interrogation in between. The above cartoon shows an implementation
in quantum optics. The analogue realization using spin exchange is shown underneath. Here,
a first period under spin exchange generates the entangled state which is subsequently used
to interrogate an energy mismatch ∆E. This energy mismatch corresponds to a spinor phase
imprint which controls the action of the subsequent spin exchange. For an accumulated spinor
phase of π the final period of spin exchange is time reversed and disentangles the probe state.
Instead, for phases close to 2π the state gets further amplified. The readout is given by N+.

Phase space illustration of the interferometry concept
Here, we provide an intuitive illustration of the interferometry scheme by resorting to the
classical phase space [121]. The key steps are depicted in Figure 4.5. At the top the initial
two-mode squeezed vacuum state is shown on the Bloch sphere of F . Measurements of
the side mode population correspond to the state’s projection along the z-axis. Therefore,
a zoom-in into the cylindrical classical phase space that shows this projection is depicted
additionally. Below, the three panels show the ensuing dynamics for three different spinor
phase imprints.

On the left, a rotation of 60◦ is applied. For this the dynamical phase building up
under a dominating spin exchange detuning q � Ng can be harnessed. At this stage, the
classical phase space is that of a pure rotation about the z-axis. After this phase imprint
(purple), spin exchange is performed that squeezes the state further and realigns it slightly
towards the diverging manifold of the separatrix. The resulting state is shown in blue. Its
side mode population is increased compared to the initial state as shown in the lowest
phase space portrait. A phase imprint of 180◦ is shown in the outermost right panel.
Here, the state after rotation (purple) is oriented almost perfectly with the converging
manifold of the separatrix. Therefore, during the second period of spin exchange the state
is unsqueezed (orange). Although a precise phase imprint of 180◦ has been applied this
reversal back to an isotropic uncorrelated state is nonideal. This comes about because
the classical phase space is shown for the experimentally extracted parameters which are
q ≈ 1.1gN . Thus, the angle enclosed by the separatrix is slightly smaller than 90◦ as
exemplified in the classical phase space portraits of Figure 3.1. In this setting, ideal time
reversal is indeed reached at a slightly smaller phase imprint. Nonetheless, the side mode
population of the resulting state is strongly reduced. The panel in the middle shows an
intermediate phase imprint of 90◦. Here, the state after rotation (purple) is aligned almost
symmetrically between the diverging and converging manifold of the separatrix. Still, the
subsequent spin exchange dynamics squeezes the state further (green) and the side mode
population is enlarged. This exemplifies the intrinsic amplification of the nonlinear readout.
In the next section we complement this illustrative description with a quantitative and
more formal treatment. It is based on the so-called SU(1,1) framework.
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Figure 4.5: Disentangling time reversal sequence in phase space. During a first period
of spin exchange (not shown) an entangled two-mode squeezed vacuum state arises (top). The
z-projection of the Bloch sphere reflects the side mode population. The state’s projection onto
this axis is shown together with the classical phase space (top right). Starting from this state, the
ensuing spin exchange dynamics is shown in the triptychon-like lower panels for three different
spinor phase imprints, ϕ = 60◦, ϕ = 90◦, and ϕ = 180◦. This phase imprint is implemented by
varying the holding time at a large spin exchange detuning q � κ. The phase space during this
phase imprinting period is that of a pure rotation about the z-axis (Bloch sphere and classical
phase space shown). Depending on the state’s rotation, a second period of spin exchange squeezes
further or unsqueezes the state. This process can be understood intuitively by following the
trajectories of the underlying phase space, in particular the converging and diverging manifold of
the separatrix shown in bold. The squeezing is reflected in the side mode population which is
shown in the lower cylindrical phase space. For details see main text.
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Chapter 5

Interferometry concept within the
SU(1,1) framework

In this section we analyse the nonlinear time reversal sequence quantitatively. To this
end we introduce operators belonging to the SU(1,1) group which are used to describe
spin exchange. This somewhat more formal treatment allows us to compare the nonlinear
interferometry sequence to routinely employed schemes like Ramsey’s atom interferometry.
While the latter constitutes a passive device, the nonlinear readout is active since spin
exchange is employed for parametric amplification. The content of this chapter is published
in reference [178].

5.1 SU(1,1) operators
To describe the interferometric sequence we assume that the pump mode remains undepleted
and introduce the following three operators [89] which act onto the side modes

K̂x = 1
2(â†↑â

†
↓ + â↑â↓)

K̂y = 1
2i(â

†
↑â
†
↓ − â↑â↓) (5.1)

K̂z = 1
2(â†↑â↑ + â†↓â↓ + 1) = 1

2(N̂↑ + N̂↓ + 1) .

The operators K̂x and K̂y include terms for the coherent and pairwise creation and
destruction of particle pairs. Therefore, they describe the coherences (anomalous moments)
〈â↑â↓〉 and 〈â†↑â†↓〉. The number of atoms shared in both modes is entailed in the operator K̂z.
Note that while this latter component resembles F̂z the other operators are fundamentally
different. In fact, the operators satisfy the defining commutation relations of the SU(1,1)
group:

[K̂x, K̂y] = −iK̂z, [K̂y, K̂z] = iK̂x, [K̂z, K̂x] = iK̂y. (5.2)

Here, the minus sign in the first equation distinguishes them from the cyclic commutators
of the SU(2) group. The SU(1,1) group has a conserved quantity which is given by
K̂2

tot = K̂2
z − K̂2

x − K̂2
y . This quantity, known as Casimir invariant, is given by the atom

number imbalance N↑ − N↓. For vanishing magnetization, we have K̂2
tot = 1/2. In a

geometrical interpretation, this equation defines a hyperbolic surface that is spanned by
the three operators K̂i.
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Figure 5.1: Representation of parametric amplification on the SU(1,1) hyperbolic
surface. a) Simulated Wigner function of the initial state with empty side modes. The summed
side mode population N+ corresponds to the state’s projection onto the z-axis. Consequently, the
vacuum state is represented at the bottom of the cone. Its Wigner function extends isotropically
in the projected space of K̂x and K̂y which is shown underneath the cone. Starting from this
state parametric amplification is described by boosting the state along the x-direction. Panel
b) shows the Wigner function of the resulting two-mode squeezed vacuum state. Its average
value is indicated in red. The large extension in z-directions corresponds to the excess number
fluctuations in N+.

Therefore, we can visualize the states that satisfy the SU(1,1) algebra on the surface
of a cone. Such a visualisation – which corresponds to the Bloch sphere representation
of the spin operators – is shown in Figure 5.1. Similar to Figure 3.5 where simulated
Wigner functions are shown on the associated Bloch spheres, here we plot similar Wigner
functions onto the hyperbolic surfaces of SU(1,1). Panel a) shows the vacuum state which is
represented at the bottom of the cone, 〈K̂z〉 = 1

2 , and has isotropic uncertainty in the x and
y-direction (see projection underneath the cone). Starting from this state, the operators
K̂x and K̂y generate boosts along the x and y-direction, respectively. Here, we use the term
boost in analogy to special relativity, whose description in terms of rapidity and Minkowski
space resembles the SU(1,1) description of parametric amplification [175, 179, 180]. This
boost moves the initial vacuum state upwards on the surface of the cone as shown in panel
b). A highly anisotropic and elongated Wigner distribution arises. Its average value is
indicated in red. The projection underneath shows that the initial state is spread out
in x-direction. For the SU(1,1) description to be valid we assumed that the pump mode
remains undepleted and furnishes an unlimited particle reservoir. Within this idealisation,
the cone is not terminated at some highest side mode population but remains open to the
top. In this representation, the operator K̂z generates rotations about the z-axis.

Interferometric sequence
Within this framework the interferometric sequence is build up by two SU(1,1) boosts
with a phase rotation in between. Such a scheme is shown in Figure 5.2 a). Additional to
a sketch of an optical SU(1,1) interferometer the action of each of the elements is shown
on a corresponding hyperbolic surface. From top to bottom, we start with empty side
modes and only the pump mode (dashed) populated. During a first period of parametric
amplification (PA) the side modes |↑〉 and |↓〉 get populated. On the hyperbolic surface
this process is described by a state moving upwards on the cone. The atom number shared
in both modes is given by K̂z. The trajectory’s projection beneath the cone showcases
that this is a boost along the x-direction. Subsequently, the side modes pass through an
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Figure 5.2: Comparison of an active SU(1,1) interferometer to a passive one. a)
Schematic representation of an active interferometer in optics. The action of each component is
described on an associated hyperbolic surface. From top to bottom, a first period of parametric
amplification (PA) populates the initially empty side modes |↑〉 and |↓〉 (red). On the hyperbolic
surface, this corresponds to a boost along the x-direction during which the initial vacuum state
(small red pointer) located at the cone’s bottom is displaced towards the top (large red pointer).
Subsequently, both side modes pass an area of phase interrogation (grey dashed box). On the
cone, such phase accumulation by ϕ+ = ϕ↑ + ϕ↓ is represented by a rotation about the z-axis. A
final period of parametric amplification implements another boost along the x-direction. Hereby,
the phase is mapped onto the average side mode population 〈N+〉 which corresponds to the
state’s projection along the z-axis. The resulting fringe is shown in panel b). The horizontal
red line denotes the probe state’s average population. The atom number imbalance vanishes
throughout all phase settings. d) Schematic of a Mach-Zehnder interferometer representative of a
passive SU(2) interferometer. From top to bottom the first beam splitter creates a phase sensitive
superposition of both modes. On the Bloch sphere the beam splitter’s action is described by a
rotation about the y-axis. Subsequent phase interrogation of ϕ− = ϕ↑ − ϕ↓ is described by a
rotation about the z-axis. The final beam splitter maps this differential phase onto the z-axis
which corresponds to the atom number imbalance. The fringe is shown in panel c). As a passive
device the atom number N+ remains constant.
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area of phase imprinting (grey dashed box). Here, each side mode accumulates a phase ϕ↑
and ϕ↓, respectively. On the hyperbolic surface, this corresponds to a rotation about the
z-axis by an angle of ϕ+ = ϕ↑ + ϕ↓. After phase accumulation the two side modes are
parametrically amplified once more. This last pulse maps the accumulated phase onto a
detectable atom number sum, i.e. different projections onto the z-axis. An interferometry
fringe is obtained by measuring 〈Kz〉, i.e. the summed atom number of both side modes.
The interferometry fringe is thus given by 〈N↑ +N↓〉 ∝ 1+cos(ϕ+) which is shown in panel
c). For an accumulated phase of ϕ+ = π the two boosts act along diametrically opposite
directions such that the second boost reverses the effect of the first. This corresponds to
time reversal. Then the initial vacuum state is recovered at the output. In contrast for
phase settings close to ϕ+ ≈ 0 the nonlinear character of two successive boosts along the
same direction becomes visible: the state gets much further displaced than during the
first nonlinear process. Therefore, the atom number detected at the fringe maximum is
nonlinearly enhanced. This nonlinear amplification becomes striking when comparing the
fringe height in panel c to the average side mode population after the first boost, that is
within the interferometer which is shown as the red horizontal line. The atom number
imbalance vanishes for all phase settings.

5.2 Comparison to passive SU(2) interferometers
Unquestionably, the most important technique for atom interferometry is Ramsey’s method
of separate oscillatory fields [45]. This can be considered the atomic analogue of an optical
Mach-Zehnder interferometer. Archetypical for a passive two path interferometer it is best
described in a SU(2) framework. We describe the interferometric sequence and put it into
contrast to the SU(1,1) description of spin exchange interferometry.

Pseudospin description
A passive two path interferometer can be described in terms of spin-1/2 operators. This
is because every number conserving two state system can be mapped onto a (fictitious)
spin-1/2 system as detailed in chapter 2. We will resort to the operators of Equation 2.1
to describe the interferometric sequence. In this pseudo-spin description, the atom number
imbalance is given by Ĵz. The coherences between both modes, i.e. 〈a†↑a↓〉 and 〈a↑a†↓〉, are
described by Ĵx and Ĵy, respectively. As a pseudo spin-1/2 the system can be illustrated
on a Bloch sphere. For N indistinguishable Bosons the collective spin picture is adequate
[122].

Interferometric sequence
In Figure 5.2 d) a Mach-Zehnder interferometer is depicted. Here the two paths |↑〉 and
|↓〉 of the interferometer are identified with the north and south pole of the Bloch sphere,
respectively. From top to bottom; starting in state |↓〉 (south pole of Bloch sphere) a beam
splitter populates both modes and creates a phase sensitive superposition. To achieve
highest phase sensitivity an equal superposition of |↑〉 and |↓〉 is desirable. On the Bloch
sphere such a state is represented on the equator. The action of the beam splitter is akin to
Ĵy and thus represented by a rotation of 90 ◦ about the y-axis on the Bloch sphere. In spin
language such a rotation is called π/2 pulse. The following phase accumulation of both
modes, ϕ↑ and ϕ↓, respectively is described by a rotation of the state about the z-axis.
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The angle of rotation is given by ϕ− = ϕ↑ − ϕ↓. Finally the phase difference between both
modes is mapped onto the z-axis by the final beam splitter. By measuring the imbalance
2 〈Ĵz〉 /N = 〈N↑ −N↓〉 /N = cos(ϕ−) the accumulated phase difference ϕ− can be inferred.
As a passive device, the atom number sum remains constant (panel c). This ever-fixed
atom number corresponds to the radius of the Bloch sphere.

5.3 Phase of the coupling mechanism
Interferometers compare the phase that is accumulated during the interrogation stage to a
phase reference that is associated to the coupling mechanism. We explain this first for the
passive interferometer: for the Ramsey interferometer beam splitting is often performed
by microwave π/2 pulses. The prime example is the caesium-133 fountain clock whose
hyperfine energy spacing of 2π × 9.2GHz acts as an international time standard. By
changing the relative phase of the two Raman pulses with respect to each other Bloch
sphere rotations about different axes are implemented. This allows for control of the
interferometer’s working point which can be adjusted independently of the interrogated
phase. Then the first pulse defines the axis of rotation as no other phase reference is
available. Let us choose the y-axis, that is the first rotation is performed by the action
of Ĵy. A subsequent non-adiabatic switching of the rf phase by ϕref then amounts to the
substitution Ĵy → cosϕrefĴy + sinϕrefĴx for the subsequent rotation. Thereby rotations
about any axis can be implemented. In particular, an interferometry fringe is obtained
by scanning the relative phase of the coupling. To emphasize this connection, the output
fringe is given by

〈N↑ −N↓〉 ∝ cos(ϕref − ϕ−) (5.3)
which combines the phase accumulated during interrogation ϕ− and the reference phase
of the coupling ϕref. This is a general statement: any interferometer compares the
accumulated phase to the phase of the associated coupling mechanism. In particular, to
realize an interferometric sequence at all the relative phase of the two successive pulses
needs to be stable. For beam splitting using optical transitions this is challenging as slight
variations of the light’s wave front have large impacts.

For the nonlinear interferometer the pump atoms provide the common phase reference.
Therefore, within the SU(1,1) framework phase changes of the pump mode can be used
to implement boosts along different directions of the hyperbolic surface. When the first
boosts acts along the x-direction (via the action of K̂x) a nonadiabatic phase change of
the pump mode corresponds to the substitution of K̂x → cosϕrefK̂x + sinϕrefK̂y for the
second boost. Therefore, in a more complete picture the interferometry fringe is given in
terms of

〈N↑ +N↓〉 ∝ 1 + cos(ϕref − ϕ+) (5.4)
Since the reference phase is given by the pump phase, ϕref = 2ϕ0 the complete phase
dependence is given by the spinor phase ϕ = 2ϕ0 − ϕ↑ − ϕ↓ as expected from the previous
considerations.

5.4 Hamiltonian in SU(1,1) representation
Within the undepleted pump approximation the spin exchange Hamiltonian can be written
in the form

H = 2~κ(cosϕrefK̂x + sinϕrefK̂y) + 2~(κ− q)K̂z (5.5)
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using the SU(1,1) operators (Equation 5.1) [89, 181]. Here, phase imprints onto the pump
mode are included by ϕref and decide whether a boost along the x- or y-direction is
performed. With a phase reference missing, the first such pulse defines the phase relation
for all subsequent pulses. When spin exchange resonance is achieved the last (detuning)
term, ∝ K̂z, vanishes and a pure boost without additional rotation is realized.

Note that the exemplary Wigner functions displayed in Figure 5.1 are the result of a
numerical simulation whose parameters match the experimentally extracted ones. While
the experimental parameter characterization is the subject of a later chapter, here we
remark that for N = 400 atoms the spin exchange detuning corresponds to q = 1.1κ. As a
result the detuning term in the above equation is only partly compensated. In Figure 5.1b)
this is witnessed by the slight rotation of the two-mode squeezed vacuum state away from
the x-axis.

5.5 Coherent states of SU(1,1) and SU(2)
The two-mode squeezed vacuum state corresponds to the coherent state of the SU(1,1)
theory. In general, coherent states are generated by applying linear combinations of the
fundamental operators onto the energetically lowest lying state. In the SU(1,1) framework
that is the action of the K̂ operators acting onto vacuum. The coherent states are thus
given by |r, ϕ〉 = e−iϕK̂ze−irK̂x |0〉↑ |0〉↓. In terms of twin-Fock states this amounts to

|r, ϕ〉 = 1
cosh (r)

∞∑

n=0
einϕ tanhn (r) |n〉↑ |n〉↓ . (5.6)

Here, r is the magnitude of the boost which is tantamount to the squeezing factor
characterising the two-mode squeezed vacuum state. Comparing this to the previous
definition Equation 4.8 the phase dependence with respect to the spinor phase ϕ is now
explicitly included.

The SU(2) coherent states are generated similarly by the action of the (collective)
pseudo-spin operators onto the lowest lying state. Therefore, |θ, ϕL〉 = e−iϕLĴze−iθĴy |0〉↑ |N〉↓.
Here the notation using two angles introduced in Figure 2.1 is used. For a collective spin,
each of the N individual atoms is independently put into an identical superposition state,
|θ, ϕL〉 = (cos θ/2 |↓〉+ eiϕL sin θ/2 |↑〉)⊗N . Upon measuring, this independent distribution
of N atoms among two states yields outcome statistics that are equal to a Bernoulli trial
[182]. Such a state can be represented in Fock states,

|θ, ϕL〉 =
N∑

n=0
einϕL

√√√√
(
N

n

)
pn(1− p)N−n |n〉↑ |N − n〉↓ . (5.7)

Here, p = (cos θ + 1)/2 denotes the success probability, i.e. the probability for being in
state |↑〉.

While the coherent states of SU(1,1) are characterized by a fluctuating total atom
number (N↑ + N↓), the magnetization (N↑ − N↓) is constant. In contrast, the coherent
states of SU(2) feature binomial fluctuations in population imbalance (magnetization) but
have constant total atom number. This contraposition as exemplified in panels c) and d)
of Figure 5.2 is crucial and connected to the state’s phase sensitivity with respect to ϕ+
and ϕ−, respectively. We will continue this discussion on the basis of experimental data in
chapter 7. Before that we first present our experimental setup.
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Experimental platform

61





Chapter 6

Experimental system and
manipulation techniques

In this chapter we detail our experimental apparatus. First, we summarize the setup
of the optical traps. Spin exchange among three hyperfine spin levels of Rubidium is
achieved by the interplay of an applied magnetic bias field and dispersive microwave fields.
Techniques to control the nonlinear coupling strength and to imprint spinor phase shifts
are introduced. Finally, we give a description of our detection scheme.

6.1 Bose-Einstein condensate
More than 20 years after the first observations of Bose-Einstein condensates in dilute
alkali atoms, their robust generation is now routine to many labs. We will mention only a
few crucial steps of our setup. We start by laser cooling and accumulating a sample of
Rubidium-87 in a three-dimensional magneto-optical trap (mot). This trap is fed by an
atom beam originating from a two-dimensional mot. After a short period of sub-Doppler
cooling the atoms are optically pumped to the lower F = 1 hyperfine manifold and the
molasses is reconfined in a magnetic trap. Majorana losses are avoided by using a time
averaged potential technique. Reducing the radius of the time orbiting potential allows
atoms at the edge to leave the magnetic trap. This circle-of-death evaporation takes about
25 s and leaves us with one million atoms slightly above the transition temperature for
Bose-Einstein condensation.

6.2 Optical trapping setup
With the atomic cloud being still above the critical temperature to undergo Bose-Einstein
condensation we transfer it into a crossed beams optical dipole trap. Both beams are
derived from a Yb:YAG laser that operates at a wavelength of 1030 nm. Further forced
evaporation is employed by reducing the optical trap depth. For this the intensity of
one beam is lowered. Hereby a BEC of 104 Rubidium atoms without discernible thermal
fraction is generated. After ramping down one of the beams, we let the BEC expand
in the shallow potential of the remaining beam. With a large aspect ratio of 100 this
potential acts like a waveguide. It provides transversal confinement with a trap frequency
of 2π × 440Hz but only very weak on-axis trapping. At the point at which the BEC is
expanded to an extension of ≈ 150 µm along the waveguide, we adiabatically ramp up a
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Figure 6.1: Experimental setup. a) Generation of the optical lattice potential. Experiments
are performed in a glass cell (grey). In this bottom-top view the optical lattice is formed by
two intersecting lattice beams. Their crossing angle is 9◦ giving a lattice spacing of 5.5 µm. For
transversal confinement a waveguide like potential (blue) is superimposed. The combined optical
potential is shown in the inset; its size corresponds to the field of view of our imaging system -
the high-NA objective is indicated. b) Additional optical beams used during the experimental
sequence. In this front view we look along the waveguide beam. Evaporation to Bose-Einstein
condensation is performed in the optical potential formed by the two crossing dipole trap beams.
Resonant light (orange) is used for absorption imaging. State-selective detection is achieved by
Stern-Gerlach splitting during time of flight. The direction of the magnetic field, its gradient,
and gravity are indicated.

one dimensional optical lattice potential that intersects the BEC. This optical lattice is
formed by two additional beams crossing under an angle of ≈ 9◦. The lattice beams are
generated by a Ti:Sa laser and have a wavelength of λ = 810 nm. This yields a lattice
spacing of 5.5 µm and a longitudinal trap frequency of 2π × 660Hz. The lattice beams
are red detuned to both the D1 and D2 transition of Rubidium at 795 nm and 780 nm,
respectively. Figure 6.1 shows the experimental setup with all laser beams indicated. Since
quantum mechanical tunnelling between adjacent lattice sites can be neglected we use the
≈ 30 populated lattice sites to increase the statistical sample size of our experiments. For
this each lattice site constitutes an independent experimental realization. Close to the
centre of the cloud each site contains about 400− 500 atoms. The extent of the on-site
wave functions is smaller than the spin healing length. Thereby, dynamics in the internal
degree of freedom are well isolated and the single spatial mode description is valid.

6.3 Effective spin-1 system
In its electronic ground state, the hyperfine splitting of Rubidium-87 yields two manifolds
with total spin F = 1 and F = 2, respectively, which are separated by 6.8GHz in energy.
We perform our experiments at a magnetic bias field ofB = 0.9G. The corresponding energy
shifts, as described by the Breit-Rabi formula, are depicted in Figure 6.2. Here, we draw
the contributions caused by the linear (panel a), and the quadratic Zeeman shift (panel b)
separately. The familiar linear Zeeman effect shifts adjacentmF levels by µB = 2π×630 kHz
as indicated. In contrast, the level shifts due to the quadratic Zeeman effect are orders
of magnitude smaller in size. They are described by ∆E =

(
+
−

)
(4 − m2

F )~qBB2 where
the upper (lower) sign is valid for the spin F = 2 (F = 1) hyperfine manifold and
qBB

2 = 2π × 60Hz.
Our experiments on spin exchange are performed within the upper F = 2 manifold. For
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effective spin-1
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Figure 6.2: Hyperfine structure of Rubidium-87 in a magnetic field. The two hyperfine
manifolds, F = 1 and F = 2 are separated by 6.8GHz in energy. The level shift caused by an
externally applied magnetic field is described by the Breit-Rabi formula. These level shifts can be
divided into a linear (panel a) and quadratic (panel b) contribution. The former splits adjacent
magnetic sublevels by µB = 2π× 630 kHz at our magnetic bias field of B = 0.9G. The quadratic
Zeeman effect leads to level shifts such that the mF = 0 state is separated from both mF = ±1
states by an amount of ±qBB2 = 2π × 60Hz. The mF = ±2 states, not subjected to this level
shift, are separated by 4qBB2 from state |2, 0〉. Because this energy spacing is much larger than
the spin exchange coupling strength, the remaining states form an effective spin-1 system as
indicated by the grey box.

this an effective three level system is formed by the states |2, 0〉 and |2,±1〉 as indicated
in the figure by the grey box. Because of its magnetization conserving nature spin
exchange is unaffected by the level shifts caused by the linear Zeeman effect. Therefore
only the quadratic Zeeman shifts need to be considered. The three level description is
thus valid because the |2,±2〉 states, not subjected to the quadratic Zeeman shift at all,
are energetically sufficiently remote. Then the situation can be mapped onto the spin-1
Hamiltonian as developed in the theory section. The microscopic nonlinear coupling
strength g depends on the underlying microscopic scattering details and is thus different
for spin exchange within F = 1 and F = 2. In particular, if two F = 2 atoms collide
an additional scattering channel with combined spin F = 4 arises which is absent in the
aforementioned F = 1 case. As a result, the coupling strength for spin exchange within
F = 2 is one order of magnitude larger than for F = 1. In our experiments it is of order
κ = 2π × 20Hz. Details of this mapping can be found in Appendix A.

This effective description in terms of a three level system embedded in F = 2 remains
valid as long as the mF = ±2 states do not participate in the spin dynamics. We guarantee
this by working at a sufficiently large magnetic bias field1. In fact, we chose the magnetic
field strength in order to comply with two requirements: the closedness of the effective
three level system – and a not too large energy barrier between |2, 0〉 and |2,±1〉 such that
the detuning of the spin exchange can be controlled reliably with dispersive microwave
dressing. We will detail both aspects in the next sections.
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Figure 6.3: Microscopic level shifts and their contribution to the spin exchange
detuning q. Spin exchange is parametrized by the effective coupling strength κ and the overall
spin exchange detuning q. The latter has three contributions that arise due to applied magnetic
fields, microwave dressing fields, and collisional interactions of the atoms themselves. Each panel
shows a different spin exchange detuning itemised into these three contributions. The quadratic
Zeeman shift elevates the pump mode above the side modes (outermost left splitting). Microwave
dressing is used to (partially) compensate this energy mismatch (middle). Finally, the collisional
interactions lower the pump mode’s energy by an amount of κ (right). The associated classical
phase space of spin exchange is bifurcated for the parameter regime 0 < q < 2κ, out of which we
exemplify the microscopic energy shifts for four particular cases: q = 0, 0 < q < κ, κ = q which
corresponds to the spin exchange resonance, and κ < q < 2κ.

6.4 Microwave dressing
We use state selective microwave dressing to fulfil the spin exchange resonance condition
[183]. In Figure 6.3 we detail how individual level shifts make up the effective spin
exchange detuning q. Starting point are the level shifts caused by the magnetic bias field
as described in the previous section: the quadratic Zeeman shift elevates the pump mode
in energy with respect to both side modes. This energy splitting is shown on the very left
of each panel. We employ microwave dressing that predominantly shifts the state |2, 0〉,
as depicted in the middle. Additionally, the collisional shifts reduce the energy of the
pump mode, which is represented on the right of each panel. The effective spin exchange
detuning q = 0 corresponds to the case where the energy shifts caused by microwave
dressing and the quadratic Zeeman effect cancel each other (panel a). In contrast, spin
exchange resonance, q = κ, is achieved when all three individual level shifts compensate
each other as displayed in panel c). One should keep in mind that only the shifts relevant
for spin exchange are drawn. Because of the linear Zeeman shift, the three depicted levels
are not energetically degenerate. In the complete picture this case corresponds to the
pump mode being energetically exactly in the middle of both side modes. Starting with
all atoms prepared in the pump mode, spin exchange leads to population transfer only
within the parameter regime q < 0 < 2κ which corresponds to the bifurcated classical
phase space.

We now explain the dispersive microwave dressing in more detail. We apply microwave
radiation δ = 2π × 110 kHz blue detuned to the transition |1, 0〉 ↔ |2, 0〉. If other
transitions were absent, this would shift the two states in energy by ±Ω2/4δ where Ω is the
corresponding on-resonance Rabi frequency. However, such dispersive energy shifts decrease

1yet small enough such that an interplay with external dynamics can be neglected. For details see
Appendix A
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Figure 6.4: SU(1,1) interferometry fringes for different microwave dressing. a) Per-
forming spin exchange detuned leads to an additional phase accumulation that shifts the
interferometry fringe. Shown are two fringes that are obtained for different energy shifts. For
this the microwave detuning (value indicated) to atomic resonance is changed. The resulting
fringe’s phase offset is plotted in panel b) versus the microwave dressing detuning used to initiate
and maintain spin exchange. Spin exchange for 6ms was used. We deduce that a microwave
detuning of 2π × 110 kHz corresponds to spin exchange resonance. This is further collaborated
by the fact that for this microwave detuning the phase stays flat versus spin exchange duration
(panel c). For the non-resonant case a phase is dynamically accumulated. The grey dashed lines
correspond to the result of a numerical simulation.

only slowly with the detuning δ from resonance. Therefore, for a precise accounting all
possible microwave transitions should be considered. The employed loop antenna radiates
microwaves of all three polarizations. Thus, the mutual energy shifts of all eight involved
levels have to be taken into account. Such a procedure is outlined in Appendix B. Here,
we shortly summarise the result: we find best agreement among several measurements if
we assume that the three levels (|2,−1〉 , |2, 0〉 , |2, 1〉) that constitute the effective spin-1
systems are shifted in energy by 2π × (+4.5, 37,−6)Hz, respectively. In total, these
microscopic shifts then lead to an effective spin exchange detuning of q = 2π × 24.5Hz.

Complementary to the microscopic considerations detailed above, we use the spin
exchange itself as a probe to characterize the microwave dressing in an effective way.
In Figure 6.4 the interferometric sequence is performed for different detuning δ of the
microwave dressing. We use such measurements to experimentally find the spin exchange
resonance. Panel a) shows two exemplary fringes for δ = 2π × 155 kHz and δ = 2π ×
95 kHz, respectively, while the power and thus the on-resonance Rabi frequency remains
fixed. While the amplitude of the fringes is almost identical the detuning shows up most
prominently in a spinor phase advance. In panel b) we plot the starting spinor phase of each
interferometry fringes versus the microwave detuning δ. At the zero crossing, spin exchange
resonance is fulfilled. On this basis we use the microwave detuning of δ = 2π× 110 kHz for
the main experiments. The grey line shows the result of a numerical simulation. We use
this simulation to collaborate and correct the calculation of the microscopic level shifts
(see Appendix B). Panels c) and d) show the starting phase of the interferometry fringes
versus the duration of spin exchange. For resonant spin exchange (panel c) the spinor
phase remains close to 0. If weaker microwave dressing is employed, a spinor phase is
dynamically built up.
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Figure 6.5: Overview of all spin exchange channels in the F = 2 manifold. a)
Symmetric spin exchange couplings. b) Asymmetric processes. For the sake of clarity only half
of the allowed channels are shown. For a complete accounting, one has to consider the additional
processes which arise under the interchange mF → −mF .

6.5 Gradients
The microwave is radiated from a home built single-loop antenna. Its position is optimized
such that gradients (of all three polarizations) over the atomic array are minimized while
still being as close as possible to the glass cell in order to achieve sufficiently large on-
resonance Rabi frequencies. To estimate spatial gradients of the microwave we perform
resonant Rabi flopping. Eventually, the right and left part of the atomic cloud will
start oscillating out of sync from which the power gradient is estimated. This procedure
is repeated for all three microwave polarizations. As detailed in the previous section,
microwave dressing yields a total energy shift that amounts to ≈ 2π × 36Hz. This
contribution is altered due to gradients of the microwaves by 2π × 0.1Hz over a spatial
extent of 100 µm along the atomic cloud. Since the nonlinear coupling strength is of order
κ = 2π × 20Hz such minute energy shifts are negligible for the spin exchange dynamics.
A more detailed accounting of the individual gradients can be found in Appendix B.

The magnetic field gradient over the atomic cloud is levelled by positioning small
permanent magnets in vicinity of the glass cell. In order to characterize the magnetic
field gradient we perform a Ramsey sequence on states |1,−1〉 and |2,−2〉 and extend
the Ramsey time until the fringes run out of sync spatially. Over the full extent of the
atomic cloud (150 µm) we find a magnetic field gradient that amounts to 0.1mG. With
spin exchange being magnetically insensitive to first order, these field changes of 0.1mG
translate into an spin exchange detuning of 2π × 10mHz. Even an order of magnitude
smaller than the microwave dressing gradients such an energy shift can safely be neglected.

6.6 Residual couplings out of the effective spin-1 sys-
tem

For the spin-1 description to be valid the spin exchange dynamics needs to be restricted
to the subspace formed by the three levels |2, 0〉 and |2,±1〉. Besides the desired spin
exchange process of the form 2 × |2, 0〉 ↔ |2,−1〉 + |2,+1〉, the five levels of F = 2
allow for additional channels [184, 185]. In principle, all processes that leave the total
magnetization unaltered are admissible. Figure 6.5 shows these possible spin exchange
channels. We choose the magnetic bias field of B = 0.9G such that these spurious spin
exchange processes are energetically suppressed. We substantiate this by a numerical
simulation (detailed in Appendix A) which shows the impact of leaving the three-level
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Figure 6.6: Pump mode shelving technique. Spin exchange is performed within the upper
F = 2 hyperfine manifold. For this the pump mode is prepared in state |2, 0〉 (left panel) and
microwave dressing is applied to ensure energy matching (not shown). To interrupt spin exchange
the microwave dressing is disabled. However, the resulting detuning is not sufficiently large to
suppress spin exchange entirely. We rapidly transfer the pump atoms to the spectator state
|1, 0〉 via a microwave π-pulse. With the pump mode shelved in |1, 0〉 the side mode’s population
remains frozen in |2,±1〉 and can be used for phase interrogation (right panel).

approximations at lower magnetic field strengths. Additional to this detuning, the spurious
spin channels are weaker in coupling strength [185]. In Appendix A we derive the spin
interactions of two F = 2 atoms and provide a thorough description of the full Hamiltonian
with a detailed accounting of all allowed spin exchange channels.

Since only the pump mode is macroscopically populated, the bosonic enhancement
is largest for those processes which include the pump mode. With the side modes
|2,±1〉 being only sparsely populated the associated coupling strength for the process
|2,−1〉+ |2, 1〉 ↔ |2,−2〉+ |2, 2〉 (depicted in orange, panel a) is therefore negligible. Here,
we provide two further examples.

The most important channel is 2× |2,±1〉 ↔ |2,±2〉+ |2, 0〉 because it has both, the
smallest detuning and largest microscopic coupling strength. Panel b) shows one of the
two equivalent processes in green. For a simple estimation of the relevant detuning, we
assume that microwave dressing shifts the energy of the pump exclusively. Additionally,
we neglect collisional shifts such that during microwave dressing the levels |2, 0〉 and
|2,±1〉 have equal energies. Then, the spin exchange process in question is detuned by
1.5qBB2 = 2π × 90Hz. Microscopically, the nonlinear coupling strength of this process is
similar to the one characterizing the desired process g. However, with only the pump mode
being macroscopically populated the associated spin exchange channel is enhanced only
by
√
N rather than N . Even if the microscopic nonlinearity were identical the effective

coupling is still an order of magnitude smaller.
From the symmetric processes shown in panel a, 2× |2, 0〉 ↔ |2,−2〉+ |2,+2〉 depicted

in red is the most important. Proceeding from |2, 0〉 it experiences the full enhancement
by the pump atoms. However, in this case the microscopic nonlinearity is only a twentieth
of g, while the detuning is huge, 3qBB2 = 2π × 180Hz. Therefore, the states mF = ±2 do
not participate at spin exchange and the effective three level system remains closed.

6.7 Pump mode shelving
Our reason to choose an effective three level system within F = 2, rather than the direct
F = 1 system are twofold: first of all, because of the larger coupling strength the spin
exchange is faster and more robust. This being a mere technical reason there is also a
more profound advantage: that is the possibility of having the pump atoms shelved in a
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spectator level that does not participate in the spin exchange. We use this technique to
control the strength of the nonlinear coupling which is defined by the number of pump
atoms. In particular, this enables us to abruptly start and stop the nonlinear process.
As a side effect of the large coupling strength in F = 2, the detuning when deactivating
the microwave dressing is not large enough to suppress residual off-resonant processes.
Additionally, the side mode population generated via the nonlinear process itself acts
as a seed to speed up further amplification once it is initiated. Therefore, the shelving
technique is crucial for precise control over the nonlinear coupling. To this end we transfer
the pump mode into the state |1, 0〉 via a fast microwave π-pulse as shown in Figure 6.6. In
contrast, within the F = 1 manifold already a small energy detuning suffices to efficiently
stop spin exchange entirely. This is in part because the mF = ±1 states remain empty at
all times and cannot act as a seed. This yields another advantage: to compare the phase
sensitivity, the number of atoms shared in both side modes after the first period of spin
exchange needs to be measured to assess the resource. Such a measurement is simplified
when the off resonant spin exchange during phase interrogation is inhibited.

6.8 Phase imprint
To realize different spinor phases we imprint a phase onto the pump mode while it is being
shelved in F = 1. The protocol is explained in Figure 6.7 where we make use of the Bloch
sphere representation. As shown in the left panel, the sphere’s north pole corresponds to
all N0 atoms prepared in state |2, 0〉 while the south pole is identified with |1, 0〉. We start
with the pump mode being in state |2, 0〉. A red pointer is included to track the phase of
the pump mode ϕ0 during the sequence.

We perform the microwave π-pulse that is used for the pump transfer slightly detuned.
With a on-resonance Rabi frequency of 2π × 10 kHz the detuning of δmw = 2π × 90Hz
has a negligible effect on the transfer efficiency. On the Bloch sphere this π-pulse rotates
the state from the north towards the south pole. During the time the pump mode is
shelved in F = 1 the phase evolves at a rate given by the pulse detuning δmw. We exploit
this dynamic phase that accumulates versus holding time thold. On the Bloch sphere this
corresponds to a rotation of the state about the z-axis. Upon transfer back to F = 2 a
spinor phase change of ϕ0 = 2δthold + ϕ̃0 is realized. Here, ϕ̃0 denotes the geometrical
phase that arises during the 2π-pulse due to the detuning and amounts to 2◦. As we scan
the pump phase via the hold time, this geometric phase offset is inconsequential.

6.9 State preparation
Initially the atoms are condensed in the state |1,−1〉 which is a consequence of the magnetic
trapping. Figure 6.8 shows the experimental sequence in a timing diagram. The top row
indicates microwave pulses used for either state transfers or dispersive energy shifts. The
lower panel shows the atomic populations at the respective stage. For clarity, only the
quadratic Zeeman shift is drawn.

First, by means of two consecutive π-pulses the atoms are transferred to state |1, 0〉
(via the intermediate state |2, 0〉). At this stage we apply a strong magnetic field gradient
which expels spurious atoms in mF 6= 0 states (Stern-Gerlach cleaning). In particular,
atoms in the |1,−1〉 state are cleaned which might have remained from an imperfect
microwave π-pulse. Application of the magnetic field gradient briefly distorts the magnetic

70



6.9. State preparation

0N⊗0,2|

0N⊗0,1|

x y

mw

mw

mwδ

mw

mwδ

0ϕ 0ϕ

πmw    -pulse πmw    -pulseholding

mwδmw

Figure 6.7: Spinor phase imprint. The spinor phase of the three level system is scanned
via phase imprints onto the pump mode. For this we perform the microwave π-pulses used for
pump shelving slightly detuned. We detail the phase imprinting procedure with the help of
the Bloch sphere representation. Here, the north and south pole correspond to state |2, 0〉 and
|1, 0〉, respectively, as shown in the grey shaded left panel. The relative phase between these two
states is indicated by the red pointer. The microwave π-pulse used for pump mode shelving is
represented by a rotation of ≈ 180◦ about the y-axis. This mw pulse is detuned by δmw which is
much smaller than the on-resonance Rabi frequency Ωmw. Then, its effect on the population
transfer is negligible and the state is almost perfectly rotated onto the Bloch sphere’s south pole.
During the subsequent holding time thold the phase evolves at a rate given by δmw. On the Bloch
sphere this is represented by a rotation about the z-axis. Finally, a second mw π-pulse rotates
the state back to the north pole. The phase ϕ0 of the pump mode is thereby changed by δmwthold.
Additionally to this dynamical phase a geometrical phase arises. For a resonant 2π-pulse this
geometric phase contribution amounts to 180◦ with a 1◦ correction due to the detuning.
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Figure 6.8: Timing diagram of the experimental sequence. The top row indicates the
microwave pulses used throughout the sequence for either state transfers or dispersive dressing.
The lower panel indicates the action of the microwave pulses in a simplified level diagram. Here
we only show the energetic level shifts due to the quadratic Zeeman effect. Starting point for
our spin exchange experiments is a shelved pump mode in state |1, 0〉 with all other spin states
empty. To achieve this a strong magnetic field gradient expels the atoms in sub states with
mF 6= 0 (Stern-Gerlach cleaning). Transfer of the pump mode into |2, 0〉 is done by fast resonant
microwave pulses. Thereby the nonlinear coupling strength for the ensuing spin exchange is
effectively quenched. During phase imprinting the pump mode is shelved in |1, 0〉. After a second
period of spin exchange the atomic population is detected by absorption imaging.

field stabilization servo loop. A holding time of 100ms is added to allow the homogeneous
magnetic bias field to settle.

At our magnetic bias field of B = 0.9G spin exchange within the F = 1 manifold
is suppressed as the detuning of qB2 = 2π × 60Hz is much larger than the nonlinear
coupling strength of ≈ 2π×2Hz as detailed in the previous sections. This state |1, 0〉 is the
starting point of all experiments. Spin exchange is subsequently performed by transferring
the pump atoms to state |2, 0〉 via a fast microwave π-pulse that takes 46 µs thereby
effectively quenching the nonlinear coupling strength in F = 2, κ→ 20Hz. Immediately
after state transfer microwave dressing is employed to shift the pump mode into spin
exchange resonance. After a variable time of spin exchange, which is on the order of
t1 = 6− 10ms, microwave dressing is stopped and the pump mode is shelved in F = 1 for
phase imprinting. The holding time in F = 1 is varied (typically between thold = 0− 2ms)
to imprint different spinor phases. After the final period of spin exchange we detect the
atomic population by absorption imaging. We detail the imaging procedure in the next
section.

6.10 Detection
After the final period of spin exchange we deactivate microwave dressing and immediately
transfer the pump mode from the F = 2 manifold to F = 1 to switch off the nonlinear
coupling. At this stage, we use absorption imaging with a high optical resolution of 1.1 µm
to count the number of atoms spin and lattice site resolved [186, 187]. The internal state
is resolved by applying a Stern-Gerlach like magnetic field gradient. A short period of
time of flight (≈ 1ms) is used to reduce the atomic density. During this, the optical
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Figure 6.9: Typical absorption image. Atomic populations of the three involved spin states
(indicated in level diagram left) are destructively determined by high resolution absorption
imaging. To resolve the internal state, a magnetic field gradient is pulsed on (Stern-Gerlach).
During the subsequent time of flight the optical lattice potential remains active. Atom numbers
are counted within the elliptical regions. Close to the centre each lattice site is populated by
400− 500 atoms, falling off to 200 atoms towards the edges. The outcome of each lattice site is
treated as an independent individual measurement (right). The single shot absorption image was
obtained after letting resonant spin exchange elapse for 20ms. The strong number fluctuations
observed in adjacent lattice sites are a distinguishing feature of this nonlinear process.

lattice remains turned on such that the atomic clouds of each lattice site do not overlap
spatially. We image the population within the F = 2 and F = 1 manifold simultaneously.
For this the short pulse of the imaging light (15 µs) is accompanied by repumping light.
Then all three involved spin components appear on the same absorption image. Shortly
after this (1.2ms) we take an additional image with the atoms blown away, which acts
acts as a reference to correct for fringes and other optical distortions [188]. Details of the
imaging procedure and its calibration can be found in reference [187]. A typical single
shot absorption image is shown in Figure 6.9. It shows the outcome when spin exchange
was performed for 20ms.

To reduce the contribution of photon shot noise we count the atom numbers only within
the indicated elliptical regions of interest. Thereby the population of each side mode, |↑〉
and |↓〉 can be determined in a single shot with an error of ±4 atoms (which corresponds to
one standard deviation) [187]. The magnetic field gradient used for Stern-Gerlach splitting
is inhomogeneous over the extent of the optical lattice. This leads to a nonuniform spacing
of the two spin components. Ideally, nonlinear time reversal revokes the population transfer
caused by spin exchange such that the side modes are empty in the end. To handle this
situation, we calibrated each spins position with respect to the pump mode. Since the
pump mode is heavily populated in any case, their position can be determined reliably
from the absorption image. We use the central region extending over ≈ 25 lattice sites (as
shown) for further analysis. Each lattice site constitutes an independent measurement of
the spin dynamics.

The magnetic moments of the F = 2 and F = 1 sub states are (almost) identical in
magnitude. Therefore, after Stern-Gerlach splitting the states |2,±1〉 and |1,∓1〉 overlap
spatially and are not individually resolved. Similar applies to the states |2, 0〉 and |1, 0〉
which appear on the same position of the absorption image. We independently checked
that the states |1,±1〉 remain empty during the entire experimental sequence. Therefore,
the absorption image consists of the states |2,±1〉 and the pump mode |1, 0〉 as indicated
in the left panel of Figure 6.9 and all other spin states remain unpopulated.
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6.11 Data analysis
To characterize the two-mode squeezed vacuum state and its large fluctuations we typically
use statistical sample sizes of 600− 1000 measurements. The data collection is facilitated
by using each of the 25 populated lattice sites. For quantitative analysis we postselect
only those experimental runs and lattice sites which have a total atom number in a well
defined range. This is necessary as the nonlinear coupling strength depends on the total
atom number. This postselection window is typically 50 atoms wide and centred between
N = 400− 550 atoms. Under such conditions the nonlinear coupling strength varies by
less than 10%.

6.12 Interleaved control measurements
A series of automated control measurements is performed interleaved with the main
measurements on spin exchange. Most importantly, these characterize the amount of
detection noise. For this we image the atomic cloud after the Stern-Gerlach cleaning
procedure. At this stage only the pump mode is populated. On the absorption image,
the elliptical regions of the side modes remain empty. The detection noise is determined
by the apparent atom fluctuations found when summing these empty regions. This
background signal has a Gaussian distribution that is centred at ≈ 0.3 atoms and has a
width corresponding to the detection noise of σ = 4 atoms per spin state. Unless stated
otherwise the contribution of this independently characterized detection noise is subtracted
for the main data. Similarly, the atom number offset is subtracted. Any specific post
selection (e.g. on total atom number, lattice sites) is performed on both, the main data
and the control measurements.

Our experiments are performed at a magnetic bias field of B = 0.9G whose major
component is along the vertical direction. The magnetic field component along this
direction is actively stabilized by means of a fluxgate sensor that is mounted close to the
glass cell. The shot-to-shot fluctuations amount to less than 0.1mG. Long term drifts
over the course of several days are compensated by automated Ramsey spectroscopy
measurements.
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Chapter 7

State and process characterisation

The cornerstone enabling time reversal is the process of parametric amplification which is
realized by spin exchange. In this chapter we experimentally characterize the nonlinear
process in detail. Emphasis is placed on the generated number fluctuations which are
generic to the emerging entangled state. These fluctuations reflect the state’s ability for
superior phase estimation. Finally, experimental limitations such as particle loss, pump
depletion effects, and seeded dynamics are considered.

7.1 Experimental signatures of parametric amplifica-
tion

Spin exchange leads to peculiar mode correlations of the arising state. In this section we
detail these distinctive correlations by comparison to the classical method of distributing
atoms among three modes. The pairwise nature of parametric amplification stands in stark
contrast to this linear coupling of the levels which cannot introduce particle entanglement.

The mode correlations generated during spin exchange are shown in Figure 7.1a) where
the single shot spin populations are plotted. As expected for ideal number correlations,
the data points line up along the diagonal indicating N↑ = N↓. The residual width in
orthogonal direction is caused mainly by detection infidelities. This becomes apparent when
comparing the width to the initially empty state shown in grey. Its isotropic extension is
caused exclusively by detection noise. The narrow distribution in N↑ −N↓ is accompanied
by a large extension along the diagonal. These fluctuations in N↑ +N↓ are characteristic
for the two-mode squeezed vacuum state. Histograms for both mode populations show
excellent agreement with a thermal-like number distribution when including detection
noise by convolution (indicated in black).

Linear coupling of the three modes cannot generate such distinctive number correlations
as exemplified in Figure 7.1 b). Here, starting with all atoms prepared in |1, 0〉 a resonant
rf pulse is used to populate the modes |1,±1〉. Using short rf pulses only few atoms
are transferred to the side modes. The green data points result from a state with the
same average atom number of 〈N↑〉 ≈ 〈N↓〉 ≈ 11 as the state generated by spin exchange.
However, as a consequence of atomic shot noise the atom number difference between both
modes shows larger fluctuations. This becomes more pronounced when considering a state
with higher mode populations as shown in purple. As witnessed by their histograms the
mode populations are close to Gaussian. Their width is given by both detection noise and
atomic shot noise.
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Figure 7.1: Atom number correlations. a) Starting from an initial vacuum state (grey)
parametric amplification populates the two side modes |↑〉 and |↓〉 in a characteristic manner:
ideally, the pairwise generation process yields perfectly correlated atom numbers, N− = N↑−N↓ =
0. In the correlation plot this corresponds to the diagonal line along which the experimental
data points line up. The residual spread in N− is caused by detection noise. Being confined on
the diagonal line, large fluctuations in atom number sum N+ = N↑ + N↓ are exhibited. The
population of each mode follows a thermal-like distribution as witnessed by the corresponding
histogram. The black lines are fits to thermal distributions also taking into account detection
noise by convolution. b) Atom number distributions obtained when populating the two modes
via a classical process, i.e. linear coupling. The green data points correspond to a state with
similar average atom number as the one produced by parametric amplification (in panel a).
Clearly, the state is concentrated symmetrically around its average population. Its fluctuations
are isotropic and result from both, atomic shot noise and detection noise. This is clarified when
considering a state with larger atom number such that the atomic shot noise dominates as shown
in purple. The individual mode populations follow a Gaussian distribution as shown by the
respective histograms.
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Figure 7.2: Experimental characterization of the nonlinear coupling strength. a) For
sufficiently short evolution times the undepleted pump approximation remains valid and the
side mode growth follows 〈N+〉 = 2 sinh2 κt (solid and dashed line). We extract κ by a fit for
evolution times up to 12ms as indicated by the solid line. b) Postselecting different total atom
numbers allows determining the atom number dependence of the nonlinear coupling strength κ.
The solid line shows a heuristic square-root-like dependence. Such a behaviour is expected for a
trapped mesoscopic BEC. At our atomic densities the system lies in between the range of validity
for the Thomas-Fermi regime on the one hand, and the harmonic oscillator regime on the other.

7.2 Nonlinear coupling strength

To experimentally determine the nonlinear coupling strength we perform spin exchange
for different durations. The average population of the side modes is expected to grow
nonlinearly according to 〈N↑〉 = 〈N↓〉 = sinh2 κt, where t is the evolution time. We use
this connection to extract the nonlinear coupling strength κ by a fit. Figure 7.2 a) shows
an exemplary data set. To remain within the validity regime of the undepleted pump
approximation we restrict the fit to evolution times shorter than 12ms (indicated by solid
line). For larger durations the side mode populations grows significantly slower (see inset
and continuation of the fitted curve shown as the dashed line).

By repeating this procedure for different postselected total atom numbers we extract the
atom number dependence of κ = g(N)N . This atom number dependence of g(N) is caused
by the mode function overlap of the BEC’s external wave function g(N) ∝ ∫d3x|Φ(x)|4.
Panel b) shows the measured nonlinearity in the range of N = 280 − 600. We find an
atom number dependence that is compatible with κ ∝

√
N (indicated by the solid line).

Such a scaling behaviour is expected for a mesoscopic BEC. This is because it falls into
a crossover regime between the region of validity of single-particle (harmonic oscillator)
external wave functions and the Thomas-Fermi approximation. In the former case, the
mode function overlap would be atom number independent such that κ ∝ N is expected.
In the Thomas-Fermi limit, the mode overlap is ∝ N−3/5 which leads to a scaling of
κ ∝ N2/5. Such an exponent is experimentally indistinguishable from the square root fit
which we use for interpolation.
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Figure 7.3: Measurement of loss rates. The dominant source for loss in the excited hyperfine
manifold F = 2 is a two-body process in which at least one of the scattering atoms relaxes to
F = 1. The concomitant release of energy suffices to expel one or both atoms from the trap.
a) We assess this process by preparing pure samples in either |2, 0〉 or |2, 1〉 (not shown) and
observing the subsequent decay (blue). The blue line is a fit to extract the lifetime assuming
pure two-body decay. This presumption is checked by confirming that the extracted lifetimes are
independent of the initial atom numbers as shown in the inset. Here, the red (blue) data points
correspond to extracted loss rates Kii of |2, 0〉 (|2, 1〉). Extracting loss rates is compounded by
the fact that spurious spin exchange takes place. For the shown case of preparing all atoms
in |2, 0〉 this means that |2, 1〉 gets populated (grey data). b) We check the validity of our loss
model for the experimentally most relevant case of small side mode populations. These side
mode populations are generated by resonant spin exchange for 16ms (purple) and 20ms (orange),
respectively. The effective 1/e life time of the side mode population is shown for the case of the
pump mode being held in F = 2 (squares) and shelved in F = 1 (diamonds). Details of the loss
model indicated by the solid lines are explained in the text.
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7.3 Atom loss
The dominant loss mechanism for atoms within the excited hyperfine manifold F = 2
are hyperfine changing collisions [189, 190]. In such a collision event at least one of the
two atoms relaxes down to F = 1 with a corresponding release of energy that allows
both atoms to leave the optical trapping potential. As a two-body process this hyperfine
relaxation is density dependent. For atoms in state mF = i with density ni two-body loss
with itself and all other mF 6= i states must be considered, leading to

dni(r)
dt = −2K(i,i)ni(r)2 −

∑

j 6=i
2K(i,j)ni(r)nj(r) . (7.1)

Here, K(i,j) are the loss rates describing collisions between pairs of atoms in state mF = i
and mF = j. Within the single spatial mode approximation we can use our knowledge
of the relationship between density ni(r) and the corresponding atom number Ni. This
connection was established in the previous section. Experimentally we find ni ∝ Ni/

√
N .

We then obtain
dNi

dt = −2K(i,i)
N2
i√
N
−
∑

j 6=i
2K(i,j)

NiNj√
N

. (7.2)

By preparing all atoms in a single component mF = i in F = 2 we can estimate Ki,i. For
such a case dNi

dt = −2K(i,i)N
3/2
i is solved by

Ni(t) =
[
K(i,i)t+

√
Ni(t = 0)

]−2
. (7.3)

Such a loss measurement is shown in Figure 7.3 a). Here, we prepare all atoms into the
mF = 0 state and fit the subsequent loss according to Equation 7.3 (solid blue line). In
a similarly manner, the loss coefficient K1,1 of mF = 1 is characterized which is due to
symmetry arguments identical to K−1,−1. With initially only the mF = 0 state populated
and all other spin states empty, we observe a small growing population of the mF = 1
state (grey). This is caused by off resonant spin exchange. Especially for long holding
times, such spurious effects yield to systematically overestimated loss rates and thereby
limit this treatment to small durations < 300ms.

We checked that the loss coefficients are independent of the initial atom number. This
is shown in the inset, where K0,0 corresponds to the blue data, and K1,1 to the red data
points. This atom number independence indicates that indeed two-body spin relaxation
is the prevailing loss mechanism. In contrast, background gas collisions and off-resonant
light scattering of the optical dipole traps are density independent. For these processes,
an exponential decay is found. The measured 1/e-lifetime exceeds 15 s. Single-body loss
as well as dipolar losses (which do not necessarily conserve the total angular momentum
during collisions) are therefore indiscernible on time scales of several 100ms. These loss
mechanisms can thus be neglected for the experiments reported on in this thesis.

Having characterized the intra component loss rates, we follow reference [190] to
estimate the remaining loss rates which describe scattering between two different mF

states. For this the knowledge of K1,1 and K0,0 suffices.
The experiments on time reversal rely on the validity of the undepleted pump ap-

proximation. Therefore, the loss of the sparsely populated side modes in presence of a
large pump mode is the experimentally most relevant case. We study this situation in
Figure 7.3 b). For direct comparison with the main experiments, we use spin exchange
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to initially populate the side modes and record the subsequent decay of the side modes.
Let us first focus on the situation in which the pump mode resides in F = 2 (square plot
markers). This describes loss during the process of spin exchange. We treat the case in
which the pump mode is shelved in F = 1 (diamonds) afterwards. With the pump in
F = 2, the main contribution to atom number loss of the side modes is due to K1,0 and
K−1,0, respectively. However, the loss is not well described by a pure two-body loss model
because of the additional albeit weak channels. We take this into account by heuristically
fitting an exponential for short loss times to extract an effective lifetime. We compare this
to a numerical simulation which uses the estimated loss coefficients (solid lines). We let
spin exchange populate the side modes for 16ms (orange) and 20ms (purple) respectively
and find reasonable agreement for both evolution times.

During phase imprinting the pump mode is shelved within the F = 1 manifold
(diamonds). This has a strong influence on the life time of the side modes as the dominant
loss mechanism is now absent. We find the remaining loss is best described by K0,1 =
K0,−1 = 0 (solid lines). The large deviations for lifetimes exceeding 1 s are caused by
residual off-resonant spin exchange.

7.4 Detuning and comparison to numerical simula-
tion

Having experimentally extracted the nonlinear coupling strength κ and its atom number
dependence we now proceed with an experimental characterization of the detuning. The
difficulties in estimating the detuning from a microscopic point of view have been addressed
in section 6.4 where a detailed calculation of all level shifts during microwave dressing
was performed. Here, we use the complementary top-bottom approach and extract the
detuning from the population dynamics during spin exchange. For this, one could in
principle use the detuning dependence of parametric amplification. Taking into account
such a detuning by introducing δ = κ − q the side mode’s growth can be calculated
analytically and is described by

〈N+〉 = 2κ2

κ2 − δ2 sinh2(
√
κ2 − δ2t) . (7.4)

Therefore the population growth depends (only) quadratically on detuning. Being close
to resonance we find this dependence to be too weak to use it for an experimental
determination of the detuning. The reason for this is that Equation 7.4 requires the
validity of the undepleted pump approximation. Therefore, the dynamic range is restricted
to small side mode populations. To circumvent this problem we use the comparison to
numerical simulations that take into account pump depletion. As detailed in section 3.7
these numerical simulations rely on the truncated Wigner approximation which is valid up
to the point where predominantly atoms from the side mode are scattered back into the
pump mode.

We perform such simulations for three different total atom numbers and use the
independently characterized coupling strength. Since the detuning arises from level shifts
due to microwave dressing and the quadratic Zeeman effect, it is independent on the total
atom number. Therefore, for each of the three cases a common detuning is used. We
find best agreement to the experimental data for a detuning of δ = 2π × 24Hz which is
shown for all three atom numbers in Figure 7.4. A different choice of parameter generally
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Figure 7.4: Comparison of the numerical simulation to experimental data. To experi-
mentally characterize the detuning of the spin exchange process we perform numerical simulations
(black lines) for three different total atom numbers; N = (375, 425, 425) (from left to right) and
compare the results to experimental data. While the nonlinear coupling strength depends on the
atom number, the detuning is unique to all three cases. We use the experimentally characterized
coupling strength and its atom number dependency to restrict the numerical simulations to a
single parameter, i.e. the detuning. Best agreement is found for a detuning of δ = 2π × 24Hz
(black lines). For comparison, the nonlinear coupling strength for the three considered cases is
κ = 2π × (20, 23, 25)Hz.

improves the agreement only for one particular atom number window, while it leads to
significant deviations for the other two cases. The advantage of this procedure is that only
one parameter is free and needs to be found.

The numerical simulation systematically underestimates the atom number for evolution
times exceeding 22ms. At first sight, this hints towards an underestimated coupling
strength, however, we explicitly checked that this behaviour cannot be overcome by
additionally adjusting the nonlinear coupling strength. While these simulations include
the independently characterized loss the initial atom number is fixed. In the experiment,
however, the postselection is done for a range of ±25 atoms and characterizes the atom
number after the spin exchange process took place. This might explain the disagreement
at long evolution times. However, for our main experiments which involve evolution times
shorter than 16ms these discrepancies are insignificant.

For long evolution times exceeding 25ms the growth of the side modes is not just
slowed down by pump depletion. As suggested by the results of the numerical simulation
for N = 475 the population in fact executes oscillations [191]. This is caused by the
collisional shifts which are approximately compensated only for small populations which
corresponds to short durations. These collisional shifts lead to a dynamically evolving
spinor phase – until a phase of π is eventually built up such that time reversal is achieved
and the cycle starts again.

7.5 Number fluctuations
The individual modes making up the two-mode squeezed vacuum state do not possess
a mean-field. This means that 〈↑| â↑ |↑〉 = 0 and similarly for mode |↓〉 [192]. Under
such conditions the state’s number fluctuations become crucial. With the atom number
imbalance vanishing, (∆N−)2 = 0 the fluctuations in atom number sum are the most
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distinctive feature of the two-mode squeezed vacuum state. Having shown this in a
qualitative manner at the beginning of this chapter we now characterize them quantitatively.

The two-mode squeezed vacuum has thermal-like number fluctuations in each of its
constituent modes, (∆N↑)2 = 〈N↑〉 (N↑ + 1) and similarly for N↓. Additionally, both
modes are strongly correlated. Due to the covariance of N↑ and N↓ the variance of the
atom number sum is twice larger than the combined individual fluctuations, (∆N+)2 =
4 〈N↑〉 (N↑ + 1) = 〈N+〉 (〈N+〉+ 2). In Figure 7.5a) we plot the measured variance of N+
versus this expectation in terms of average number population. For short evolution times
(indicated by colour) we find excellent agreement to this undepleted pump theory. Only
for durations exceeding ≈ 15ms pump depletion causes a levelling off. This effect is well
captured by numerical simulations which are based on the truncated Wigner approximation
(shown as dashed line). These fluctuations are huge compared to Poissonian noise of size
(∆N+)2 = 〈N+〉 which is shown in grey for comparison.

As detailed, the variance of N+ would only be half as large if the two modes were
uncorrelated. These strong mode correlations can also be shown directly. For this the
variance of N− is evaluated, see Figure 7.5b). For quantum mechanically uncorrelated
populations we expect binomial statistics to be valid, leading to (∆N−)2 = 〈N+〉 which is
shown in grey. From a linear fit to the data (black line) we deduce that the fluctuations
are suppressed by a factor of 7 (8.5 dB) compared to this classical level [193, 194]. An
independent measurement of the detection noise (square plot marker) defines the line’s
offset. Ideally, the two-mode squeezed vacuum state fulfils (∆N−)2 = 0 irrespective of
〈N+〉.

These distinctive coherent number fluctuations of the two-mode squeezed vacuum state
have far reaching implications for phase sensing. We cover these in the next section.

7.6 Number fluctuations and phase dependence
There is a common argument that connects a state’s coherent number fluctuations to its
sensitivity towards phase changes: in order to be sensitive to a phase imprint of ϕ− the
probe state needs to have fluctuations ofN− that sample this phase. A similar relation holds
for sensitivity with respect to the sum phase ϕ+ which accordingly requires fluctuations
of N+. Often this relationship is expressed by the heuristic uncertainty relation of phase
and complementary number fluctuations, which reads (∆N±)2(∆ϕ±)2 > 1. Therefore, the
ability to precisely estimate a phase imprint relies on large coherent number fluctuations.
The large fluctuations of the summed side mode population N+ inherent to the two-mode
squeezed vacuum can therefore be considered to be the underlying resource for quantum-
enhanced measurements. On the other hand, spin exchange leaves the atom number
imbalance N− unaltered. As a direct consequence, the process is insensitive to the phase
difference ϕ− which corresponds to the Larmor phase.

It is important to note that the fluctuations of the probe state, i.e. the state that
experiences the phase shift, are crucial. In this thesis’ introduction, a scheme in which the
two-mode squeezed vacuum state is fed into a conventional passive SU(2) interferometer
is discussed. Here, loosely speaking, the first beam splitter converts the initial state’s
fluctuations of the atom number sum N+ into fluctuations of the associated atom number
difference N−. Therefore, precise measurements of ϕ− can be performed.

The potential of a probe state to perform quantum-enhanced phase measurements can
be characterized by the quantum Fisher information F , which conceptually builds on the
associated classical object as employed in statistics and parameter estimation. Adopted to
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Figure 7.5: Characteristic atom number fluctuations. a) The two-mode squeezed vacuum
state features thermal-like fluctuations when considering the summed side mode population,
N+ = N↑ +N↓. These excess fluctuations satisfy (∆N+)2 = 〈N+〉 (〈N+〉+ 2) which is drawn as
the diagonal line. For sufficiently short evolution times (encoded in colour) we find excellent
agreement to this ideal expectation. For longer evolution times a large fraction of pump atoms is
scattered into the side modes such that the undepleted pump approximation eventually ceases
to be valid. This effect is well captured by a numerical simulation (shown as dashed line).
Redistributing atoms among three modes in a classical process leads to Poissonian noise which is
indicated as the grey line for comparison. b) Ideally, each side mode’s population exhibits perfect
correlations due to the pairwise scattering process. To quantify these correlations experimentally
we evaluate (∆N−)2 and compare it to the respective Poissonian limit. The Poissonian noise
corresponds to (∆N−)2 = 〈N+〉 (indicated as grey line). We find suppressed fluctuations by
8.5dB. The squared plot marker denotes an independent measurement of the detection noise.
This variance contribution due to detection noise was subtracted for the data in panel a).
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a metrology setting, the classical Fisher information quantifies how well a linear phase
imprint can be estimated on grounds of probability distributions [122, 161, 195]. If a
measurement prescription is characterized by a large classical Fisher information then
already minute phase imprints yield readily distinguishable output distributions which
corresponds to a high phase sensitivity. The quantum Fisher information eliminates the
device dependence. It quantifies the metrological usefulness, i.e. the phase sensitivity of a
probe state under the assumption that the optimal readout is employed. Furthermore, the
quantum Fisher information is often applied to compare various quantum states [196, 197].
Within this paradigm, the single shot phase sensitivity is connected to the quantum Fisher
information F via the Cramér-Rao bound that states (∆ϕ)2 ≥ F−1. This inequality is
valid for linear phase imprints; in the following we call the operator that generates the
phase shift Q̂. For pure states the Fisher information is given by the variance of this
phase shift generating operator and thus reads F = 4(∆Q̂)2. Within this framework the
above heuristic argumentation connecting fluctuations to sensitivity can be tightened and
formalised: the operator generating linear spinor phase shifts is given by K̂z. Consequently,
the quantum Fisher Information of the two-mode squeezed vacuum state |r, ϕ〉 is given by
F = 4(∆Q)2 = 〈r, ϕ| (∆N+)2 |r, ϕ〉. Finally, the Cramér-Rao bound states that the phase
sensitivity fulfils

(∆ϕ+)2 ≥ [〈N〉+ (〈N〉+ + 2)]−1 (7.5)

where the lower bound agrees with the ultimate Heisenberg limit. The nonlinear readout
saturates this bound [181] – which is the subject of later chapters. Therefore, the coherent
number fluctuations inherent to the two-mode squeezed vacuum state are the resource for
quantum-enhanced interferometry.

7.7 Effects of pump depletion
In light of pump depletion the perfect agreement between the sum variance on the one
hand, and the average population on the other hand might come as a surprise. In particular
since the severe effects of pump depletion are clearly visible in the population growth
for evolution times exceeding 15ms, as shown in Figure 7.2. However, the relationship
between (∆N+)2 and 〈N+〉 that is distinctive for the two-mode squeezed vacuum state
remains to a good approximation intact for evolution times < 20ms.

Therefore, the main effect pump depletion is causing can be divided into two separate
periods of time: for short evolution times, parametric amplification remains a good
approximation – only the nonlinear coupling strength κ = gN0 is (dynamically) reduced.
While this leads to a reduced growth rate of the side modes, the emerging state still shares
the essential features of the two-mode squeezed vacuum state. This is reflected in the
relationship between average population and the respective number fluctuations.

Only for longer evolution times this effective description breaks down and the generated
state significantly deviates. This becomes most evident when considering the full number
distribution of N+ which is shown in Figure 7.6. Here for short evolution times (t = 14ms)
the thermal-like distribution arises. The black line is the expectation of a two-mode
squeezed vacuum state for the directly observed average population (indicated by dark
coloured bin). Therefore, the black line is not a fit to the data but exploits the fact that
the two-mode squeezed vacuum state is fully characterized by a single parameter, e.g. its
average value. This relationship breaks down as the evolution time proceeds. We use
this comparison to assess the effect of pump depletion. For t = 20ms the distribution
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Figure 7.6: Breakdown of the undepleted pump approximation. The atom number
distribution of the two-mode squeezed vacuum state is completely described by a single parameter,
e.g. its average mode population. Here, we show the full atom number distribution of N+ obtained
after three different evolution times under spin exchange. The respective average value is indicated
as the dark coloured histogram bin. Based on this value the expected thermal-like distribution is
shown in black. While we find perfect agreement for an evolution time of t = 14ms, significant
deviations show up for longer evolution times. Here the measured atom number histogram cannot
be described by a thermal-like distribution. At this stage the undepleted pump approximation
breaks down and the analogy to parametric amplification is invalidated. The grey dashed line
shows the results of a numerical calculation that reproduces the characteristics of the data.

that would correspond to the measured average value does not fit to the shape of the
experimental histogram that resembles a triangle. For even longer evolution times we
observe an almost uniform distribution that does not even share the characteristic skew
of the thermal-like distribution [141]. At this stage, the state wraps around the Bloch
sphere and explores the curvature of the sphere as indicated in Figure 3.5. This causes the
departure from the two-mode squeezed vacuum. For all evolution times we find reasonable
agreement to our numerical simulation which is shown as the grey dashed line.

7.8 Influence of a seed
We aim at performing spin exchange with initially empty side modes [66, 174, 198]. Under
such circumstance the quantum nature of the process is most pronounced as the two-mode
squeezed vacuum state with its large coherent fluctuations emerges.

Let us consider the consequences if one side mode is instead populated initially. We
assume that this spurious population follows Poissonian fluctuations. In section 4.6 the
analogy between the amplification of vacuum fluctuations and spin exchange was developed.
Within this framework the characteristic two-mode squeezed vacuum fluctuations that arise
during amplification, stem exclusively from the spontaneous process. If, hypothetically, the
spontaneous process were absent the amplification would not add extra noise. Therefore,
the resulting state of spin exchange is a combination of the amplified initial state, and a
two-mode squeezed vacuum state contribution. If the spontaneous process prevails, one
has on top of the largely fluctuating two-mode squeezed vacuum state a small admixture
of a coherent state. Therefore, the initial coherent population reveals itself in reduced
number fluctuations. We exploit this connection to experimentally assess the size of a
potential seed in a regime where absorption imaging cannot be used unambiguously, i.e. for
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Figure 7.7: Dependence of the atom number fluctuations on initial seeds. Measure-
ments of the atom number sum and its fluctuations can be used to bound the size of a minute seed
that might have triggered the spin exchange initially. For this we replot the data of Figure 7.5
restricted to small side mode populations 〈N+〉 < 9. In this range, depleted pump and loss
effects can be neglected. The extremal atom number fluctuation of (∆N+)2 = 〈N+〉 (〈N+〉+ 2)
(bold solid line) are obtained only for a vanishing seed. The grey lines show the expected atom
number fluctuations for the indicated seed size. Here the seed size corresponds to the average
atom number that is in each of the two side modes. The same result is obtained for unequal
partitioning as long as the total size remains equal. Therefore a seed of 1 atom could also
correspond to 2 atoms in one mode while the other mode is empty. We find best agreement to
our experimental data if we assume an initial seed of 0.25 atoms; On grounds of this analysis we
can exclude seeds greater than 0.5 atoms.

average mode populations < 0.5 atoms. Thereby we probe an initial seed via the ensuing
spin exchange dynamics. For this we compare the measured number fluctuations of N+ to
the extremal value of (∆N+)2 = 〈N+〉 (〈N+〉+ 2) which corresponds to the spontaneous
contribution. In Figure 7.7 this limit amounts to the solid black line. The experimental
data and its exposition is identical to Figure 7.5. However, here we restrict ourselves to
small atom numbers; then the discussion is model independent as the influence of loss and
pump depletion can be neglected. The grey lines show the predicted number fluctuations
for various seed sizes. For instance, the line labelled 1 reflects a seed with 1 atom per
side mode; portioning the – in total – 2 atoms differently among the two modes yields
equivalent results. We find the experimental data to lie somewhat consistently below the
bound of the two-mode squeezed vacuum state. Best agreement is found when assuming a
seed of size 0.25 atom. Seed sizes larger than 0.5 atoms can be excluded on this basis.
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Chapter 8

Quantum-enhanced sensing based on
time reversal

Having characterized the building block of spin exchange and the nascent entangled state
we now detail the interferometric sequence that arises when two periods of spin exchange are
performed in sequence. In this section we study the symmetric case where initial entangling
and subsequent nonlinear readout are matched in length. First, we study the particular
case of time reversal and present its connection to noiseless amplification. We then
continue with the full phase dependence and experimentally assess the quantum-enhanced
performance. We explicitly demonstrate a phase sensitivity that beats the classical limit.
We conclude with describing the noise tolerance of the presented interferometry scheme
which will be revisited in the following chapter. The content of this chapter is published
in reference [199].

8.1 Time reversal
Having established that the fluctuations of N+ are idiosyncratic for the two-mode squeezed
vacuum we now present the complete scheme for disentangling readout via time reversal.
This scheme is divided into three parts; entangled state generation, phase interrogation,
and finally, a matched period under time reversal to disentangle the state. Such a tripartite
time sequence is shown in Figure 8.1 a) where the variance of N+ is plotted as a time trace:
first, evolution under the nonlinear spin exchange Hamiltonian generates the entangled
state (time frame indicated by red arrow). During this initial entangled state preparation
the variance experiences a drastic build-up (up to 8ms). Subsequently, spin exchange is
stopped to allow for linear phase interrogation. This interrogation time is chosen such
that a dynamic spinor phase of π accumulates. The second period t2 of spin exchange
then proceeds with negative coupling strength (see blue arrow). Therefore the fluctuations
are revoked. We find a pronounced minimum for approximately matched evolution times
t1 ≈ t2. Ideally, at this point the second period of spin exchange reverses the effect of the
first such that the well-known separable initial state is recovered. For longer evolution times
the process of entanglement generation starts all over again concomitant with growing
fluctuations.

In the following we investigate the balanced situation of two equally long periods of
spin exchange. In panel b) the variance after the first (red diamonds) and second (blue
circles) period of spin exchange is shown, respectively. By postselecting experimental
realizations with different total atom numbers the effective nonlinear coupling strength is
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Figure 8.1: Disentangling with nonlinear time reversal. a) The nonlinear readout scheme
is divided into three parts. During the first period an entangled state is generated (red arrow): the
time trace of the characteristic variance (∆N+)2 shows a drastic increase as quantum correlations
are built up. During the interrogation stage (grey) nonlinear spin exchange is stopped. With a
spinor phase of π being accumulated the ensuing period of spin exchange revokes the fluctuations
generated during the first period. We find a pronounced minimum close to the matched case
of equal evolution times, t1 ≈ t2. This setting is studied in more detail in panel b): here the
entanglement and subsequent disentanglement is probed for different strengths of the nonlinear
process, i.e. by tuning κt. For this the side mode variance (∆N+)2 before (red diamonds) and
after time reversal (blue) is shown. The red line shows the expected behaviour in undepleted
pump approximation. Over the entire range of nonlinear couplings we find good reversion to the
initial state (dashed).

varied additionally to choosing evolution times in the range of t1 = t2 = 7− 10ms. For
the full range of experimental parameters we find good reversion to the initial state with
vanishing atom number (dashed line). The red solid line is a fit to the expected variance
increase within undepleted pump approximation.

8.2 Noiseless amplification
Within the amplification framework the time reversal readout can be understood as
noiseless amplification. To see this we first have to clarify in what sense amplification
usually adds spurious noise [67, 87]. For this we consider a single mode, say |↑〉 with
average atom number 〈N in

↑ 〉. In the process of spin exchange the atom number of this
mode gets amplified to 〈Nout

↑ 〉 = cosh2(κt) 〈N in
↑ 〉+ sinh2(κt) as shown in section 4.6. Here,

the term sinh2(κt) describes the effect of spontaneous amplification, i.e. amplification
of vacuum fluctuations. This is responsible for a degradation of signal-to-noise during
amplification. To see this we look at the atom number variance of this single mode [200].
It is given by

(∆Nout
↑ )2 = cosh4(κt)(∆N in

↑ )2 + (N in
↑ + 1) sinh2(κt) cosh2(κt) . (8.1)

In the large gain and population limit the signal-to-noise ratios read: Sin/Sout = Sin + 1
where Sin denotes the signal-to-noise ratio for the input mode, Sin = (N in

↑ )2/(∆N in
↑ )2 and
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a similar definition holds for mode |↑〉. For Poissonian mode population at the input the
signal-to-noise ratio is thereby bisected. This is usually referred to when saying that the
noise figure increases by at least 3 dB during amplification [87].

While we used the specific spin exchange Hamiltonian for this derivation the argument
is general. It goes back to Haus and Caves [201, 202] who recognized that quantum
amplification cannot be realized by simply substituting mode operators like â→ Gâ where
|G|2 would correspond to the amplifier’s gain. Instead, quantum mechanics forces the
introduction of additional degrees of freedom for the amplifier – otherwise the bosonic
commutation relations could not be retained. Such internal modes deteriorate the signal
via their spontaneous amplification [87].

For the spin exchange an extra degree of freedom is given by the other side mode,
i.e. |↓〉. The 3 dB noise limit on amplification can be surpassed by using entanglement
[88, 203]. For this the mode to be amplified (|↑〉) needs to be entangled with the amplifier’s
internal mode (|↓〉). In the spin exchange setting this is naturally the case. Under such
conditions the amplification is noiseless. This is because the spontaneous term sinh2(κt)
which degrades the output signal is removed by destructive interference between the two
entangled modes.

As we start the interferometric sequence with initially empty side modes we probe
this destructive interference in its purest form. Therefore, the absorption of fluctuations
which is enabled by entanglement makes noiseless amplification possible. In light of this
amplification framework we can now reinterpret the results shown in Figure 8.1 b): in
fact, the variance obtained after the initial entangling reflects the quantum mechanically
required spurious noise during amplification. This corresponds to Equation 8.1 when no
input signal is applied. Therefore the measurement originally used to characterizes the
generation of the entangled state also represents the minimal amount of noise that is
added during amplification. This noise level can only be surpassed by using entanglement.
This is demonstrated by the subsequent time reversal. Here almost no spurious noise is
added during the final amplification process and the noise limit of amplification is clearly
surpassed. In this scheme the first period of spin exchange is used to generate entanglement
with respect to the amplifier’s internal mode. For actual amplification purposes the signal
that shall be amplified has to be mixed with this entangled state. This could readily
be achieved by applying a microwave pulse to either of the side modes in between both
periods of spin exchange. A analogous scheme has recently been realized with entangled
photons [88]. This noiseless amplification during readout is an important feature of the
interferometric sequence which we will detail in the following chapter.

8.3 Interferometry fringe
With time reversal being reached for the particular phase setting ϕ = π we now study the
nonlinear readout scheme for arbitrary phase imprints. After a spinor phase imprint of ϕ
the nonlinear readout implements the mode transformation


a↑
a†↓


→

(
cosh κt eiϕ sinh κt

e−iϕ sinh κt cosh κt

)
a↑
a†↓


 . (8.2)

Applying this transformation to the two-mode squeezed vacuum state yields an interfero-
metry fringe that is given by

〈N+〉 = 〈N inside
+ 〉 (〈N inside

+ 〉+ 2)(1 + cosϕ) ≡ V(1 + cosϕ) . (8.3)
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Figure 8.2: Side mode populations for different phase imprints. a) Average side mode
population 〈N+〉 during the interferometric sequence. The first period of spin exchange lasts for
8ms. At this point (indicated by the vertical grey line), different spinor phases are imprinted (see
legend) before spin exchange is continued for another 8ms. Time reversed dynamics is obtained
for a phase imprint of π (red). All other shown phase imprints lead to an amplified output signal.
Solid lines show the result of numerical simulations. b) The characteristic interferometry fringe
is obtained in the balanced case of equal durations, t1 = t2 (square plot markers in panel a).
The horizontal grey line denotes the average side mode population after the first period of spin
exchange.

Here 〈N inside
+ 〉 denotes the average atom number of the initial two-mode squeezed vacuum

state that acts as the probe state. This state is generated by the first period of spin
exchange and constitutes the quantum resource for phase sensing. The nonlinear coupling
strength (and duration) for both periods of spin exchange are matched. Otherwise evolution
under the time reversed generation process at phase ϕ = π would not yield complete
cancellation. We will study this nonbalanced scheme in a later chapter.

Experimentally, we detail the occurrence of an interferometry fringe in Figure 8.2. In
panel a) a time trace of the side mode population during the interferometric sequence is
shown. The first period of spin exchange ends after 8ms as indicated by the vertical grey
line. At this point different spinor phases are imprinted. For this, microwave dressing
is stopped, and the pump mode is shelved in |1, 0〉 to quickly interrupt spin exchange.
Holding the atoms for a variable time (which is not shown in the figure) realizes different
spinor phases. Then spin exchange is continued by swapping the pump back to |2, 0〉 and
reactivating microwave dressing. The solid lines denote the results of numerical simulations
without any free parameters. After 8ms (indicated by the dashed rectangle) the average
side mode population constitutes the interferometry fringe as shown in panel b (note the
common plot markers). The black line is a sinusoidal fit, while the horizontal grey line
indicates the average side mode population 〈N inside

+ 〉 generated by the first period of spin
exchange.

8.4 Population distribution
The state leaving the interferometric sequence is a two-mode squeezed vacuum state.
In Figure 8.3 we show experimentally obtained histograms of the summed side mode
populations N+. The black lines are fits to the expected thermal distribution also taking
into account detection noise by convolution with a Gaussian of appropriate width. The
red histogram on the left shows the probe state inside the interferometer. Its average
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Figure 8.3: Full counting statistics of the time reversal sequence. Experimental pop-
ulation distributions of N+ at different stages of the interferometer: the red histogram shows
the population within the interferometer. Its average value is indicated by the red horizontal
line. The grey scale bar denotes a frequency of 5%. For all phase imprints the population
distributions recorded at the output of the interferometer (blue) follow a thermal-like distribution.
The black lines are fits to thermal distributions also taking into account Gaussian detection noise.
Each histograms contains about 750 experimental realizations. The respective average values
(indicated by the dark coloured bins) give rise to the interferometry fringe which is shown in the
lower panel. Note that the lower panel is a zoom-in into the grey shaded area.

atom number (〈N inside
+ 〉 = 2.8) is indicated by the dark coloured bin. At this small

average population the width of the histogram is predominantly caused by detection
noise. The blue histograms are recorded at the output of the interferometer for different
applied spinor phase imprints inside. They show the skewed population distributions
characteristic of the two-mode squeezed vacuum state. With the individual distributions
being widespread, their average value (indicated by the dark coloured histogram bin)
remains constrained to the grey shaded area. A zoom-in into this grey shaded area reveals
the interferometry fringe (lower panel). The black line is a sinusoidal fit which agrees with
the results of numerical simulations. The average atom number of the probe state inside
the interferometer is denoted by the horizontal red line. The intrinsic amplification of the
nonlinear readout scheme becomes apparent when comparing this level to the maximal
fringe size as indicated.

8.5 Variance fringe
The fluctuations of the interferometry fringe follow directly from the fact that the output
state is two-mode squeezed vacuum. The variance of N+ reads

(∆N+)2 = 〈N+〉 (〈N+〉+ 2) = 2V(1 + cosϕ) + [V(1 + cosϕ)]2 . (8.4)
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Figure 8.4: Variance fringe. Fringe of the atom number sum variance recorded at the output.
The phase dependence is non-sinusoidal: in the vicinity of the dark fringe at ϕ = π, the variance
is significantly flattened resembling a bathtub curve. The black line shows the expected behaviour
in undepleted pump approximation. This is not a fit to the data but instead takes the average
atom number as input. Significant deviations are found only at the maxima where pump depletion
limits the variance growth. The grey dashed line denotes a numerical simulation. Close to the
dark fringe both methods describe the data similarly well.

This relationship leads to a non-sinusoidal atom number variance: the output signal has
two Fourier components with the effect of a flattening close to the fringe minimum at
spinor phase setting ϕ = π. Therefore close enough to the point of complete time reversal
the variance remains levelled. The measured fringe of the atom number sum variance
(∆N+)2 as depicted in Figure 8.4 and clearly shows this nonsinusoidal fringe. The black
solid line is the expectation within undepleted pump theory. Here based on the measured
interferometry fringe of 〈N+〉 the variance expectation (∆N+)2 = 〈N+〉 (〈N+〉 + 2) is
plotted. The deviations at the fringe maxima are caused by pump depletion. This effect
is well captured in the numerical simulation (dashed grey line). Close to the minimum,
pump depletion is negligible and both theory lines coincide. Error bars of the variance
are estimated using the jackknife method. In this resampling technique, the error of the
variance is determined by the impact it makes if any single observation is omitted. The
combination of both, a flattened variance and a sinusoidal average output signal as shown
in Figure 8.3 allows for improved phase sensitivity. We elaborate on this in the next
section.

8.6 Quantum-enhanced phase sensitivity
By virtue of the nonlinear readout the spinor phase is mapped onto the first moment of
the output distribution, i.e. the average atom number. Consequently, the phase sensitivity
can be estimated by employing error propagation onto this average output signal [89, 177],

(∆ϕ)2 = (∆N+)2

|d 〈N+〉 /dϕ|2
. (8.5)

Remarkably, this simple procedure is optimal as it saturates the Cramér-Rao bound [181].
High phase sensitivities correspond to small errors (∆ϕ)2 on the inferred phase with the
classical bound being given by (∆ϕ)2 = 〈N inside

+ 〉−1. On a phenomenological level this
limit can be surpassed because the atom number variance of the output signal remains
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levelled close to the fringe minimum. At the same time the output fringe is sinusoidal and
magnified by the interferometer’s intrinsic amplification. The combination of both effects
yields a phase sensitivity given by

(∆ϕ)2 = 1
1− cosϕ

[
2

〈N inside
+ 〉 (〈N inside

+ 〉+ 2) + (1 + cosϕ)
]
. (8.6)

The optimal working point is at spinor phase ϕ = π which corresponds to the time
reversal setting. Here a phase sensitivity at the ultimate Heisenberg limit is attained,
(∆ϕ)2 = 〈N+〉 (〈N+ + 2〉)−1. When leaving this working point phase sensitivity degrades.
Quantum-enhanced performance is obtained only within a phase window given by ϕ =
± arccos

(−〈N+〉 /(〈N+〉+ 2)
)
. Therefore, the larger the size of the probe state, 〈N+〉, the

smaller the region of quantum-enhanced performance gets [177].
Figure 8.5 details the experimental procedure to extract the phase sensitivity. Panel a)

shows the average atom number 〈N+〉 in close vicinity of the dark fringe. We determine
the slope of the signal by a sinusoidal fit (black solid line). Since pump depletion limits the
growth of the side mode population at the fringe’s maximum this fit takes into account only
the data points close to the minimum. We investigate and justify this fitting procedure
below. Based on this fit the expected shape of the associated number variance is estimated.
The result is shown as the solid black line in panel b). We find perfect agreement when
allowing for an offset of 4 atoms2 that displaces the expected variance curve vertically.
This heuristic offset takes into account the experimentally nonideal reversion to vacuum.
For a two-mode squeezed vacuum state this variance corresponds to an average mode
population of 0.65± 0.05 atoms per side mode. The independently characterized detection
noise (which amounts to 33 atoms2 in (∆N+)2) is indicated by the dotted horizontal line.

The resulting phase sensitivity is shown in panel c). For this we evaluate the measured
atom number variance at each phase setting and divide it by the derivative of the
output signal which in turn is obtained from the fit as detailed above. At spinor phase
ϕ = π a division by zero is encountered. However on both sides of the divergence we find
experimental phase sensitivities that surpass the Standard Quantum Limit (SQL, indicated
by the grey bar). The black solid line shows the phase sensitivity that is expected from the
fits of the atom number 〈N+〉 and the variance, respectively. The width of the divergence
at phase ϕ = π is caused by the residual fluctuations found at the fringe minimum. In
contrast, the dashed line shows the phase sensitivity if reversibility were ideal and no offset
in variance is included. In the inset the phase sensitivity over the full phase range 0− 2π
is shown. High phase sensitivity which surpasses the Standard Quantum Limit is reached
only in vicinity of the dark fringe where (partial) time reversal occurs. At other working
points only poor sensitivity is found. We find good agreement to the theory over almost
two orders of magnitude.

The value of the SQL and Heisenberg limit, respectively, are determined by directly
measuring the phase sensing average atom number inside the interferometer. For these meas-
urements we omit the second period of spin exchange. Similar to the control measurements
used to independently characterize the detection noise we perform these runs interleaved
with the measurements of the full interferometric sequence. The width of the grey bars
reflect the uncertainty in determining this average atom number 〈N inside

+ 〉 = 2.8± 0.2.
We choose such small probe sizes to ensure that during the nonlinear readout the pump

is not significantly depleted. By recording the entire fringe, we demonstrate the nonlinear
readout in its idealised form of an SU(1,1) interferometer. Note that for phase sensing
applications the limitation on small probe sizes is relaxed significantly. This is because the
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Chapter 8. Quantum-enhanced sensing based on time reversal

optimal working point is close to time reversal where pump depletion is negligible. In such
situations, the probe size can be increased by an order of magnitude – until eventually
pump depletion in the preparation step (and not during readout) limits the generation of
an entangled state.

8.7 Fringe enhancement and noise suppression
In this section we study the underlying working principle of the balanced interferometer
in more detail. During the nonlinear readout the output fringe’s size gets magnified while
the fluctuations at the point of time reversal remain suppressed. In the previous section
we identified this interplay as the key feature which enables quantum-enhanced phase
sensitivity. Here we systematically study this interplay for a wider range of nonlinear
couplings; in particular, we explore the regime of larger spin exchange durations.

Figure 8.6 a) shows the output fringe obtained for different durations of spin exchange,
ranging between 6− 9ms as indicated. For clarity, the fringes are displaced horizontally.
Technically, the phase of each fringe is scanned by an identical holding period that ranges
between 0− 2ms. Clearly, the fringe size increases drastically for larger durations of spin
exchange. Going from 6 to 9ms (a mild increase of 50%) magnifies the fringe by a factor
of four. The solid lines are sinusoidal fits. The horizontal lines denote the average atom
number within the interferometer. Experimentally, we find a less perfect reversibility for
long durations. The corresponding fringe minima are shown in panel b). We investigate
this theoretically not expected behaviour at a later point in time. The fringes of the
atom number variance are shown in panel c). Here the solid lines correspond to the
expected behaviour within undepleted pump approximation. The variance fringe grows
drastically in size when extending the duration under spin exchange. Consequently, the
phase window for which a flattened variance is found becomes narrower; thereby, the region
of quantum-enhanced phase sensitivity shrinks accordingly as mentioned above. The inset
shows the data in logarithmic scale. The horizontal bar denotes the level of fluctuations
generated by the first period of spin exchange. Compared to this level, we find significantly
reduced fluctuations close to the fringe minima. Panel d) shows a common zoom-in into
the minimum of each variance fringe. We find perfect agreement to the undepleted pump
theory. This excellent agreement to theory motivates us to estimate the phase sensitivity
in an indirect manner by using these fitted curves. We detail this procedure in the next
sections.

8.8 Determining the derivative of the output signal
A crucial part in determining the phase estimation is the experimental determination of
the output signal’s slope. Ideally, the visibility of the fringe V and thus the signal’s slope
is given by the number of atoms inside the interferometer,

V = 2 〈N inside
+ 〉 (〈N inside

+ 〉+ 2) (8.7)

Experimentally, however, the fringe visibility is reduced by both, pump depletion that
affects the fringe maximum, and incomplete reversion at the minimum, respectively. In
Figure 8.7 we experimentally assess the connection between fringe visibility and average
probe atom number. We employ two fitting methods to estimate the slope of the signal. To
compare both methods we use the inferred value of the probe atom number as a common
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Figure 8.5: Quantum-enhanced phase sensitivity. The phase sensitivity is estimated by
applying Gaussian error propagation onto the average atom number 〈N+〉. a) The derivative of
the output signal is determined by a sinusoidal fit (black line). To limit spurious effects of pump
depletion we restrict the fit to the vicinity of the fringe minimum. The corresponding variance is
shown in panel b). The dotted line indicates the contribution of detection noise which amounts
to 33.5± 1.3. The fringe shows the characteristic levelling-off close to spinor phase π. The black
line denotes the expected variance in undepleted pump theory. We find good agreement when
allowing for an atom variance offset (as shown in panel a) which takes into account the nonideal
reversibility. c) Phase sensitivity. The Standard Quantum Limit (denoted by the grey bar, width
corresponds to two s.d.) is surpassed in close vicinity of the fringe minimum. The dashed line
denotes the undepleted pump theory which attains the Heisenberg limit (grey bar), while the
black lines includes additional fluctuations due to the nonideal reversibility which leads to a
divergence at spinor phase π. The SQL and Heisenberg limit, respectively, are determined by
independent measurements of the atom resource inside the interferometer. The inset shows the
phase sensitivity over the full phase range; over two orders of magnitude we find good agreement
to theory.

97



Chapter 8. Quantum-enhanced sensing based on time reversal

9
8
7
6

Phase ϕ

0

20

40

60

0

100

200

0

2

4

6

Phase     (deg)ϕ

0

500

1000

1500

2000

2500

Duration (ms)

S
id

e 
m

od
e 

po
pu

la
tio

n
S

id
e 

m
od

e 
va

ria
nc

e

140 180 220

140 180 220

Phase ϕ

Phase ϕ

a) b)

c) d)

100

101

102

103

Figure 8.6: Fringe enhancement and noise suppression. a) Output fringes obtained for
different durations of spin exchange as indicated by colour. For illustrative reasons the individual
fringes are displaced and drawn next to each other. The atom number generated by the first
period of spin exchange is indicated by the respective horizontal line. Starting from this level,
the second period of spin exchange amplifies the atom number in a nonlinear fashion. Thereby
the overall fringe size is drastically enhanced easing detection. For each case, both periods of
spin exchange have equal duration such that time reversal to the initial vacuum state is expected
at the minima. Solid lines are sinusoidal fits. b) Zoom-in into the fringe minima. Experimentally,
best reversibility is found for short durations of spin exchange. c) Atom number variance of the
output fringe. While at the maxima the variance grows massively, the flattened region around
the dark fringe becomes compressed for longer durations under spin exchange. Starting from the
average side mode population (shown in panel a), the solid lines indicate the expected variance
in undepleted pump approximation. The inset shows the data semi-logarithmically, highlighting
the suppression of fluctuations down to single quanta level. d) Zoom-in into the fringe minima.
We find the phase dependence of the variance to be well described within undepleted pump
theory (solid lines). We merely allow for a phase-independent noise offset to take into account
the imperfect reversibility.
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reference. Finally we compare the respective fitting result to the directly measured average
atom number of the probe state which is plotted on the y-axis. For this procedure
we consider balanced interferometry sequences with durations of spin exchange ranging
between 6−10ms. Additionally, we include different total atom numbers in the analysis to
extend the dynamic range to 〈N inside

+ 〉 = 1−10. Examples of the underlying interferometry
fringes are shown in Figure 8.6a). The theory expectation (Equation 8.7) is represented
by the black diagonal line in Figure 8.7 a). The red data shows the result if the entire
fringe is fitted with one sinusoidal function. Since pump depletion strongly modifies the
output fringe this yields a severely underestimated slope of the signal. This is exemplified
in panel b) which shows the extreme case of 〈N+〉 = 12 (rightmost point in panel a)
corresponding to 10ms of spin exchange. Evidently, the data cannot be described by such
a single sinusoidal fringe (red). In particular the signal’s slope close to the fringe minimum
is underestimated massively (see inset). To capture the slope more accurately we restrict
the sinusoidal fit to the minimum (indicated by solid blue line). The dashed line shows
the continuation of this sinusoidal fit and thus the influence of pump depletion.

Going back to panel a) the atom number extracted by this fitting method is shown
in blue. While it yields better agreement to the theory expectation the slope is still
underestimated which is caused by the residual atom number found in the minimum.
Remarkably, both fitting methods underestimate the probe atom number by a fixed
(relative) portion. The two dashed line indicate this linear trend. Fitting the minimum
underestimates the average atom number inside the interferometer by ≈ 15% regardless
of the nonlinear coupling strength employed. Therefore, pump depletion and imperfect
reversibility cannot be treated in a threshold-like manner which modifies the slope only
when a specified atom number 〈N+〉 is exceeded. Since the probe atom number is
never overestimated, the fitting procedure provides a experimentally reliable method that
estimates the fringe’s curvature in a conservative manner.

8.9 Indirect estimation of the phase sensitivity
In section 8.6 we experimentally characterized the phase sensitivity in a model independent
way. For this the spinor phase was sampled with high resolution. For the more coarsely
grained data presented in the previous section 8.7 the good agreement to the undepleted
pump theory permits us to estimate the phase sensitivity in an indirect manner. For this
purpose, we assume that close to the fringe minimum the shape of the variance follows
the undepleted pump theory. The nonideal reversibility is taken into account by including
an additional offset. This variance offset is determined directly from the experimental
data (see Figure 8.6 d) and corresponds to the experimentally observed minimal variance.
In Figure 8.8 we plot this variance offset found at the fringe minimum versus the size of
the fringe. The colour coding is in accordance with Figure 8.6, blue data corresponds to
10ms of spin exchange. For each duration we postselect three different total atom numbers
in the range of 350− 500 . In panel a) the fringe size is estimated by fitting the overall
fringe. Therefore, this plot summarises the variance found in the fringe minimum (y-axis),
and the overall fringe size (x-axis) as indicated in the inset. As shown in the previous
section, a more accurate way to estimate the slope of the signal is by considering only
the data close to the dark fringe. Such a determination of the fringe size is performed in
panel b). In both panels the dashed line indicates the excess variance for which a phase
sensitivity at the Standard Quantum Limit (SQL) is retained. Therefore, we infer phase
sensitivities that surpass the SQL for a wide range of parameters. The comparison to
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Figure 8.7: Output fringe and atom number inside. Comparison of the directly measured
average side mode population within the interferometer (y-axis) and the inference from the
output fringe (x-axis). Agreement between the methods corresponds to the black diagonal line.
Taking into account the entire fringe amounts to taking the overall fringe height as a measure
(red). Because pump depletion limits the growth predominantly at the maxima this procedure
systematically underestimates the atom number. If only the minimum of the fringe is fitted (blue)
a more accurate result is obtained. In this case, the atom number is underestimated because
of imperfect reversion at the fringe minimum which reduces the curvature. b) To illustrate
the deviation from a sinusoidal fringe in the clearest manner, we show an exemplary fringe
for the longest experimentally studied spin exchange durations (10ms) and largest total atom
numbers (550). Clearly, the sinusoidal fit (red) barely reflects the data. In particular, it clearly
underestimates the fringe’s curvature around the minimum (see inset). A fit that only takes into
account the data in close vicinity of the minimum is shown in blue.
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Figure 8.8: Indirect estimation of the phase sensitivity. From the comprehensive data
presented in Figure 8.6 the phase sensitivity can be estimated. Since the experimental phase
increment is too coarse to allow for an analysis akin to section 8.6 we use a more indirect way to
assess the phase sensitivity. For this the variance obtained at the minimum is plotted versus
the size of the output fringe. The latter is extracted by fitting either the entire fringe data
set (panel a), or, more accurately, by taking into account only the minimum (panel b). In
either case, the dashed lines indicates the amount of spurious noise that is tolerated by the time
reversal sequence to still operate at the Standard Quantum Limit (SQL). For this we assume
that the spurious noise adds to the variance fringe, whose functional form (phase dependence) is
otherwise left unchanged. Even when underestimating the slope of the signal (left panel) sub-shot
noise performance is expected for sufficiently long evolution times. Colour coding is similar to
Figure 8.6 and used to indicate the duration under nonlinear evolution (blue corresponds to
10ms). Additionally, runs with different total atom numbers (375, 425, 475) are postselected.

panel a) elucidates the robustness of this improvement.

8.10 Residual atom number in minimum
In this section we take a closer look at the residual atom number found in the fringe
minimum. As shown in the inset of Figure 8.6 b) best reversibility is achieved for short
durations t of spin exchange. Additionally, we empirically find a strong dependence on
the total atom number. Combining these two findings, the residual atom number behaves
similar to ∝ N2t. Figure 8.9a) shows this behaviour. Over a wide range of spin exchange
durations as indicated in colour and different total atom numbers the data points coalesce
to a common trend.

On grounds of the numerical simulation this behaviour is unaccounted for. In particular,
particle loss cannot be held responsible for the imperfect reversibility. To explain this
imperfection, loss rates 50 times larger than the observed ones would be needed. In
principle, a source might be phase jitter which yields to a washing out of the fringe
as indicated in the inset of panel b). However, this leads to inconsistencies which we
investigate further in Figure 8.9 b). Here the amount of phase jitter ∆ϕ which would
explain the observed residual atom number is plotted. We find this value to be nearly
atom number independent. This is because the overall size of the output fringe is given by
sinh4 κt and thus shares the proportionality with ∝ N2. This atom number independence is
evidence that suggests a exogenous origin. However, we find this assumption contradicted
by the different amount of phase noise that is inferred for each evolution time. Even worse,
for longer durations of spin exchange the amount of phase noise is reduced.
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Figure 8.9: Residual population in fringe minimum. a) Atom number offset at the
minimum of the fringe for different durations of the nonlinear spin exchange t (indicated by
colour) and different total atom numbers N . Heuristically, we find that the residual atom number
scales similar to ∝ N2t (x-axis). As detailed in the text, a proportionality with respect to N2

hints at phase jitter as a possible cause. However, in panel b) we exemplify that phase jitter (as
shown in the inset) cannot be held responsible. Here, the spinor phase jitter ∆ϕ (one s.d.) that
is needed in order to fully explain the residual atom number at the fringe minimum is calculated
and the result plotted versus the total atom number N . The dominant source of (putative)
spinor phase fluctuations is the microwave dressing, therefore the phase jitter should be worse
for long periods of spin exchange. However, panel b) shows the opposite trend. We therefore
conclude that the residual atom number at the fringe minima is not caused by phase jitter.

Being unable to explain this finding, we finally checked that the effect of atom number
dependent collisional shifts is negligible. In principle, because we postselect experimental
runs in a finite atom number window such collisional shifts could lead to dephasing. We
detail the sensitivity to collision shifts in the next section.

8.11 Characterization of collisional shifts
The collisional interactions lead to an energy shift of the pump mode with respect to
both side modes. Therefore, these shifts contribute to the dynamic spinor phase rotation
during interrogation such that the fringe frequency is altered. In Figure 8.10 we show
interferometry fringes obtained for different postselections on total atom numbers, ranging
from N = 300 (red) to N = 500 (green). For illustrative clarity the fringes are displaced
vertically. To make the collisional interactions visible we extend the duration of phase
evolution up to 55ms. After this hold time the collisional shifts lead to a significant
dephasing of the fringes. The additional change in fringe visibility is caused by the atom
number dependence of the nonlinear coupling strength. In fact, both, the collisional shifts
as well as the nonlinear coupling strength describing population transfer are identical,
given by ~κ as stated above. In panel b) we compare the measurement of both effects:
the coloured data shows the measured fringe frequency as a function of atom number. In
contrast, the grey diamonds and the solid line represents the atom number dependence
found for the nonlinear coupling as plotted in Figure 7.2. Both measurements agree when
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Figure 8.10: Measurement of the collisional shifts. a) Interferometry fringes obtained for
different total atom numbers (indicated by colour, and identical to panel b). For illustrative
reasons the corresponding fringes are displaced vertically by 10 atoms. The hold time under
which the spinor phase dynamically evolves ranges up to 55ms. Eventually, the collisional shifts
lead to a dephasing of the fringes as shown in the right panel. b) The coloured data points show
the frequency of the output fringes shown in panel a) versus total atom number. For comparison,
the grey diamonds (and solid line) represent the data of Figure 7.2, in which the nonlinear
coupling strength κ is determined via the nonlinear population growth. Excellent agreement
between both results is found when the latter is offset by 2π × 180Hz which corresponds to the
detuning δmw = 2π × 90Hz of the microwave π-pulse used for pump shelving.

adding to the latter a frequency offset which corresponds to the detuning of the microwave
π-pulses used for pump mode shelving. Based on this perfect agreement we deduce that
the microwave detuning is δmw = 2π × 90Hz.

8.12 Immunity towards detection noise
As motivated in this thesis’ introduction the nonlinear time reversal scheme is particularly
robust towards detection infidelities. This is because at the point of highest phase
sensitivity, the entangled probe state is disentangled which facilitates robust readout. In
this section we quantitatively compare the performance of different interferometry schemes
when spurious detection noise is added.

A passive interferometer usingN uncorrelated particles performs at best at the Standard
Quantum Limit, (∆ϕ)2 = 1/N . The interferometry fringe is recovered by measuring the
atom number imbalance. To assess the phase sensitivity error propagation on the average
atom number imbalance suffices. Allowing for additional technical detection noise the
optimal working point is at the steepest slope of the signal, i.e. the point of vanishing
imbalance. Quantifying the detection noise by an additional variance of ∆det we obtain a
phase sensitivity of

(∆ϕ)2 = 1
N

+ ∆det

N2 (8.8)

This behaviour is shown in Figure 8.11 as the dotted black line. For this, a probe state of
size N = 2.8 is chosen to be consistent with the experimentally realized case in section 8.6.

The phase sensitivity of such an SU(2) interferometer can be improved when using the
two-mode squeezed vacuum state at its input. However, to exhaust this quantum resource,
accurate single-particle readout is essential since the full atom number correlations of
the output signal need to be analysed. This is typically achieved by evaluating the
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Figure 8.11: Sensitivity towards detection noise for different interferometry schemes.
Using an uncorrelated state (black dotted) in a passive interferometer allows reaching the Standard
Quantum Limit (SQL) of phase sensitivity. If detection noise is added, the achievable phase
sensitivity diminishes in an asymptotically linear fashion. Using a maximally entangled probe state
(blue dashed) in such an interferometer, allows in principle to attain the ultimate Heisenberg limit.
However, for this, accurate detection is indispensable. Already small detection noise contributions
on the order of 0.1 atoms2 in variance prevent reaching quantum-enhanced sensitivities. The
nonlinear detection scheme combines the advantages of both mentioned techniques: it attains the
Heisenberg limit but is also robust with respect to detection noise as it resembles the unentangled
state behaviour for large detection noise.

atom number parity Π. This observable is assigned +1 if the single shot output atom
number (at one output port) is even, and −1 for an odd atom number detected. In
Figure 8.12 a) we show simulated atom number distributions recorded at one output port
of the interferometer. Similar histograms were introduced in this thesis’ introduction.
We use a two-mode squeezed vacuum state with average atom number N = 2.8. The
black histograms correspond to the ideal case of vanishing detection noise, while the red
distribution is obtained when detection noise of 0.3 atoms2 in variance is included. For
both cases, panel b) shows the average parity as a function of applied phase shift. For
the ideal case (black) an average parity signal of +1 is reached at phase π/2. At this
working point, highest phase sensitivity (at the Heisenberg limit) is reached. Retuning to
the histograms, this corresponds to the lowest panel at which only even atom numbers
are detected. Highest sensitivity is reached at this point, because already a minute phase
change causes the population of odd atom numbers. At this stage, the additional detection
noise of 0.3 atoms2 appears to be insignificant (red). However, quantum-enhanced phase
sensitivity is lost at this stage. The results of this calculation are shown in Figure 8.11
as the blue dashed line. For this simulation the entire atom number distribution is used.
Using a more sophisticated analysis of the data, quantum-enhanced phase sensitivity can
be maintained for slightly larger detection noises. Such an analysis is routinely done in
practical applications. Here, only experimental realizations are postselected, for which the
detected atom number falls into a well-specified window around the integers. However, if
this binning threshold is too small, too many realizations are discarded which deteriorates
the phase sensitivity. In Figure 8.13 c) the trade off between postselection and phase
sensitivity is shown. By optimization, a phase sensitivity barely at the SQL can still be
attained at a detection noise of 0.3 atoms2.
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The linear readout is characterized by a threshold behaviour as shown in Figure 8.11:
as long as the detection noise is sufficiently small such that no ambiguities arise when
determining the single shot parity, the phase sensitivity remains close to the Heisenberg
limit. However, when the detection noise exceeds this level, the parity cannot be evaluated
in a single shot and the output signal therefore ceases. The output fringe cannot be
recovered by averaging more experimental realizations. At this point phase sensitivity
degrades extremely fast and is even inferior than interferometry with uncorrelated particles
(black dotted). Therefore, using an entangled state in this situation is not just not better
than using a robust classical states, but instead worse: the linear readout relies crucially
on accurate detection.

The nonlinear readout scheme combines the advantages of both aforementioned tech-
niques: the detection robustness of uncorrelated particles with the quantum-enhancement
sensitivity of entangled particles. Due to the (dis-) entangling prior to detection, the
phase sensitivity is mapped onto the easily detectable first moment: the atom number
distribution follows a thermal-like distribution which is characterized entirely by its average
atom population. In contrast to linear readout, there is no fine grained structure which
has to be resolved. Therefore, when detection noise is added the output fringe can be
averaged down – no matter how large the noise is. However, the optimal working point
depends on the magnitude of the detection noise as demonstrated in Figure 8.13. Taking
this into account, the phase sensitive shown as the red line in Figure 8.11 can be reached.
For small detection noise, the Heisenberg limit is asymptotically attained. For larger noise
the phase sensitivity degrades mildly in a fashion comparable to the separable state.
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Figure 8.12: Parity detection of the two-mode squeezed vacuum state a) Using the two-
mode squeezed vacuum state in a passive SU(2) interferometer requires accurate measurements
of the parity signal. Simulations are performed for a probe state with average atom number
〈N〉 = 2.8. The ideal output histograms (atom number detected at one output port) for four
phase settings are shown in black. Highest phase sensitivity is reached at phase π/2 where
the output signal consists of even atom numbers (lowest histogram). The red lines show the
corresponding histogram when detection noise of ∆ = 0.3 atoms2 in variance is added. Although
the overlap of even and odd atom numbers might seem insignificant, quantum-enhanced phase
sensitivity is lost (see main text). The average parity signal corresponding to these histograms is
shown in panel b). Here, the red line corresponds to the case of finite detection noise while black
is the ideal theory prediction. Post processing the raw data of the histograms (panel a) can be
used to improve the phase sensitivity. Here, measurement outcomes that do not lie within a
specified binning window are discarded. The phase sensitivity shows a pronounced minimum at
which the SQL can barely be reached for ∆ ≈ 0.3 (for details see text).
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Figure 8.13: Shift of the optimal working point. The ideal SU(1,1) interferometer features
highest phase sensitivity at phase ϕ = π (red). However, when additional noise is added during
the detection process the optimal working point (indicated by circle) is shifted. The legend
specifies the amount of detection noise (in variance).
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Chapter 9

Interferometry beyond exact time
reversal

In this chapter we study the situation that arises when the two durations of spin exchange
do not match in length. If the nonlinear readout is shorter than the initial entangled
state preparation only an incomplete time reversal can be carried out. Consequently, the
probe state does not get fully disentangled and only partial absorption of fluctuations is
achieved. In the opposite case the duration of the nonlinear readout is prolonged. This
overcompensating regime is the most interesting as it provides benefits for approaching
a Heisenberg-limited phase sensitivity in presence of technical fluctuations. This relies
on the noiseless amplification that allows magnifying the output signal to an extent that
spurious noise can be rendered less significant.

First we analyse this nonbalanced scheme in more detail and discuss its beneficial
features before we proceed with the experimental results. Finally we experimentally assess
the phase sensitivity and demonstrate its improvement under realistic conditions.

9.1 Partial and overcompensating time reversal
In this section we study the nonbalanced case theoretically. First, we consider the output
signal and derive its form. For this we note that the output signal is a sinusoidal fringe. This
follows directly from the mode transformations (Equation 4.3) being linear. The maximum
of this fringe occurs for spinor phase setting ϕ = 0 where both periods of nonlinear
dynamics add up. This is equivalent to (resonant) spin exchange for the combined duration
t1 + t2. At this point the atom number reads 〈N+〉 = 2 sinh2(α + β). Here, we combined
the nonlinearity and evolution time under spin exchange to κt1 ≡ α and κt2 ≡ β. On
the other hand, at the minimum of the fringe both periods partly compensate. The
atom number is then identical to performing spin exchange with only the surplus time
〈N+〉 = 2 sinh2(α− β). From these two limiting cases the form of the entire fringe follows
to be

〈N+〉 =
(
sinh2(α + β)− sinh2(α− β)

)
(1 + cosϕ) + 2 sinh2(α− β). (9.1)

Figure 9.1 a) shows the expected output fringe for four exemplary cases. Compared to
the symmetric case (α = β, indicated in blue), the overall fringe size is diminished for a
shortened readout (β < α, orange) and magnified for prolonged readouts (β > α, green
and purple). Consequently, by performing an extended nonlinear readout the slope of the
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Figure 9.1: Unbalanced interferometry (theory) a) Simulated output fringe for four
different durations of nonlinear readout as indicated by colour. The first nonlinear process is
fixed in length (= 100%) and generates a probe state with 〈N inside

+ 〉 = 2.8. The orange and green
curve show the resulting fringe if the readout is shortened or extended by 25%, respectively.
While the fringe size is greatly influenced the atom number found in the minimum is identical for
both cases (inset). Extending the readout by 50% (purple) amplifies the fringe by almost a factor
of three at the expense of a growing atom number offset found at the minimum. b) Simulated
phase sensitivity. The blue curve shows the symmetric case for which the Heisenberg limit is
attained at the dark fringe (180◦). The shortened nonlinear readout (orange) achieves poorer
phase sensitivity. This is a consequence of both, the smaller overall fringe size and the remaining
atom number (and its corresponding fluctuations) at its minimum. In contrast the enlarged
nonlinear readout (green and purple, respectively) reaches the Heisenberg limit. In this case the
remaining atom number in the fringe minimum is fully compensated for by the enlarged output
fringe. Depending on the duration of the nonlinear readout the optimal working point shifts.
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9.2. Advantage of overcompensating time reversal

signal is magnified,

d 〈N+〉 /dϕ = −
(
sinh2(α + β)− sinh2(α− β)

)
sinϕ. (9.2)

The price for this enhanced output signal is a concomitant increased noise level. Since
the state at the output is two-mode squeezed vacuum, the corresponding variance fringe is
given by

(∆N+)2 = 〈N+〉 (〈N+〉+ 2) (9.3)
which directly reflects the magnified output fringe. In particular, at the fringe minimum a
residual average atom number of 〈N+〉 = 2 sinh2(α− β) with a corresponding variance of
(∆N+)2 = sinh2(2(α− β)) is found. The inset of Figure 9.1 a) shows this residual atom
number that is left in the minimum. The balanced case of t1 = t2 is shown in blue. Only
here, a perfectly dark fringe is recovered.

The magnified slope of the output signal and its collateral additional fluctuations
are intimately connected and increase in lock step such that Heisenberg limited phase
sensitivity is retained. The resulting phase sensitivity is shown in Figure 9.1 b). Only for
a shortened nonlinear readout stage the Heisenberg limit is inaccessible (orange). While
for the balanced case Heisenberg-limit phase sensitivity is reached at π the prolonged
nonlinear readout attains the same limit. However, since the fringe minimum is not dark
the working point of this prolonged time reversal sequence is shifted. In fact, Heisenberg
limit phase sensitivity is attained at phase settings

ϕ = ±2 arctan


 4

√√√√ sinh4(α + β) + sinh2(α + β)
sinh4(α− β) + sinh2(α− β)


 . (9.4)

This remarkable result provides a practical path towards noise resilient phase estim-
ation. This is because the slope of the output fringe can, in principle, be magnified ad
libitum. Albeit pump depletion will eventually limit amplification of the entire fringe, the
interferometer’s best working point is still in close vicinity of the fringe minimum where
depletion effects remain negligible.

9.2 Advantage of overcompensating time reversal
The enhanced slope of the signal makes a larger amount of noise tolerable. This is
demonstrated in Figure 9.2 a) which shows the phase sensitivity for four readout durations
in presence of additional detection noise. The first period of parametric amplification is
fixed and generates a probe state with average population of 〈N inside

+ 〉 = 2.8. We choose
the amount of detection noise such that the performance of the balanced interferometer
(blue) is declined to the Standard Quantum Limit. This case is similar to the one discussed
in section 8.12. Additionally, we show the phase sensitivity for extended nonlinear readout.
A significant better phase sensitivity is attained already when the readout is prolonged by
25% as witnessed by the green curve. For larger durations of the nonlinear readout the
Heisenberg limit is asymptotically reached.

In panel b) we show the best attainable phase sensitivity as a function of additional
technical noise. In section 8.12 we argued that the balanced time reversal offers excep-
tionally high tolerance of detection noise when compared to linear readout schemes. Here,
the advantage of the amplified nonlinear readout becomes manifest. Being able to a
posteriori amplify the output signal the noise immunity can be improved further. This

109



Chapter 9. Interferometry beyond exact time reversal

200
40
10.4
4
0.4

1
Duration of second boost

SQL

Heisenberg

Detection noise:

10−1 100 101

Phase (deg)

P
ha

se
 s

en
si

tiv
ity

Detection noise

Duration of second boost: 250%100% 125% 150%

SQL

Heisenberg

SQL

Heisenberg

a) b) c)

120 180 240

0.1

0.2

0.3

0.4

2 3

10−1

100

100

10−1

Figure 9.2: Noise resilience of unbalanced interferometry (theory). Panels a) Phase
sensitivity in presence of detection noise for four different durations of nonlinear readout (indicated
by colour, legend on top). For all three panels, the first boost is fixed in length (≡ 100%) and
generates a probe state with 〈N inside

+ 〉 = 2.8. Additional detection noise is added and fixed in
strength such that the phase sensitivity of the symmetric interferometer (blue) is deteriorated up
to the Standard Quantum Limit (SQL). Extended nonlinear readout improves the attainable phase
sensitivity such that the Heisenberg limit is asymptotically reached. b) Phase sensitivity attained
at the optimal working point for different amounts of detection noise. Extending the nonlinear
readout makes a larger portion of additional detection noise tolerable. The complementary plot
of this situation is depicted in panel c). It depicts the best attainable phase sensitivity versus
the nonlinear readout’s duration. This highlights that under any amount of detection noise
(see legend) Heisenberg-limited phase sensitivity is asymptotically reached for sufficiently long
nonlinear readout.

fact is collaborated by the complementary graph of Figure 9.2c). Here the best achievable
phase sensitivity is plotted versus the duration of the nonlinear readout. By employing
sufficiently long nonlinear readout any amount of noise added can eventually be tolerated
such that phase estimation approaching the ultimate Heisenberg limit is recovered.

9.3 Experimental nonbalanced time reversal
To study the unbalanced nonlinear readout we perform spin exchange for t1 = 8ms. After
scanning the spinor phase we vary the length of the second period of nonlinear evolution
in the range of t2 = 1− 12ms. Figure 9.3 a) shows the output fringes of 〈N+〉 for each
duration of the nonlinear readout. For illustrative clarity the fringes are plotted next to
each other. Clearly, the overall fringe size increases as the readout is prolonged (note the
logarithmic scale). At the same time, the atom number in the respective minimum of the
fringe is minimal in the case of balanced interferometry (blue). This fringe minimum is
studied in more detail in the following panels b) and c) where the atom number variance
found at the minimum is plotted versus the duration of the nonlinear readout. We show the
result for two postselected total atom numbers N as indicated. The red data point shows
the outcome of omitted nonlinear readout. Here a variance of 〈N inside

+ 〉 = 29 and 38 atoms2

is detected, respectively, which corresponds to the probe state. Starting from this level, the
fluctuations are reduced successively. The red lines indicate the theoretical expectation in
undepleted pump approximation. Ideally, perfect time reversal is expected at the balanced
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case of t1 ≈ t2 where the fluctuations are fully absorbed. For longer durations of nonlinear
readout the atom number fluctuations increase again. Experimentally, we find minimal
fluctuations for slightly shorter durations. As detailed in the previous section, the excess
atoms found at the minimum lead to additional fluctuations. The reason for this nonideal
reversion to the initial state remains unclear so far. We can, however, use the prolonged
nonlinear readout to learn more about these fluctuations. This is because, if the nonideal
reversibility is caused by a deteriorated probe state, a prolonged nonlinear readout could
not improve the achievable phase sensitivity. On the other hand, if technical fluctuations
prevail the phase sensitivity would indeed improve. Therefore, this experimental setting
might be a realistic testing bed to study the improvement of the practically achievable
phase sensitivity in the presence of noise.

9.4 Phase sensitivity
To experimentally estimate the phase sensitivity for the prolonged readout we restrict
ourselves to a small phase range around the respective fringe minimum. Here, pump
depletion is negligible and the slope of the output signal can be determined reliably by
a sinusoidal fit. Figure 9.4 a) shows the average atom number in close vicinity of the
minimum. The initial period of spin exchange was 8ms and we postselect atom numbers
in the range of 400− 450. Clearly, both, the offset level as well as the slope increase with
prolonged nonlinear readout. Panel b) shows the corresponding atom number variance.
The solid lines amount to the theoretical expectation that follows from the measured
average atom number, see Equation 9.3. Employing error propagation similar to the
balanced case studied above yields the phase sensitivity that is shown in panel c). As
a consequence of the additional noise the balanced interferometer (blue) performs only
just below the Standard Quantum Limit. However, by employing the prolonged nonlinear
readout better phase sensitivities are reached. Remarkably, already an elongation of 25%
in duration yields a significantly better sensitivity (green). The solid lines take into account
the fitted average population (panel a) and the expected variance (panel b).

We repeat this analysis for different total atom numbers. Thereby, the nonlinearity of
both periods of spin exchange is symmetrically altered. In Figure 9.5 the experimentally
best observed phase sensitivity is plotted versus the duration of the nonlinear readout.
The symmetric case of t1 = t2 = 8ms is indicated by the vertical dashed line. As
expected for shortened readout the phase sensitivity is massively deteriorated. For longer
readout the phase sensitivity is slightly improved. It is important to note that these data
points correspond to the best directly observed phase sensitivity at one specific spinor
phase without interpolation. For each of the three different total atom numbers, the
phase sensitivity behaves similar to the one shown in Figure 9.4 c). In this Figure, we
find error bars that overlap significantly for a single spinor phase setting. However, the
common trend taking into account the entire phase dependence points at an improvement.
This improvement under prolonged readout suggests that technical fluctuations play an
important rôle in the nonideal reversion to the initial state as discussed in section 8.10.
Because of the varying total atom numbers the probe state features different populations
which implies different levels of the SQL and Heisenberg limit, respectively, as indicated
in each panel.
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Figure 9.3: Unbalanced interferometry. a) Interferometry fringes of 〈N+〉. The first period
of spin exchange is fixed at t1 = 8ms while the second period is varied between t2 = 1− 12ms as
indicated. For the sake of clarity, the fringes are drawn horizontally displaced. While overall
size of the output fringe increases, the atom number found in the minimum is minimal for the
balanced case of t1 ≈ t2. The red denotes the measured average atom number of the probe state.
b)-c) Atom number variance (∆N+)2 found in the corresponding fringe minimum versus duration
of the nonlinear readout. Panels b) and c) show the result for different total atom numbers as
indicated. Starting from the measured fluctuations of the probe state, the red line indicates the
expectation within undepleted pump theory. Ideally, the fluctuations are completely absorbed at
t1 = t2. Experimentally, we find a pronounced minimum for slightly shorter durations of the
nonlinear readout.
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Figure 9.4: Experimental phase sensitivity with prolonged nonlinear readout. The
duration of the first period of spin exchange is fixed at 8ms. Panel a) shows the average atom
number close to the fringe minimum for three durations of nonlinear readout. Clearly, larger
durations increase the slope of the signal. However, as a trade-off the atom number found in the
fringe minimum is enlarged. b) Corresponding atom number variance. The solid lines indicate
the expected signal when taking the average atom number as a basis. Additional (technical)
fluctuations are taken into account by allowing for an offset. c) Resulting phase sensitivity. In the
symmetric case (blue) the Standard Quantum Limit is only just surpassed. This is a consequence
of additional fluctuations that prevent ideal reversion to vacuum at the fringe minimum. For
longer durations of the nonlinear readout the phase sensitivity is significantly improved. The
solid lines denote the expected phase sensitivity of the corresponding fit shown in panel a).
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Figure 9.5: Best observed phase sensitivity with prolonged nonlinear readout. Phase
sensitivity versus duration of the nonlinear readout for three different total atom numbers. The
phase sensitivity is determined by the procedure detailed in Figure 9.4 c). Here, we plot the best
directly observed phase sensitivity. For each atom number the Standard Quantum Limit and the
corresponding Heisenberg limit are shown. The matched nonlinear readout is indicated by the
vertical dashed line. For short durations only poor phase sensitivities are reached. For all atom
numbers best phase sensitivity is found for slightly prolonged nonlinear readout.
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Chapter 10

Nonlinear time reversal as a
diagnostic tool

Thus far we have presented the advantages of nonlinear readout with respect to performing
quantum-enhanced phase measurements. Besides this metrology setting the nonlinear
readout provides benefits also for other applications. In this section we employ the
nonlinear readout as a versatile tool to efficiently extract information of a probe state. In
this view, the nonlinear readout is an autonomous building block to characterize its input
state. Before we employ the nonlinear readout as an EPR entanglement witness we remain
within the interferometry line of thinking and present a measurement of phase damping.
Usually such phase damping is considered a deficiency caused by technical imperfections.
It might, however, also be caused by intrinsically quantum mechanical effects that are
connected to questions of phase diffusion in Bose-Einstein condensates.

10.1 Phase damping
In this section we investigate the damping of the interferometry fringe when the phase
interrogation is extended to long durations. Figure 10.1 shows such a measurement. We
find significant phase damping for holding times exceeding 50ms. During the hold time
the pump atoms are shelved within the F = 1 manifold. Therefore loss of both, the
pump as well as the side modes during phase evolution is strongly suppressed. Loss is
thus not responsible for the fringe damping. This is further demonstrated in the inset
of Figure 10.1: while the phase dependent signal gets damped, the single shot outcomes
(shown in grey) exhibit high visibility – even after 150ms when the averaged signal shows
no phase dependence at all.

As detailed in the previous chapters the collisional shifts lead to a varying fringe
frequency (section 8.11). In principle, the averaging of runs with different total atoms
number could therefore yield to a washing out of the fringe. For this measurement we
postselect total atom numbers in the window 380− 420 . We checked that the damping is
not caused by a too wide postselection window.

In the numerical simulations that are based on the truncated Wigner approximation
such damping is absent. To reproduce the data we heuristically supplement the simulation
with a phase randomization procedure. For this we take an initial phase distribution φ
that is Gaussian. For each run we then draw a phase from either φ×√thold, or φ× thold
where thold indicates the hold time during which the phase dynamically evolves. In the first
case the phase variance grows linearly in time which is called diffusive. In contrast, the
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Figure 10.1: Fringe damping of the nonlinear readout. a) Output fringe versus holding
times. We find significant damping on time scales of 50−100ms. After 150ms no phase dependent
signal at all is recovered any more (see panel b) for a zoom-in). The black solid line denotes
the result of a numerical simulation whose details are described in the main text. Since the
pump atoms are shelved in F = 1 during holding, the damping is dominantly caused by phase
scrambling. The single shot outcomes show only small loss of visibility (grey data in inset).

second case describes a ballistic regime meaning that the variance growth is quadratically
in time. We find best agreement to the experimental data for the quadratically growing
phase variance. In Figure 10.1 the result of this numerical simulation is shown as the solid
line. Simulations incorporating the diffusive phase scrambling behaviour predict instead
an envelope that shrinks too slowly for short hold times while at the same time predicting
too high visibility at long times.

In a linear interferometry scheme, pure dephasing yields a loss of contrast that eventually
converges to the centre of the original fringe. The numerical simulation reproduces such a
curve. However, in the experiment the contrast as well as the average side mode population
eventually shrink. Such a pattern corresponds to additional amplitude loss. In the language
of nuclear magnetic resonance, one routinely distinguishes between two relaxation times,
the so-called T1 and T2 time [15, 204]. The former entails amplitude damping, while the
latter describes pure dephasing. In this spirit we fit the experimental data to

〈N+〉 ∝ e−thold/T1(1 + e−thold/T2 cosωthold) (10.1)

in order to separate both effects from each other.
The results of this fitting procedure are summarized in Figure 10.2 where the two fit

parameters T1 and T2 are plotted against total atom number. By postselecting runs with
different total atom numbers, both, the pump as well as the side mode population (via the
larger nonlinear coupling strength) are enlarged. While the amplitude damping (described
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Figure 10.2: Fringe damping for different atom numbers. a) Coefficient T1 (see Equa-
tion 10.1 for a definition) versus total atom number. This parameter captures amplitude damping
as indicated in the inset. We find no pronounced dependence on atom number. In contrast,
panel b) shows the coefficient T2 which describes phase damping as illustrated in the inset. Here,
we find longer coherence times for larger atom number. This trend can be reproduced by a
numerical simulation by making the phase spread atom number dependent. The grey dashed line
shows the result of such a simulation. Here, we take the phase uncertainty (s.d.) to be inversely
proportional to atom number.

by T1) is constant over the entire range of atoms numbers, we find a strong atom number
dependence of T2. To reproduce this trend by the numerical simulation we make the phase
uncertainty atom number dependent. The grey dashed line shows the result when the
phase uncertainty (standard deviation) is made inversely proportional to the atom number.
The data point at 400 atoms corresponds to the curve shown in Figure 10.1 which is taken
as a reference. We conclude that a larger condensate maintains its phase relation over
longer periods and thus supports high visibility fringes for longer hold times.

The particular atom number dependence of T2 presents a promising result. In fact, it
is indicative that indeed phase jitter of the highly populated pump mode is probed by
the sparsely populated side modes. Such a situation is ideally suited for investigating
fundamental aspects of phase diffusion, e.g. the temperature dependence. Note that if the
decaying contrast were caused by decoherence of the entangled probe state, one would
expect the opposite trend: a more fragile entangled state as the number of atoms (and
thus also the size of the entangled state) is increased. Technical fluctuations on the other
hand are expected to be atom number independent.

The reasons for the appreciable amplitude damping remain unclear. In fact, from
the independently conducted relaxation measurements as presented in section 7.3 we
expect that less than 1% of the atoms get lost during phase interrogation. The numerical
simulations use these loss rates. This would correspond to T2 times exceeding 1 s which
is markedly different from the observed damping. In the direct time series (Figure 10.1)
this discrepancy becomes visible as the different offset level the fringes converge to at long
hold times.

10.2 Witnessing EPR entanglement
The nonlinear readout can be employed to efficiently gather information about the probe
state. In quantum optics balanced homodyne detection is the standard tool for such
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state characterization. We presented the method in detail above. It builds on the mode
transformation implemented by a phase shift in conjunction with a regular beam splitter.
Generalising to the nonbalanced case (θ 6= π/2) this transformation reads

(
a↑
a↓

)
→
(

cos θ eiϕ sin θ
−e−iϕ sin θ cos θ

)(
a↑
a↓

)
. (10.2)

In a very similar manner the mode transformation performed during the nonlinear readout
can be used to characterize a state, i.e.


a↑
a†↓


→

(
cosh κt eiϕ sinh κt

e−iϕ sinh κt cosh κt

)
a↑
a†↓


 . (10.3)

For the class of states which are similar to two-mode squeezed vacuum this nonlinear
readout is particularly efficient. This is because for these states the nonlinear readout
amounts to (partial) time reversal. In this section we use the nonlinear readout as an
entanglement witness [100, 101]. Prima facie this might seem redundant, as beating the
Standard Quantum Limit of phase estimation already proves that the probe state was
entangled. However, the two-mode squeezed vacuum state is the prototypical state that
shows a very particular form of quantum correlations – namely entanglement that is of the
so-called Einstein-Podolsky-Rosen type [205]. This name derives from the famous paper
in which the triumvirate presents an apparent paradox, that questions the completeness
of quantum mechanics [206]. In particular Einstein refused the concept of a probabilistic
theory and saw in it merely a lack of a more detailed description. Ironically however,
contrary to their intention the authors did not show a shortcoming of the quantum
mechanics framework but what soon after was recognized as an essential feature, namely
entanglement.

The paradox involves two particles whose position (X1 and X2, respectively) and
momentum (Y1 and Y2) exhibit perfect correlations. Such a scenario is quantum mechan-
ically valid. The authors assumed that the two particles could not influence each other
when being spatially separated. Then one could measure the position of the first particle
(X1) exactly and – because of the perfect correlations – infer the position of the second
with any desirable precision. A similar inference could subsequently be done with the
particle’s momentum. However, as complementary observables the Heisenberg uncertainty
relation has to apply which poses a lower bound on the achievable precision of momentum
and position. Therefore, it seems that the Heisenberg uncertainty relation is violated.
Nowadays the two fallacious assumptions that lead to this apparent paradox are known as
locality and counterfactual definiteness.

Generalizing the argument to also apply to nonideal correlations one refers to the EPR
argument when the following inequality is satisfied [205, 207]

∆(X↑ − gX↓)∆(Y↑ + gY↓) < 1 (10.4)

Here we already adopted the scenario to the case where the rôle of the two distinct particles
is played by spin modes |↑〉 and |↓〉. In this case the particle’s position and momentum
correspond to mode quadratures [77, 167]. Moreover, we have introduced a scaling factor
g which can be chosen to optimally compare the two modes by rescaling one with respect
to the other [205]. Atomic EPR-entanglement was first demonstrated in [208] using linear
readout [63].
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We now show that the nonlinear readout can be used to evaluate this inequality. To
this end we calculate the average atom number 〈N↑〉 that is obtained in mode |↑〉 after
the nonlinear readout took place

〈N↑〉+ 1/2 = cosh2(β) 〈a†↑a↑ + 1/2〉+ sinh2(β) 〈a†↓a↓ + 1/2〉+
cosh(β) sinh(β)(e−iϕ 〈a↓a↑〉+ eiϕ 〈a†↑a†↓〉) (10.5)

All quantities on the right hand side refer to the initial state. In particular the anomalous
moments 〈a↓a↑〉 and 〈a†↑a†↓〉 appear which quantify the strong inter mode correlations. Our
aim is to connect these correlations to the EPR argument. For this we insert the definition
of the mode quadratures (as defined in chapter 4) and arrive at

〈N↑〉+ 1/2
cosh2(β)

= 〈X2
↑ + Y 2

↑ 〉 /2 + tanh2(β) 〈X2
↓ + Y 2

↓ 〉 /2+

tanh(β)
(
cos(ϕ)(〈X↑X↓〉 − 〈Y↑Y↓〉)− sin(ϕ)(〈X↑Y↓〉) + 〈X↓Y↑〉

)
(10.6)

In the following we assume that the individual quadratures are centred at vacuum, i.e.
〈X↑〉 = 0 and similarly for the other modes. For the two-mode squeezed vacuum state
this is fulfilled. For other probe states this can be achieved by first displacing the state
accordingly. At the spinor phase setting ϕ = π where time reversal is achieved this
simplifies to

〈N↑〉+ 1/2
cosh2(β)

= var(X↑ − gX↓)/2 + var(Y↑ + gY↓)/2 ≡ D (10.7)

Here we used the scaling factor g = tanh β. The right hand side is known as the
Duan criterium [209]; D < 1 signals mode inseparability. The stronger EPR inequality
Equation 10.4 is satisfied for D < 1/2. This follows immediately from noticing that
XY ≤ (X2 + Y 2)/2 [205].

To experimentally evaluate the Duan criterium one merely has to compare two average
atom numbers [100, 101]. The first is the atom number 〈N↑〉 leaving the nonlinear readout
when it is applied to the entangled state in question. The second needed quantity is
cosh2 β which corresponds to 〈N↑〉+ 1 when vacuum is fed to the same nonlinear readout
stage. This is equivalent to the average atom number found after a single period of spin-
exchange. Therefore, in the measurements on symmetric nonlinear readout the amount by
which the minimum of the fringe falls below the atom number of the probe state inside
the interferometer signals EPR entanglement. This procedure should be compared to
measuring mode quadratures for which a experimentally more demanding fluctuation
analysis is needed.

The scaling factor g can be adjusted by varying the length of the nonlinear readout. For
an ideal two-mode squeezed vacuum state that is generated by parametric amplification
with nonlinearity α the optimal scaling factor reads g = tanh(2α) [207]. This corresponds
to the situation where the nonlinear readout is twice as long as the initial entangling.
Ideally, at this point the Duan criterium reads D = 1/ cosh(2α).

Our experimental results are shown in Figure 10.3. Here we evaluate the Duan criterium
for varying durations of the nonlinear readout. The entangled state was generated by 8ms
of spin exchange. The two horizontal lines indicate the region of witnessed inseparability
D < 1 and EPR entanglement D < 1/2, respectively. The error bars reflect the statistical
uncertainty in measuring the average atom number after the nonlinear readout. The
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Figure 10.3: Witnessing EPR entanglement with nonlinear readout. Experimentally
inferred value of the Duan criterium D versus duration of the nonlinear readout. Mode insepar-
ability is signalled by D < 1. The stronger EPR entanglement is witnessed by D < 1/2. Both
limits are indicated by horizontal lines. Initially, a probe state that exhibits EPR correlations is
generated by performing spin exchange for 8ms. By changing the duration of the subsequent
nonlinear readout different scaling factors g are realized. We find a lowest value of D ≈ 0.3
when performing nonlinear readout for 8ms which corresponds to the symmetric case of time
reversal. The error bars take into account the statistical uncertainty in determining the average
atom number. The inset shows the result of a numerical simulation. Ideally, the probe state
could violate the Duan criterium up to D = 0.1 (black line). In the lossless case this value is
reached at 16ms of nonlinear readout which is twice as long as the initial entangling. However,
the interplay of loss and a scaling factor (indicated on top axis) that quickly approaches unity
yields an optimum for slightly shorter durations.

lowest value1 of D = 0.28± 0.02 is found for the symmetric case where the duration under
entangling and nonlinear readout is identical (indicated by the vertical dashed line). In
view of the optimal scaling factor g this behaviour is unexpected. To investigate this
further the inset shows the result of a numerical simulation which qualitatively resembles
the data.

The black horizontal line shows the minimally attainable value of the Duan criterium
D = 0.1. Ideally this value would be reached for a subsequent nonlinear readout of 16ms.
However, atom loss and a quickly unity approaching scaling factor g cause a pronounced
minimum for slightly shorter durations. The axis on top shows the respective scaling
factor g. It approaches unity rapidly as the duration of nonlinear readout is prolonged.

1At this stage the summed side mode population with vacuum input at the nonlinear readout is
〈N+〉 = 5.5± 0.1 which is reduced down to 〈N+〉 = 1.1± 0.15 with the EPR entangled state. The stated
error bars are statistical. Systematic shifts as large as ±1 atom can be tolerated to still violate the
Duan criterium. For this purpose we treated the worst case in which the true atom number after the
nonlinear readout with vacuum at its input is overestimated by one atom – while the other quantity is
underestimated by one atom.
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Chapter 11

Outlook

In this thesis we presented a nonlinear readout scheme which leverages time-reversed
dynamics. In the context of applied quantum technologies, such a nonlinear readout
technique addresses the detection problem that arises when employing highly entangled
probe states. For the experimental implementation, we utilise spin exchange interactions
in a mesoscopic atom cloud which – in a first step – lead to an entangled spin state. We
demonstrated that the underlying interactions can be controlled comprehensively, which
promotes spin exchange to the central building block of our experimental model system.
In particular, the entangling interactions can be time reversed and used to disentangle a
state by revoking its nonclassical correlations in order to allow for feasible detection.

To show this explicitly, we constructed an interferometric sequence which incorporates
this nonlinear readout. It is also known under the name SU(1,1) interferometer. In this
scheme, phase imprints are measured by the effect they have on the reversibility during time
reversal. Perfect time reversal back to the initial state is only achieved if the entangled
probe state remains unperturbed. Instead, accumulated phases during interrogation
prevent such reversibility – a working principle that resembles the Loschmidt Echo [83].
We characterized the phase sensitivity experimentally and verified that quantum-enhanced
performance is achieved by merely detecting average spin populations. This mapping
onto readily detectable first moments stands in contrast to using linear readout which
usually requires technically-challenging single particle detection with high fidelity. Our
experiments therefore provide a direct example of how nonlinear transformations that
build on particle interactions, widen the spectrum of highly entangled states that are
useful with present-day detection technology.

Our experimental results are consistent with theoretical predictions. The scheme is
capable of exhausting the quantum resource by detecting solely mean atom numbers – in
principle, up to the fundamental Heisenberg limit of phase sensitivity.

Spin exchange can be understood as parametric amplification. Initially empty spin
states get populated spontaneously via the amplification of vacuum noise such that a
heavily fluctuating probe state emerges. This state’s inherent fluctuations are the essential
resource for superior phase sensing. While a posteriori amplification cannot enhance phase
sensitivity since it cannot differentiate between signal and noise, we demonstrated that
amplified noise to start with enables quantum-enhanced phase measurements. In contrast,
vacuum noise entering a passive interferometer is detrimental as it limits the achievable
phase sensitivity [210]. An additional amplification stage can be used to magnify the
output state to ease detection even further. We investigated this scheme of an active
interferometer and showed that quantum-enhanced performance is not only maintained but
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improved in realistic, viz noisy environments. This noiseless amplification is enabled by the
nonclassical correlations present during readout. Therefore, the resource entanglement is
used twice in this scheme, during interrogation for improved phase sensitivity, and during
readout for noiseless amplification.

Furthermore, detached from these interferometry applications, we employed the nonlin-
ear readout as an instrument to study phase damping, and as an entanglement witness
to detect correlations of the Einstein-Podolsky-Rosen type in the atomic cloud. For the
latter applications, the absorption of fluctuations down to single atom level is crucial.

Several aspects of the work described in this thesis call for further investigations. In this
chapter we provide an outlook by highlighting a few ideas in more detail: the technique of
time reversal allows to measure out-of-time-ordered correlators (OTOC). Such correlators
have recently been identified as a key diagnostics into questions of how initially well-
localized information is spread such that isolated quantum many-body systems effectively
lose the memory of their initial condition and eventually thermalise. This process is
referred to as scrambling of quantum information. We first introduce the main idea behind
such correlators and show that the nonlinear readout as demonstrated in this thesis in fact
implements such an object. Subsequently, we present an experimentally feasible method to
extend the nonlinear time reversal beyond the undepleted pump approximation. We detail
how scrambling of quantum information can be accessed experimentally, when applying
this extended time reversal scheme to measure OTOCs in more general situations.

Besides this field of topics which is centred at OTOCs and their application we also detail
perspectives of the interferometric line of thinking. Recently, theoretical investigations into
the SU(1,1) interferometer were centred at increasing the side mode population. Finally,
we discuss how the measurements on phase spreading can be complemented and detail how
nonlinear readout can be used for state tomography and reconstruction of the covariance
matrix.

11.1 Out-of-time-ordered correlators
Inverting the sign of a nonlinear Hamiltonian facilitates measurements of out-of-time
ordered correlators (OTOC). Being related to what is called the butterfly effect in chaotic
systems they describe the impact of a (minute) perturbation onto the ensuing dynamics
[211, 212]. These correlators are connected to time reversal because the perturbation’s
impact is quantified by a gedankenexperiment in which the arrow of time is inverted.
Recently, these correlation functions have attracted significant theoretical and experimental
attention [114, 213–215]. In this section we introduce OTOCs and explain their connection
to the nonlinear readout stage.

For two commuting operators Ŵ and V̂ the out-of-time-ordered correlator is given by

F (t) = 〈Ŵ †
t V̂
†ŴtV̂ 〉 . (11.1)

where Ŵt is the time evolved operator of Ŵ , i.e. Ŵt = eiHt/~Ŵ e−iHt/~. Such a correlation
function describes the overlap of two states 〈Ψ1|Ψ2〉 which differ in their ordering of the
two operators V̂ and Ŵt: |Ψ1〉 = ŴtV̂ |init〉 and |Ψ2〉 = V̂ Ŵt |init〉 where |init〉 is a suitable
initial state. Both operators act at different time: operator V̂ for t = 0, and Ŵt for, say,
a later time t > 0. However, then the chronological order and the order of application
do not agree for state |Ψ2〉. Therefore, the state |Ψ2〉 describes a hypothetical setting in
which time runs backwards. In contrast, for time ordered correlation functions operators
for later times stand to the left of operators for earlier times.
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Being related to different operator orderings, OTOCs measure the commutator between
Ŵt and V̂ . Initially, both operators commute per definitionem. However, the Hamiltonian
H introduces quantum correlations such that both operators fail to commute eventually.
This emerging non-commutativity is measured by the real part of the OTOC,

ReF (t) = 1− 〈|[Ŵt, V ]|2〉 . (11.2)

As the concept of OTOC relies on the notion of time reversal there is a natural connection
to the experiments reported on in this thesis. Here, we show that the output of the time
reversal sequence is in fact a measurement of an out-of-time-ordered correlator. For this
we note that the state at the output of the time reversal sequence reads

|Ψ〉 = eiHte−iK̂zϕe−iHt |vac〉 . (11.3)

Here, the first period of spin exchange is described by the action of e−iHt acting onto the
initial state with empty side modes |vac〉. Subsequently, a spinor phase rotation of ϕ is
employed before a second period under spin exchange follows. Inspired by reference [114]
we define W = e−iK̂zϕ which is the operator generating the spinor phase rotation. We
introduced this operator which belongs to the SU(1,1) framework in chapter 5. Then the
above Equation 11.3 can be written as

|Ψ〉 = eiHtW e−iHt |vac〉 = Wt |vac〉 . (11.4)

Measurements of the side mode population are formally described by 〈Ψ| K̂z |Ψ〉. Writing
this out yields

〈N+〉 ∝ 〈vac| Ŵ †
t K̂zŴt |vac〉 ∝ 〈vac| Ŵ †

t K̂zŴtK̂z |vac〉 . (11.5)

In the last step we used that the initial vacuum state |vac〉 is an eigenstate of K̂z. At time
t = 0 the two operators Ŵt and V ≡ K̂z commute as required. Therefore, determining the
side mode population leaving the SU(1,1) interferometer is tantamount to measuring the
above OTOC. However, within the undepleted pump approximation the output state is a
two-mode squeezed vacuum. This state is exhaustively described by a single parameter,
e.g. its average mode population. In this idealised framework measurements of OTOCs
can therefore not provide additional information. This situation changes drastically when
leaving the undepleted pump approximation.

11.2 Time reversal beyond undepleted pump approx-
imation

In this section we present a path towards realising time reversal without imposing the
undepleted pump approximation. The spin exchange Hamiltonian consists of two parts,
the elementary scattering event as governed by HSCC and attached collisional energy shifts
described by Hel. Within this thesis we inverted the former part by controlled phase
imprints - a method that relies on the fact that the nonlinear coupling strength κ = gN0
is given in an effective way by the phase (and magnitude) of the pump mode. Since the
collisional shifts are not affected by such phase imprints they are compensated by other
means, i.e. by invoking the undepleted pump approximation.

Due to their intimate connection both Hamiltonian terms depend identically on the
microscopic nonlinearity g which in turn is related to the microscopic scattering details, in
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particular all possible s-wave scattering channels. Consequently, the microscopic coupling
strength for spin exchange within the F = 2 and F = 1 manifold have opposite signs:
while F = 1 is ferromagnetic (g < 0), the effective three level system embedded in F = 2
features antiferromagnetic interactions with g > 0. This provides a way to invert the full
many body Hamiltonian without relying on the undepleted pump approximation: initially
spin exchange is performed within F = 1. Then after swapping all three involved states to
F = 2 a subsequent period of spin exchange continues with opposite sign of the nonlinearity
- thereby realising time reversal. However, the coupling strength’s magnitude for spin
exchange in F = 2 is an order of magnitude larger than for F = 1. To compensate for the
different coupling strengths in F = 2 and F = 1 the external detuning can be adjusted.
This is necessary because the spin exchange resonance condition q = gN0 depends on the
associated coupling strength. This can be achieved by changing the strength of microwave
dressing. Alternatively, for some applications it might suffice to achieve time reversal -
ceteris paribus - by transferring only one-tenth of the pump population to F = 2 such
that both effective coupling strengths are equal in magnitude and differ only by the sign.
One has to keep in mind, though, that this changes the total atom number of the system
under consideration.

11.3 Scrambling of quantum information

Driven classical systems can exhibit chaotic behaviour. In such a situation the knowledge
of the initial condition is readily lost. In closed quantum systems, in contrast, information
cannot be lost - which leads to questions about how isolated systems equilibrate or
eventually thermalise. Scrambling describes how information is distributed to the many
degrees of freedom of a quantum system. Then a measurement that is restricted to a sub
part of the entire system cannot retrieve the information any more. Such information
scrambling is connected to the growth of entanglement [216]. Measurements of OTOCs are
to a large extent motivated by assessing such scrambling behaviour of quantum many-body
systems. Therefore, being able to perform time reversal beyond the undepleted pump
approximation opens up a route to studying how information is delocalised. Here we follow
reference [217] and adopt their findings to our experimental system.

A first prerequisite is a system that features chaotic behaviour. Spin exchange allows for
such chaotic dynamics which arises when the detuning q is driven periodically [218, 219].
In classical chaotic systems the Lyapunov exponent quantifies how two initially close
trajectories subsequently diverge in an exponential fashion. In quantum mechanics the
notion of chaos is linked to the decay of the Loschmidt echo (which corresponds to the
Lyapunov exponent) [220]. This Loschmidt echo is given by 〈init|eiH1te−iH2t|init〉. It
therefore describes the overlap between the two states starting from the same initial state
|init〉 but governed by slightly different Hamiltonians H1 and H2 = H1 + δH where δH
is considered a weak perturbation. This Loschmidt echo, which corresponds to a time
ordered correlation function, and its dynamic decay can be compared to the respective
decay of the OTOC. The signature of many-body scrambling is a slowed down decay of the
OTOC and a particular dependence on the number of degrees of freedom. More details
can be found in reference [217].
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11.4 Interferometry within the depleted pump regime

When it comes to improving a measurement’s precision the use of entanglement is usually
the ultima ratio. Evidently, it is imperative in situations in which the attainable precision
is bounded by quantum effects. Similarly, we take for granted that there are severe
limitations on the size of the resource. If this were not the case one could readily achieve
higher precision by employing more atoms. Regarding the latter point, however, there are
various scenarios conceivable: in some situations the size of the probe state is ultimately
limited. This might for instance arise when the impact of the probe atoms onto the sample
needs to be minimised [221, 222]. In such situations a small yet highly sensitive probe
state is desirable. Then, the amplifying nonlinear readout is the optimal scheme because
the side modes are only sparsely populated but nonetheless perform phase sensing at the
ultimate Heisenberg limit. In other fields of application, however, the total number of
atoms - and not the ones used for sensing - are the limiting factor. For such situations the
presented nonlinear readout is not ideally suited because a large portion of atoms is held
back in the pump mode. While these atoms enable the parametric amplification they are
not used for the actual phase interrogation.

Recent theoretical works reexamine the here presented atomic SU(1,1) interferometer
with the aim to achieve quantum-enhanced performance also for these applications, i.e.
with respect to the total number of employed atoms. In reference [181] the authors find
sub-shot noise phase sensitivities also when going deep into the depleted pump regime of
spin exchange. In contrast, the authors of reference [223] study a slightly adjusted scheme
in which spin exchange is supplemented with linear coupling. Thereby the phase sensing
atom number in the side mode is enlarged and quantum-enhanced phase sensitivity is
predicted.

11.5 Phase spreading

The arguments put forward in this section are based on references [224–226]. In section 10.1
we demonstrate that the nonlinear readout can be employed as a tool to study phase
damping. Such phase damping has been observed in a variety of experiments, more
recently e.g. in reference [227], by splitting a condensate into two equal parts. This
splitting introduces relative number fluctuations which in turn impose a phase uncertainty
of the initial state. Collisional interactions then lead to a growing phase uncertainty in
time. This explanatory approach ignores finite temperature effects [224]. Their importance,
however, is clarified by the failure of a zero-temperature theory [228] which takes into
account collisional interactions to reproduce the phase spreading found in experiments
[229]. The rôle of the noncondensed fraction is the subject of more recent theoretical
investigations [226].

To facilitated the study of such fundamental aspects of phase spreading, effects due to
collisional interactions should be minimized. Therefore, the unequal atom distribution
of the amplifying nonlinear readout might come as an advantage. This is because the
sparsely populated side modes can be used to probe the phase uncertainty of the large
pump mode without significantly disturbing it.
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11.6 State tomography, extension to many spatial
modes

In section 10.2 we employed the nonlinear readout as an EPR entanglement witness. In a
similar fashion, the nonlinear readout can be used as an autonomous building block to
partly reconstruct a state’s covariance matrix [100, 101]. This matrix is used widely in
quantum optics to characterize quantum states in the Gaussian regime. In this regime,
the states are exhaustively described by their mean quadratures and their (mutual) (co-)
variances. Furthermore, it might be used for more general state tomography [230]. Such
tomographic reconstruction techniques are presented in references [231–233] and build on
the symmetry of the SU(1,1) mode transformations.

Going beyond the single spatial mode treatment, we believe that the high degree of
experimental control qualifies the nonlinear readout for the characterization of entanglement
in spatially-extended Bose-Einstein condensates [65, 234, 235]. Recently, we implemented
a steerable laser beam with which different parts of the atomic cloud can be addressed.
With this technique available, the nonlinear readout might be performed with spatially
nonuniform parameters.
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Appendix A

Spin exchange in F = 2

In this section we discuss spin exchange within the F = 2 hyperfine manifold taking
into account all five sublevels. In the main text, an effective three level system that is
embedded within F = 2 is considered. Here we justify this simplified description in more
detail. We present the full Hamiltonian for spin exchange within F = 2 and identify
all spin exchange processes among the five involved levels. In particular we investigate
the spurious processes that lead out of the effective three level system. To this end we
derive the relative coupling strength and the associated spin exchange detuning for each
scattering process. Finally, we employ a numerical calculation to examine under which
conditions the effective three-level description remains valid.

Due to the five magnetic sublevels of F = 2 a slight change of notation is in order. In
the following, we call âi the annihilation operator, and Ni the population of the mode
mF = i with i = 0,±1± 2.

A.1 Scattering potential
In this section we treat the scattering of two atoms each having spin F = 2. This is a
continuation of the theory developed in the main part, section 3.2. In direct analogy to
Equation 3.2 the scattering potential for two F = 2 atoms can be written in the following
way

V = a0P0 + a2P2 + a4P4 (A.1)

In contrast to the aforementioned F = 1 case, an additional scattering channel with
combined spin F = 4 exists. This quintet channel is described by the scattering length a4.
This scattering potential can be reformulated in a microscopic way

V = c0 + c1F1 · F2 + 5c2A
†
2A2 (A.2)

Here, A2 is the annihilation operator for a spin singlet. It can be expressed in terms of
Clebsch-Gordan coefficients as A2 = ∑

i,j〈F = 0, 0|F1 = 2, i, F2 = 2, j〉âiâj. Note that
the factor of 5 is missing in reference [61]. The coefficients are given by (c0, c1, c2) =
(4a2+3a4

7 , a4−a2
7 , 3(a4−a2)−7(a2−a0)

35 ) [61, 185, 236]. Spin exchange is driven by the terms
described by coefficients c1 and c2, respectively [237]. Thus the nonlinear coupling strength
follows from both, singlet-triplet and quintet-triplet scattering length differences.
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A.2 Full Hamiltonian
Expanding the scattering potential in terms of individual mode operators, one arrives at
the Hamiltonian

H ∝ c0
(
(N−1 +N0 +N1)2 + (N−2 +N2)

)
+

c2
(
2a0a0a

†
2a
†
−2 − 2a0a0a

†
1a
†
−1 − 4a2a−2a

†
1a
†
−1 + 4N2N−2 + 4N1N−1 +N0(N0 − 1)

)
+

c1(2
√

6a0a−2a
†
−1a

†
−1 + 2

√
6a0a2a

†
1a
†
1 + 2

√
6a2a−1a

†
1a
†
0 + 2

√
6a0a−1a

†
1a
†
−2 + 4a2a−2a

†
1a
†
−1+

6a0a0a
†
1a
†
−1 + (6N0 − 1)(N1 +N−1) + (N1 −N−1)2 + 4N−2(N−2 − 1) + 4N2(N2 − 1)+

(8N−1 − 4N1 − 4N2)N−2 + (8N1 − 4N−1 − 4N−2)N2) (A.3)

Here the colour coding is in accordance with Figure A.1 to indicate the elementary spin
exchange processes. Each of the coloured terms includes the corresponding hermitian
conjugate which is omitted in the formula for clarity. We detail these at a later point. Let
us first consider the particular case of vanishing populations in states mF = ±2. Then,
the Hamiltonian simplifies to

H ∝ −c2
(
2a0a0a

†
1a
†
−1 + h.c. + (2N0 + 1)(N1 +N−1)

)
+

c1
(
6a0a0a

†
1a
†
−1 + h.c. + (6N0 − 1)(N1 +N−1)

)
(A.4)

for this we added the term c2((N1−N−1)2−N2) which is a constant for the effective three
level system. For large pump mode populations one thus arrives at

H = (6c1 − 2c2)
(
a0a0a

†
1a
†
−1 + h.c. +N0(N1 +N−1)

)
(A.5)

which is similar to the F = 1 case, Equation 3.4 except for a different microscopic nonlinear
coupling strength.

A.3 All possible spin exchange processes
Within F = 2 there are several possible elementary spin exchange processes. The only
requirement is the conservation of magnetization. Figure A.1 shows all processes in the
underlying energy landscape of the quadratic Zeeman shift. The respective processes are
colour coded to facilitate comparison with the Hamiltonian terms, Equation A.3. The
nonlinear coupling strength can thereby directly be read off. For instance, the desired
spin exchange process 2 × |0〉 ↔ |1〉 + |−1〉 has the coupling strength, 6c1 − 2c2 =[
(12(a4 − a2) + 7(a2 − a0)

]
/35. In Table A.1 we list all possible spin exchange processes

with their respective coupling strength. For the numerical value in terms of scattering
length differences we resort to reference [185]. There, using spin exchange the scattering
length differences are measured to be c1 ≈ 1 aB and c2 ≈ −0.1 aB where aB denotes the
Bohr radius. Compared to the F = 1 case, the coupling strength for spin exchange in
F = 2 is by a factor ∼ 9 larger.

Additionally, we state the spin exchange detuning (in units of qB2 = 2π× 60Hz) of the
particular process. The underlying energy shifts as generated by the magnetic bias field
are detailed in Figure A.2. To assess the spin exchange detuning we distinguish between
the case of activated and deactivated microwave dressing. To this end we assume that
microwave dressing merely shifts the mF = 0 component to be in resonance with mF = ±1
which is a reasonable approximation.
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Fm 2− 1− 0 1 2 2− 1− 0 1 2

a) b)

Figure A.1: Overview of all spin exchange channels in the F = 2 manifold. For
reference we reproduce Figure 6.5. a) Symmetric spin exchange couplings. b) Asymmetric
processes. For the sake of clarity only half of the allowed channels are shown. For a complete
accounting, one has to consider the additional processes which arise under the interchange
mF → −mF .

process coupling scattering length
difference (aB)

dressing off dressing on

2× |0〉↔ |−1〉+ |+1〉
2× |0〉↔ |2〉+ |−2〉

|1〉+ |−1〉↔ |2〉+ |−2〉
2× |±1〉↔ |±2〉+ |0〉
|0〉+ |±1〉↔ |∓1〉+ |±2〉

6c1 − 2c2

2c2

4(c1 − c2)
2
√

6c1

2
√

6c1

5.8
−0.3

3.6
4.9
4.9

1
4
3
2
1

0
1.5

3
1.5
1.5

Table A.1: Coupling strength and spin exchange detuning for spurious spin ex-
change channels. In the left column all channels that leave the effective three level system
are listed. The coupling strength is read off from the Hamiltonian. Its numerical value in
units of Bohr radii aB is based on reference [185]. The remaining two columns state the spin
exchange detuning in units of qBB2 when dispersive microwave dressing is applied and turned
off, respectively.

G700 kHz/ 2G72 Hz/
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×+3
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×1−

×−3

= 2F

= 1F

Linear Zeeman
shift

Quadratic Zeeman
shift

Figure A.2: Level shifts of Rubidium-87 in a magnetic field. The linear Zeeman effect
shifts the atomic levels proportional to their magnetic quantum number mF . The shift between
adjacent levels amounts to 700 kHz/G as shown in the left column. The quadratic Zeeman effect
shifts the magnetic sublevels proportional to (4−m2

F ). Therefore, only the mF = ±2 states are
not subjected to this level shift. Adjacent levels are shifted by 72Hz/G2 (right column).
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A.4 Numerical simulation of the full F = 2 Hamilto-
nian

From the previous section we deduce that the description in terms of an effective three level
system is valid because of the large detuning to the |2,±2〉 states. In this section we invest-
igate the region of validity and the robustness of the effective three level approximation.
For this we numerically simulate spin exchange among all five levels taking the full F = 2
Hamiltonian. For this purpose we resort to the truncated Wigner approximation. We start
with 400 atoms prepared in |0〉 and all other states empty. The numerical value of the
coupling strength is fixed at κ = 2π×25Hz which is slightly larger than the experimentally
extracted value. While we tune the spin exchange process 2× |2, 0〉 ↔ |2, 1〉+ |2,−1〉 into
resonance, the energy detuning to the states |2,±2〉 is left as a free parameter. We call
this detuning q2. The energy landscape is summarised in the inset of Figure A.3 b). In
the experiment this detuning is determined by the quadratic Zeeman shift and amounts to
q2 ≈ 2π × 200Hz. In panel a) we plot the summed spin population of either |2,±1〉 (blue)
or |2,±2〉 (red) found after a variable time of spin exchange ranging up to 25ms (see inset)
well above the experimentally employed time scales. A population of the |2,±2〉 levels
(with a concomitant decrease in levels |2,±1〉) occurs only for detunings that fall below
q2 = 2π × 50Hz. The experimental value is indicated by the vertical dashed line. At this
stage any population outside the effective three level system encompassing the |2,±1〉
levels is negligible. In panel b) we go one step further than average mode populations
and also consider fluctuations which are a more sensitive probe: the variance of N1 −N−1
is plotted versus the detuning q2. Ideally, the variance vanishes for all durations of spin
exchange (colour coding identical to panel a). The influence of the spurious additional
levels |2,±2〉 shows up predominantly for long durations of spin exchange exceeding 20ms.
For shorter durations and at the detuning employed in the experiments a insignificant
contribution is found.

A.5 External trap levels
Thus far we investigated the closedness of the effective spin-1 system solely with respect
to spin dynamics – and did not take into account any interplay with external dynamics.
This is valid for sufficiently small magnetic bias fields. If, however, the energy shifts
caused by the quadratic Zeeman shift are comparable to trap frequencies, spin exchange
might populate higher lying trap modes [238]. We explain this in Figure A.4. Our spin
exchange experiments are performed at a magnetic field of B = 0.9G. At a transversal trap
frequency of 2π×440Hz the higher lying state of the harmonic potential (depicted in panel
a) is inaccessible. Besides the large detuning the spin exchange coupling strength suffers
from a reduced mode overlap to the excited trap states. Therefore, the effective spin-1
description remains valid. However, this situation changes drastically if the magnetic bias
field is increased. Panel c) shows the quadratic Zeeman shifts arising at B = 1.5G. Here,
spin exchange into a higher lying trap mode becomes possible as indicated. Such and
similar processes might invalidate the effective spin-1 system at larger magnetic bias fields.
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Figure A.3: Full F = 2 spin exchange simulation. a) Simulated mode populations treating
the full F = 2 Hamiltonian. The process 2× |0〉 ↔ |1〉+ |−1〉 is tuned into resonance by shifting
the pump mode in energy. The states |±2〉 are detuned from the pump by amount q2 (see inset
of panel b). In the experiment this detuning depends on the quadratic Zeeman shift and amounts
to q2 = 2π × 200Hz. This value is indicated by the vertical dashed line. We use a coupling
strength of κ = 2π × 25Hz and let spin exchange evolve for tevo = 10, 15, and 20ms (see legend).
We find significant population of the |±2〉 states only for a detuning q2 < 50Hz and evolution
times tevo > 20ms. b) Variance of the atom number difference N1 −N−1 versus detuning q2. For
the effective three level treatment, this atom number difference between the states |±1〉 vanishes.
Significant deviations are found for detuning q2 < 100Hz and large evolution times tevo > 20ms.
At the detuning where the experiments are performed the effect is negligible.
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Figure A.4: Spin exchange among external modes. a) Harmonic trap in transversal
direction of the optical waveguide potential. b) At a magnetic bias field of B = 0.9G – as
employed in the experiments – the higher lying trap levels (blue) are out of reach for spin
exchange. This situation changes at higher magnetic bias fields as exemplified in panel c). Here,
spin exchange starting from the pump mode in mF = 0 might lead to population of the mF = ±2
states that belong to a higher trap level as indicated.
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Appendix B

Technical details

B.1 Accounting of the level shifts due to microwave
dressing

To assess the level shifts exerted by the microwave dressing, we first detail the radiation
characteristics of our microwave antenna, i.e. the relative strength of the three microwave
polarizations. For this we start from state |1, 0〉 and measure the on-resonance Rabi
frequency for the three direct microwave transitions to |2,−1〉, |2, 0〉, and |2, 1〉. We find
Rabi frequencies of Ω(π,σ−,σ+) = 2π × (4.9, 3.3, 3.1) kHz. Therefore, the microwave antenna
radiates polarizations with relative strength (in Rabi frequency) π : σ+ : σ− = 1 : 0.74 :
0.8; here, the different line strengths of the respective microwave transitions have been
eliminated. Therefore, the energy shift of the |2, 0〉 level results from three contributions
due to the off-resonant microwave coupling to all F = 1 sub states. However, because
of the large first order Zeeman shift, the dominant dispersive energy shift is caused by
microwave coupling of |2, 0〉 ↔ |1, 0〉. Each of the two side modes |2,±1〉 is shifted in
energy by two off-resonant couplings.

The microwave that is used for dressing is power stabilized via a servo loop. This
ensures reproducibility on the time scale of several weeks. However, as a side effect, the
levelling mechanism leads to power drifts during the microwave pulse. We have observed
power reductions amounting to 20% in Rabi frequency on the time scale of milliseconds.
However, all stated Rabi frequencies are measured via resonant Rabi flopping with short
pulse durations < 500 µs. We find agreement among a series of measurements only, if we
heuristically reduce the Rabi frequencies of each polarization by 15%.

We will now detail these independent measurements from which we infer the spin
exchange detuning. The first is described in Figure 6.4 where fringes of the nonlinear
readout are investigated for different detuning used for dispersive microwave dressing.
Independently, the effective detuning can be estimated on basis of the side mode population
growth during a single period of spin exchange. For this we performed numerical simulations
as discussed in the main part (see section 7.4). Finally, to find the spin exchange resonance
condition in the first place, we typically scan the microwave detuning δ at constant power
and record the side mode population after a fixed evolution time. In such spectroscopic
measurements, the onset of spin exchange – corresponding to q = 0 – is witnessed by a
sudden and rapid growth of the side mode population. Experimentally, we find this point
at a detuning of δ = 2π × 70 kHz. All these three measurement are in agreement with the
microscopic calculation of energy shifts if we assume the above introduced power drop.
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Figure B.1: Overview of the energy shifts exerted by microwave dressing. a) We
perform microwave dressing δ = 2π × 110 kHz blue detuned to the transition |1, 0〉 ↔ |2, 0〉.
Coupling due to this transition generates the dominant energy shift. Additional energy shifts
arise due to all other possible couplings as indicated. b) Inferred energy shifts of the effective
three level system. The dashed levels represent the energy landscape due to the quadratic Zeeman
effect. Microwave dressing shifts the levels from the dashed to the solid line.

B.2 Spatial gradients of the microwave dressing
To assess the microwave gradients over the extent of the atomic cloud we perform resonant
Rabi flopping. Eventually, different parts of the cloud dephase due to the spatial gradient
of the on-resonance Rabi frequency. Expressed in Rabi frequency, the gradients of each
polarization amount to (π, σ+, σ−) = (0.03%, 0.15%,−1.3%) over 100 µm. Therefore, the
gradient of the associated energy shift is dominated by the σ− polarization. This gradient
amounts to less than 1mHz over 100µm.

B.3 Spatial gradients
In this section we show that spatial gradients are indiscernible for the experiments on spin
exchange and interferometry. Thereby, we justify the usage of all lattice sites to increase
the statistical sample size irrespective of their spatial position along the one-dimensional
array. With spin exchange being magnetically insensitive to first order we argued above
that the dominant source of spatial gradients is the microwave dressing. Here, we assess
spatial gradients (regardless of the source) by their effective action onto spin exchange.
First, we investigate a potential spatial dependence of the nonlinear coupling strength κ.
For the interferometry measurements a spatially constant spinor phase is important which
is assessed in the second part.

In Figure B.2a) we evaluate the nonlinear coupling strength for each lattice site
separately. For this, we take the average atom number population of every individual
lattice site as a reference and use experimental runs for which the on-site atom number
falls into a narrow window of ±5%. The spatial position along the one-dimensional lattice
is colour encoded. As the coupling strength depends on the total atom number it is highest
in the centre of the atomic cloud (≈ 60 µm) and falls off towards both edges. To asses
gradients the coupling strength for similar total atom numbers but at different edges of
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Figure B.2: Spatial gradients. a) Spin exchange coupling strength κ evaluated at each
individual lattice site. The spatial position along the one-dimensional lattice site is indicated in
colour. The atomic density is highest at the centre of the atomic cloud (at ≈ 60 µm) and falls off
towards both edges. With the nonlinear coupling strength being intrinsically density dependent
a spatial gradient can be estimated by comparing lattice sites with similar atom number that
are close to the left and right edge of the cloud, respectively. b) To assess spatial gradients
quantitatively we evaluate the coupling strength difference between pairs of lattice sites that are
taken symmetrically from the centre (see inset). Going outwards step-by-step we increase the
distance between the compared lattice sites while their respective atom number remains equal.
Plotting the difference in coupling strength versus the baseline shows a flat behaviour and thus
no spatial gradients are discernible. Similarly, a potential spatial gradient of the spinor phase
imprint can be characterized (panel c). For this the phase offset of the interferometry fringes
is evaluated at pairs of lattice sites separated in space by ∆x (see inset). Plotting the phase
difference versus their spatial distance shows a flat profile. For comparison the two grey lines
indicate the expected behaviour if the nonlinear coupling strength κ had a spatial variation of
1Hz/100 µm.
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the cloud should be compared. This is done quantitatively in panel b). Starting at the
centre of the atomic cloud we compare the extracted coupling strength of both adjacent
lattice sites. These two lattice sites have equal atom numbers and are separated in space
by two lattice sites (11 µm). Going further towards the edges in this symmetrical fashion,
lattice sites with equal atom number but larger spatial separation are compared with each
other. Thereby the atom number dependence is cancelled and a spatial gradient would
show up as a linear slope. Even when comparing the two outermost lattice sites separated
by 120 µm we find no indication for a spatial gradient.

In a similar manner we characterize eventual spatial gradients of the spinor phase. The
spinor phase might have a spatial variation because of two reasons; first, the dependence
could be inherited from a spatially varying nonlinear coupling strength. In this case, a
spinor phase gradient builds up during the spin exchange period. Finally, a spinor phase
variation could be caused by spatially inhomogeneous phase accumulation during the
interrogation period. To evaluate such gradients we compare the SU(1,1) interferometry
fringes of two lattice sites with similar atom number. In panel c) the phase difference of
the two interferometry fringes is plotted versus the separation of the two considered lattice
sites. We find no indication for gradients. For comparison the two grey lines indicate
the expected behaviour if the nonlinear coupling strength κ had a spatial variation of
1Hz/100 µm.
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Appendix C

Notation and mathematics

In this chapter we summarise essential formulas and mathematical notations used through-
out this thesis.

C.1 SU(2) Schwinger Boson representation
The Schwinger Boson representation describes a method to construct spin operators in
terms of Fock states which describe bosonic modes. Describing a (fictious) spin, these
operators satisfy the rotational SU(2) symmetry.

Spin-1/2
We first treat the spin-1/2 case. To this end we combine the two bosonic mode operators
to a vector, a =

(
â↑ â↓

)t
. Then the Schwinger Boson representation is given by the

Jordan map
Ĵi = a†

σi
2 a . (C.1)

Here σi denote the Pauli matrices which read

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (C.2)

Written out this yields the spin operators as stated in Equation 2.1.

Spin-1
The above procedure can be extended to three bosonic modes. For this purpose we combine
the three mode operators in the following vector, a =

(
â↑ â0 â↓

)t
. In this case the

Jordan map reads
Ŝi = a†sia (C.3)

where si denotes matrices which describe a spin-1. They are given by

sx = 1√
2




0 1 0
1 0 1
0 1 0


 sy = i√

2




0 −1 0
1 0 −1
0 1 0


 sz =




1 0 0
0 0 0
0 0 −1


 . (C.4)

This yields the spin operators as defined in Equation 2.6.
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C.2 SU(3) Schwinger Boson representation

To fully describe the three bosonic modes â↑, â0, and â↓ a treatment within the SU(3)
symmetry group is appropriate [239, 240]. Similarly to the above description in terms of spin
operators that satisfy the rotational SU(2) symmetry, the Schwinger Boson representation
can be generalized to the present case of SU(3) [241]. To do so, we introduce Cartesian
coordinates, ax = (â↓ − â↑)/

√
2, ay = i(â↓ + â↑)/

√
2, az = â0 and use the following vector

notation a = (ax, ay, az). Then the Jordan map reads

L̂i = a†
λi
2 a

where the eight matrices λi are named after Gell-Mann. They read

λ1 =




0 1 0
1 0 0
0 0 0




λ4 =




0 0 1
0 0 0
1 0 0




λ2 =




0 −i 0
i 0 0
0 0 0




λ5 =




0 0 −i
0 0 0
i 0 0




λ3 =




1 0 0
0 −1 0
0 0 0




λ6 =




0 0 0
0 0 1
0 1 0




λ8 = 1√
3




1 0 0
0 1 0
0 0 −2




λ7 =




0 0 0
0 0 −i
0 i 0




(C.5)

Here the unusual ordering facilitates the comparison with the Pauli matrices: the first
three matrices λi are just the Pauli matrices σi with the third column and row filled up
with zeros. Therefore, these three matrices describe SU(2) subspaces within SU(3). In a
similar fashion, the matrices {λ4, λ5} and {λ6, λ7} contain Pauli matrices. In either case,
to complete the SU(2) subspace a diagonal matrix with elements as contained in L3 and
L8 is needed. We describe these arising SU(2) subspaces now in more detail.

The eight operators Li satisfy the commutator relations [L̂i, L̂j] = ifijkL̂k with the
structure constants fijk. The nonvanishing structure constants are given in the following
table [241]:

ijk 123 147 156 246 257 345 367 458 678
fijk 1 1/2 −1/2 1/2 1/2 1/2 −1/2

√
3/2

√
3/2

From this table one can identify all SU(2) subspaces of SU(3), e.g. {S1, S2, S3} and {S2,
S5, S7}. It is important to note that in order to complete the SU(2) subspace of L4 and
L5 one has to construct a linear superposition of operators L3 and L5 as motivated above.
The coefficients of this superposition can be read off from from the commutator relations.
Therefore, we have the two particularly important SU(2) subspaces: {L4,L5,(

√
3L8 +L3)/2}

and {L6,L7,(
√

3L8 − L3)/2}.
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Explicitly, all eight operators read
2L1 = i(a↑a†↓ − a↓a†↑) ≡ Q̂xy

2L2 = a↓a
†
↓ − a↑a†↑ ≡ −Ŝz

2L3 = −a↑a†↓ − a↓a†↑
2L4 = 1√

2
(a0a

†
↓ + a↓a

†
0 − a↑a†0 − a0a

†
↑) ≡ Q̂xz

2L5 = i√
2

(−a0a
†
↓ + a↓a

†
0 − a↑a†0 + a0a

†
↑) ≡ Ŝy

2L6 = i√
2

(−a0a
†
↓ + a↓a

†
0 + a↑a

†
0 − a0a

†
↑) ≡ Q̂yz

2L7 = − 1√
2

(a0a
†
↓ + a↓a

†
0 + a↑a

†
0 + a0a

†
↑) ≡ −Ŝx

2L8 = 1
3(a↓a†↓ − 2a0a

†
0 + a↑a

†
↑)

Here, we identify the operators L̂i to spin operators Ŝi and Q̂ij denote quadrupole
operators that are introduced in reference [64]. Using the operators ŝ+ = (â↑ + â↓)/

√
2

and ŝ− = (â↑ − â↓)/
√

2 the two SU(2) subspaces discussed above can be written in the
particular elegant form stated in the main text:

2L6 ≡ −Fy = −(a†0s+ − a0s
†
+)/i

2L7 ≡ −Fx = −(a†0s+ + a0s
†
+)

√
3L8 − L3 ≡ −Fz = −(a†0a0 − s†+s+)

2L4 ≡ −Gx = −(a†0s− + a0s
†
−)

2L5 ≡ Gy = (a†0s− − a0s
†
−)/i

√
3L8 + L3 ≡ −Gz = −(a†0a0 − s†−s−)

C.3 Input-output relation for bilinear Hamiltonian
Every Hamiltonian that is at most quadratic in bosonic field operators performs a mode
transformation according to

(
a↑
a↓

)
→ A

(
a↑
a↓

)
+B


a
†
↑
a†↓


+ γ . (C.6)

Since this transformation needs to keep the bosonic commutator relations intact, the
matrices are required to fulfil: ABt = BAt and AA† = BB† + 1 [77, 167]. Possible
parametrisations for SU(2) and SU(1,1) are given by (with γ = 0)

A =
(

cos θ eiϕ sin θ
−e−iϕ sin θ cos θ

)
and B = 0 for SU(2) (C.7)

A =
(

cosh r 0
0 cosh r

)
and B =

(
0 eiϕ sinh r

e−iϕ sinh r 0

)
for SU(1,1) (C.8)

With these relations any combination of elements, e.g. the complete interferometric
sequence can be built up.
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C.4 Special unitary group, SU(2) and SU(1,1)
The name SU(n) refers to the special unitary group. In matrix representation this group
applies to n dimensional unitary matrices U that have determinant of unity. For SU(2) a
possible parametrization of all allowed matrices reads

U =




(
cos θ eiϕ sin θ

−e−iϕ sin θ cos θ

)∣∣∣∣∣∣
ϕ ∈ [0, 2π), ϑ ∈ [0, π)



 . (C.9)

Since this is identical to the mode transformation of a passive interferometer its name affix
SU(2) is justified.

The SU(n) group can be generalized by weakening the unitarity property: instead
of stipulating that U †U = 1n (unitarity, 1n denotes unity matrix of size n) one merely
requires that U †AU = A. Here A is a diagonal matrix with the first k entries being (+1)
and the l next entries being (−1) with n = k + l. This property is called pseudo-unitarity.
Matrices of this form satisfy the generalized special unitary group, encoded by SU(k, l).
For the special case of SU(1,1) the matrix A reads A = diag(1,−1). In this framework
the SU(2) group corresponds to the specific case SU(2,0). All possible matrices can be
parametrized by

U =




(
cosh r eiϕ sinh r

e−iϕ sinh r cosh r

)∣∣∣∣∣∣
ϕ ∈ [0, 2π), r ∈ [0,∞)



 . (C.10)

Therefore the mode transformation of parametric amplification are described by the SU(1,1)
group.
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