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Abstract

We investigate experimentally and theoretically the nonlinear propagation of87Rb Bose
Einstein condensates in a trap with cylindrical symmetry. An additional weak periodic po-
tential which encloses an angle with the symmetry axis of thewaveguide is applied. The
observed complex wave packet dynamics results from the coupling of transverse and lon-
gitudinal motion. We show that the experimental observations can be understood applying
the concept of effective mass, which also allows to model numerically the three dimen-
sional problem with a one dimensional equation. Within thisframework the observed slowly
spreading wave packets are a consequence of the continuous change of dispersion. The ob-
served splitting of wave packets is very well described by the developed model and results
from the nonlinear effect of transient solitonic propagation.
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1. Introduction

The experimental investigation of nonlinear matter wave dynamics is feasible since the real-
ization of Bose-Einstein-condensation of dilute gases [1]. The combination of this new matter
wave source with periodic potentials allows for the realization of many nonlinear propagation
phenomena. The dynamics depends critically on the modulation depth of the potential. For deep
periodic potentials the physics is described locally taking into account mean field effects and
tunneling between adjacent potential wells. In this context wave packet dynamics in Josephson
junction arrays have been demonstrated experimentally [2]and nonlinear self trapping has been
predicted theoretically [3]. In the limit of weak periodic potentials and moderate nonlinearity
rich wave packet dynamics result due to the modification of dispersion which can be described
applying band structure theory [4]. Especially matter wavepackets subjected to anomalous dis-
persion (negative effective mass) or vanishing dispersion(diverging mass) are of great interest.
In the negative mass regime gap solitons have been predictedtheoretically [5] and have been
observed recently [6]. Also modulation instabilities can occur [7].

The experiments described in this work reveal wave dynamicsin the linear and nonlinear
regime for weak periodic potentials. The observed behavioris a consequence of the special
preparation of the wave packet leading to a continuous change of the effective mass and thus the
dispersion during the propagation. The initial propagation is dominated by the atom-atom inter-
action leading to complex wave dynamics. After a certain time of propagation slowly spreading
atomic wave packets are formed which are well described by linear theory. In this work we
focus on the mechanisms governing the initial stage of propagation.

The paper is organized as follows: in section 2 we describe the effective mass and dispersion
concept. In section 3 we present our experimental setup and in section 4 the employed wave
packet preparation schemes are discussed in detail. In section 5 the experimental results are
compared with numerical simulations. We show that some features of the complex dynamics
can be identified with well known nonlinear mechanisms. We conclude in section 6.

2. Effective mass and dispersion concept

In our experiments we employ a weak periodic potential whichleads to a dispersion relation
En(q) shown in Fig. 1(a). This relation is well known in the contextof electrons in crystals
[8] and exhibits a band structure. It shows the eigenenergies of the Bloch states as a function
of the quasi-momentumq. The modified dispersion relation leads to a change of wavepacket
dynamics due to the change in group velocityvg(q) = 1/h̄ ∂E/∂q (see Fig. 1(b)), and the
group velocity dispersion described by the effective massme f f = h̄2(∂ 2E/∂q2)−1 (see Fig.
1(c)), which is equivalent to the effective diffraction introduced in the context of light beam
propagation in optically-induced photonic lattices [9]. In our experiment only the lowest band is
populated, which is characterized by two dispersion regimes, normal and anomalous dispersion,
corresponding to positive and negative effective mass. A pathological situation arises at the
quasimomentumq±∞ , where the group velocityvg(q) is extremal,|me f f | diverges and thus the
dispersion vanishes.

In the following we will show that the two preparation schemes employed in the experi-



Fig. 1. (a) Band structure for atoms in an optical lattice withV0 = 1.2Erec (solid), parabolic
approximation to the lowest energy band atq= π/d = G/2 (dashed), corresponding group
velocity (b) and effective mass (c) in the lowest energy band. The vertical dashed lines at
q = q±∞ indicate where|meff| = ∞. The shaded region shows the range of quasimomenta
where the effective mass is negative.

ment lead to a continuous change of the quasimomentum distribution, and thus to a continuous
change of dispersion. One of the preparation schemes allowsto switch periodically from pos-
itive to negative mass values and thus a slowly spreading wave packet is formed. This is an
extension of the experiment reporting on dispersion management [10]. The second preparation
gives further insight into the ongoing nonlinear dynamics for the initial propagation.

3. Experimental Setup

The wave packets in our experiments have been realized with a87Rb Bose-Einstein condensate
(BEC). The atoms are collected in a magneto-optical trap andsubsequently loaded into a mag-
netic time-orbiting potential trap. By evaporative cooling we produce a cold atomic cloud which
is then transferred into an optical dipole trap realized by two focused Nd:YAG laser beams with
60µmwaist crossing at the center of the magnetic trap (see Fig.2(a)). Further evaporative cool-
ing is achieved by lowering the optical potential leading topure Bose-Einstein condensates
with 1 · 104 atoms in the|F = 2,mF = +2〉 state. By switching off one dipole trap beam the
atomic matter wave is released into a trap acting as a one-dimensional waveguide with radial
trapping frequencyω⊥ = 2π ·100Hzand longitudinal trapping frequencyω‖ = 2π ·1.5Hz. It is
important to note that the dipole trap allows to release the BEC in a very controlled way leading
to an initial mean velocity uncertainty smaller than 1/10 ofthe photon recoil velocity.

The periodic potential is realized by a far off-resonant standing light wave with a single
beam peak intensity of up to 1W/cm2. The chosen detuning of 2 nm to the blue off the D2 line
leads to a spontaneous emission rate below 1Hz. The standing light wave and the waveguide
enclose an angle ofθ = 21◦ (see Fig. 2(b)). The frequency and phase of the individual laser
beams are controlled by acousto-optic modulators driven bya two channel arbitrary waveform
generator allowing for full control of the velocity and amplitude of the periodic potential. The
light intensity and thus the absolute value of the potentialdepth was calibrated independently
by analyzing results on Bragg scattering [11] and Landau Zener tunneling [12, 13, 14].

The wave packet evolution inside the combined potential of the waveguide and the lattice is
studied by taking absorption images of the atomic density distribution after a variable time de-
lay. The density profiles along the waveguide,n(x, t), are obtained by integrating the absorption
images over the transverse dimension.

4. Dynamics in reciprocal space

In our experimental situation an acceleration of the periodic potential to a constant velocity
leads to a collective transverse excitation as indicated inFig. 2(d). Since the transverse motion
in the waveguide has a non vanishing component in the direction of the periodic potential due to
the angleθ , a change of the transverse velocity leads to a shift of the central quasimomentum of



Fig. 2. Scheme for wave packet preparation (a-d). (a) initial wave packet is obtained by
condensation in a crossed dipole trap. (b) A stationary periodic potential is ramped up adi-
abatically preparing the atoms at quasimomentumqc = 0 in the lowest band. (c),(d) The
periodic potential is accelerated to a constant velocity. (e) shows the numerically deduced
quasimomentum shift for the preparation method I describedin the text. (f) The motion
of the center quasimomentum for the preparation method II described in the text. The ad-
ditional shift to higher quasimomenta for long times results from the residual trap in the
direction of the waveguide. The shaded area represents the quasimomenta corresponding
to negative effective mass.

the wave packet. The coupling between the transverse motionin the waveguide and the motion
along the standing light wave gives rise to a nontrivial motion in reciprocal (see Fig. 2(e,f)) and
real space.

The appropriate theoretical description of the presented experimental situation requires the
solution of the three dimensional nonlinear Schrödinger equation (NLSE) and thus requires
long computation times. In order to understand the basic physics we follow a simple approach
which solves the problem approximately and explains all thefeatures observed in the experi-
ment. For that purpose we first solve the semiclassical equations of motion of a particle which
obeys the equation~F =M∗~̈xwhereM∗ is a mass tensor describing the directionality of the effec-
tive mass. We deduce the time dependent quasimomentumqc(t) in the direction of the periodic
potential by identifyinḡhq̇c = Fx̂ and ˙̂x = vg(qc) (definition of x̂ see Fig. 2(b)). Subsequently
we can solve the one dimensional NPSE (non-polynomial nonlinear Schrödinger equation)[15]
where the momentum distribution is shifted in each integration step according to the calculated
qc(t). Thus the transverse motion is taken into account properly for narrow momentum dis-
tributions. We use a split step Fourier method to integrate the NPSE where the kinetic energy
contribution is described by the numerically obtained energy dispersion relation of the lowest
bandE0(q). It is important to note, that this description includes allhigher derivatives ofE0(q),
and thus goes beyond the effective mass approximation.

In the following we discuss in detail the employed preparation schemes:
Acceleration scheme I: After the periodic potential is adiabatically ramped up toV0 = 6Erec

it is accelerated within 3ms to a velocityvpot = cos2(θ )1.5vrec. Then the potential depth is
lowered toV0 = 0.52Erec within 1.5ms and the periodic potential is decelerated within 3ms to
vpot = cos2(θ )vrec subsequently.V0 andvpot are kept constant during the following propagation.
The calculated motion in reciprocal spaceqc(t) is shown in Fig. 2(e).

Acceleration scheme II: The periodic potential is ramped up adiabatically toV0 = 0.37Erec

and is subsequently accelerated within 3ms to a final velocity vpot = cos2(θ )×1.05vrec. The
potential depth is kept constant throughout the whole experiment. Fig. 2(f) reveals that in con-



trast to the former acceleration scheme the quasimomentum for the initial propagation is mainly
in the negative effective mass regime.

5. Experimental and Numerical Results

In this section we compare the experimental results with thepredictions of our simple theoret-
ical model discussed above. The numerical simulation reveal all the experimentally observed
features of the dynamics such as linear slowly spreading oscillating wave packets, nonlinear
wave packet compression and splitting of wave packets. The observed nonlinear phenomena
can be understood by realizing that in the negative effective mass regime the repulsive atom-
atom interaction leads to compression of the wave packet in real space and to a broadening of
the momentum distribution. An equivalent picture borrowedfrom nonlinear photon optics [16]
is the transient formation of higher order solitons, which show periodic compression in real
space with an increase in momentum width and vice versa.

5.1. Preparation I

The experimental results for the first acceleration scheme discussed in section 4 are shown in
Fig. 3. Clearly we observe that a wave packet with reduced density is formed which spreads out
slowly and reveals oscillations in real space. This wave packet results from the initial dynamics
characterized by two stages of compression which lead to radiation of atoms [17]. The observed
behavior is well described by our numerical simulation which allows further insight into the
ongoing physics.

Fig. 3. Wave packet dynamics for preparation I. (a) Experimental observation of wave
packet propagation. (b) Result of the numerical simulationas discussed in the text. The
data is convoluted with the optical resolution of the experiment. The obtained results are in
good agreement with the experimental observations. The theoretically obtained (c) quasi-
momentum distribution and (d) real space distribution are given for the initial 14ms of
propagation. The inset reveals the phase of the observed slowly spreading wave packet.

In Fig. 3(c,d) we show the calculated momentum and real spacedistribution for the first 14ms



of propagation. As can be seen the acceleration of the standing light wave leads to a oscillatory
behavior in momentum space. For the chosen parameters the wave packet is initially dragged
with a tight binding potential (V0 = 6Erec) over the critical negative mass regime. While the real
space distribution does not change during this process, themomentum distribution broadens
due to self phase modulation [16]. The subsequent propagation in the positive mass regime
leads to a further broadening in momentum space and real space (t=4-9ms).

The dynamics changes drastically as soon as a significant part of the momentum distribution
populates quasimomenta in the negative mass regime (t=10ms). There the real space distribu-
tion reveals nonlinear compression as known from the initial dynamics of higher order solitons.
This compression leads to a significant further broadening in momentum space and thus to
population of quasimomenta corresponding to positive mass. This results in a spreading in real
space due to the different group velocities involved and leads to the observed background. The
change of the quasimomentum due to the transverse motion prohibits a further significant in-
crease in momentum width, since the whole momentum distribution is shifted out of the critical
negative mass regime at t=14ms.

The long time dynamics of the slowly spreading wave packet ismainly given by the momen-
tum distribution marked with the shaded area for t=14ms in Fig. 3(c). The subsequent motion
is dominated by the change of the quasimomentum due to the transverse motion. This leads to
a periodic change from normal to anomalous dispersion and thus the linear spreading is sup-
pressed. This is an extension of our previous work on dispersion management for matter waves
- continuous dispersion management.

5.2. Preparation II

This preparation scheme reveals in more detail the transient solitonic propagation leading to the
significant spreading in momentum space. This results in a splitting of the wave packet which
cannot be understood within a linear theory. The results areshown in Fig. 4 and the observed
splitting is confirmed by our numerical simulations.

In contrast to the former preparation scheme the momentum distribution is prepared as a
whole in the critical negative mass regime. Our numerical simulations reveal that the wave
packet compresses quickly in real space after t=4ms which isaccompanied by an expansion
in momentum space. The momentum distribution which stays localized in the negative mass
regime reveals further solitonic propagation characterized by an expansion in real space and
narrowing of the momentum distribution (t=5-10ms). The transverse motion shifts this mo-
mentum distribution into the normal dispersion regime after 11ms of propagation resulting in a
wave packet moving with positive group velocity (i.e. moving to the right in fig. 4(b)). The ini-
tial compression at t=4ms even produces a significant population of atoms in the normal mass
regime which subsequently move with negative group velocity showing up as a wave packet
moving to the left in Fig. 4(b). Thus the splitting in real space is a consequence of the significant
nonlinear broadening in momentum space.

6. Conclusion

In this paper we report on experimental observations of nonlinear wave packet dynamics in
the regime of positive and negative effective mass. Our experimental setup realizing a BEC
in a quasi-one dimensional situation allows the observation of wave dynamics for short times,
where the nonlinearity due to the atom-atom interaction dominates and also for long times,
where linear wave propagation is revealed.

We have shown that a slowly spreading wave packet can be realized by changing the quasi-
momentum periodically from the normal to anomalous dispersion regime. This can be viewed
as an implementation of continuous dispersion management.We further investigate in detail



Fig. 4. Wave packet dynamics for preparation II. (a) Experimental results on wave packet
propagation. (b) Result of the numerical simulation as discussed in the text. The simulation
reproduces the observed wave packet splitting. The theoretically obtained (c) quasimomen-
tum distribution and (d) real space distribution are given for the initial 14ms of propagation.
The inset reveals that the transient formed wave packet has aflat phase indicating solitonic
propagation.

the formation process of these packets, which are a result ofthe initial spreading in momen-
tum space due to nonlinear compression. A second experimentinvestigates in more detail the
nonlinear dynamics in the negative mass regime where the solitonic propagation leads to a sig-
nificant broadening in momentum space. This shows up in the experiment as splitting of the
condensate into two wave packets which propagate in opposite directions.

The developed theoretical description utilizing the effective mass tensor models the experi-
mental system in one dimension and can explain all main features observed in the experiment.
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