
Department of Physics and Astronomy
University of Heidelberg

Master Thesis in Physics
submitted by

Rodrigo Felipe Rosa-Medina Pimentel

born in Lima (Peru)

2018





Probing Long-Time Spin Dynamics
in a 87Rb Bose-Einstein Condensate

This master thesis has been carried out by
Rodrigo F. Rosa-Medina Pimentel

at the Kirchhoff-Intitute for Physics in Heidelberg
under the supervision of

Prof. Dr. Markus K. Oberthaler





Abstract

In this thesis we study long-time spin dynamics in the F = 1 hyperfine manifold of a
87Rb Bose-Einstein condensate (BEC). The magnetic sub-levels constitute a spin-1
system with ferromagnetic interactions.

We initialize the system out of equilibrium and monitor the subsequent evolution
employing a new readout scheme. Thereby we simultaneously measure two orthogonal
spin directions and extract the transverse magnetization, which captures coherences
between the individual sub-levels. The energy scale of the spin dependent interactions
introduces a timescale around 500 ms. At comparable evolution times, we observe
coherent oscillations compatible with the corresponding mean field predictions.
Furthermore, we investigate the dynamics for long evolution times up to ∼ 15 s.

In particular, we examine the impact of controlled heating of the condensate density.
For settings with minimal heating, a significant transverse spin survives and the
associated fluctuations are captured by Truncated Wigner simulations. In this case,
the system retains long-term coherence and is mainly affected by dephasing of the
internal dynamics. In contrast, for larger heating the transverse spin significantly
decays and the late-time fluctuations are smaller. This indicates a distinct long-
term evolution influenced by decoherence and a dissipative relaxation due to finite
temperature effects.

Zusammenfassung

In dieser Arbeit untersuchen wir die Langzeitspindynamik innerhalb der F = 1
Hyperfeinmannigfaltigkeit eines 87Rb Bose-Einstein-Kondensats. Die magnetischen
Niveaus bilden ein Spin-1 System mit ferromagnetischen Wechselwirkungen.
Wir präparieren Nichtgleichgewichtszustände und untersuchen die nachfolgende

Spindynamik mithilfe eines neuen Ausleseschemas. Damit messen wir gleichzeitig
zwei orthogonale Spinrichtungen und extrahieren die transversale Magnetisierung.
Diese beschreibt Kohärenzen zwischen den einzelnen magnetischen Niveaus. Die
Energieskala der Spin abhängigen Wechselwirkungen definiert eine interne Zeitskala
von ca. 500 ms. Bei vergleichbaren Entwicklungszeiten beobachten wir kohärente
Oszillationen, die mit mean field Vorhersagen kompatibel sind.
Wir untersuchen dann die Langzeitdynamik bis ∼ 15 s. Insbesondere analysieren

wir den Einfluss von kontrolliertem Heizen der Kondensatdichte. Im Fall minimaler
Aufheizung überlebt ein signifikanter transversaler Spin und die zugehörigen Fluk-
tuationen sind vergleichbar mit trunkierten Wigner Simulationen. In diesem Fall
behält das System Kohärenz und ist hauptsächlich durch Dephasierung der internen
Dynamik bestimmt. Im Gegensatz dazu zerfällt im Fall erheblicher Aufheizung die
transversale Magnetisierung signifikant schneller und die Fluktuationen sind klei-
ner. Dies weist auf ein durch Dekohärenz und dissipative Relaxation beeinflusstes
Langzeitverhalten hin, welches wir Effekten der endlichen Temperatur zuschreiben.
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1. Introduction

Quantum many-body systems out of equilibrium can be found over a widespread
range of scales, from heavy-ion collisions in the LHC [Ber14] to quenched ultra
cold atoms in tabletop experiments [Lan16]. One pivotal challenge is to determine
under which conditions these systems can relax to stationary states, where relevant
expectation values are captured by thermal ensembles [D’A16]. In this context, it is
essential to discern whether the system is truly isolated and relaxes through its own
dynamics or instead couples to the environment experiencing additional dissipative
processes. Moreover, it is important to identify the relevant timescales for different
stages of the evolution: First, the system is expected to evolve coherently. Later, it
can start to ‘lose memory’ of the particulars of the initial configuration and display
universal features. At even longer timescales, the system might eventually relax.
Since the first experimental realization of Bose-Einstein condensation [And95],

ultra cold atoms have established themselves as a versatile platform to simulate the
dynamics of many-body quantum systems, due to the high degree of experimental
control and isolation from the environment [Blo12]. Non-equilibrium conditions are
routinely accessed by tuning or quenching parameters of the underlying Hamiltonians.

We specifically work with a 87Rb spinor condensate, where the internal magnetic
sub-levels within the F = 1 hyperfine manifold constitute a many-body spin-1 system
with ferromagnetic interactions. They introduce an internal timescale of ∼ 500 ms
and give rise to spin-mixing dynamics [SK13], which coherently redistribute atomic
populations between the magnetic sub-levels.

At comparable times, this process drives non-linear dynamics evidenced by popula-
tion oscillations [Cha05] for initial conditions prepared out of equilibrium. Moreover,
parametric amplifications of quantum fluctuations can also spontaneously produce
a macroscopic transverse magnetization in the presence of dynamic instabilities
[Les09, Sch10]. This quantity captures coherences within the spin-1 BEC. Further-
more, if spatial degrees of freedom are accessible, such as in our quasi-1D condensate,
even richer non-equilibrium dynamics can emerge after parametric quenches. A
system in its ground state becomes dynamically unstable when quenched across a
quantum phase transition and spatial spin excitations develop exponentially fast at
short times [Prü16]. At later stages, correlation functions of the transverse spin are
expected to become insensitive of the initial condition and exhibit scaling in time
and space [Wil16]. This universal self-similar behavior has been indeed observed in
our setup [Prü18] within a transient range of evolution times around ∼ 5-10 s.

Within similar timescales a significant decay of the transverse spin is appreciable,
signalizing the progressive loss of coherences. This in turn limits the range of
evolution times where scaling dynamics is experimentally accessible in our system.
Hence, it is important to further characterize the late-time spin dynamics and assess
whether dissipative processes such as atom loss or heating play a significant role.
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1. Introduction

In this thesis, we concentrate on studying and characterizing the spin dynamics in
our BEC at long evolution times. For this purpose, we introduce a newly developed
readout scheme which enables direct measurement of the full transverse spin. As a
first application, we examine the short-time dynamics of this quantity and observe
coherent oscillations reasonably captured by mean field predictions, complementing
previous studies focusing on populations dynamics. Afterwards, we shift our focus
to longer evolution times and systematically investigate finite temperature effects.
In this context, we experimentally control and minimize the heating rate of the
atomic density by adjusting the trapping configuration and develop diagnostic tools.
We observe a significant impact on the long-term decoherence and overall behavior
of the spin dynamics. To this end, we also compare the experimental results with
Truncated Wigner simulations incorporating long-term dephasing effects.

Outline of this Thesis

This master thesis is structured in the following way:

• In Chapter 2, we introduce the required theoretical framework. We start by
reviewing spin-1 systems, interacting spinor BECs and the associated coherent
spin dynamics. Moreover, we present expressions for the density distributions
of the thermal and condensate fractions at finite temperatures. These are
employed later in order to diagnose heating in our system.

• In Chapter 3, we present our experimental platform. After providing an
overview of the setup and the preparation sequences, we introduce a newly
developed readout scheme. Thereby we measure two orthogonal spin directions
in a single experimental run and directly extract the transverse magnetization.

• In Chapter 4, we study coherent spin dynamics. First, we present Truncated
Wigner simulations (TW) incorporating long-term dephasing of the dynamics
due to quantum fluctuations. Moreover, we experimentally examine the short-
time evolution and observe coherent oscillations of the transverse spin for
different initial conditions which are compatible with the theoretical predictions.

• Starting from Chapter 5, we focus on the late-time spin dynamics (∼ 10 s).
We observe a decay of the transverse spin indicating the progressive loss of
coherences. Moreover, we examine the impact of finite temperature effects.
The density heating rate is experimentally controlled by adjusting the trapping
configuration and assessed from condensate fraction evolution. We observe a
correlation between the heating rate and the late-time decoherence.

• Finally, in Chapter 6 we further characterize the late-time spin dynamics
examining the fluctuations of populations in the mF=0 magnetic sub-level and
the associated distributions: For settings with minimal heating, the long-term
behavior is qualitatively captured by TW simulations and seems to primarily
arise from dephasing of the internal dynamics. By contrast, settings with larger
heating rates seem to undergo a diametrically different dissipative relaxation.

2



2. Spinor Bose-Einstein
Condensates

In this introductory chapter we review basic theoretical notions about spin-1 Bose-
Einstein condensates (BEC). We start by introducing spin-1 systems and presenting
the observables required to characterize the system. Moreover, we discuss the central
features of interacting spin-1 condensates and employ the single-mode approximation
and a mean field treatment to understand the associated coherent spin dynamics.
Finally, we discuss Bose-Einstein condensation at finite temperature and introduce
expressions for density distribution of the condensate and thermal fractions. This
distributions will be relevant in later chapters in order to characterize heating in our
experimental system.

2.1. Spin-1 Systems

In our experiment we work with 87Rb atoms within the hyperfine manifolds of the
electronic ground state 52S1/2. The single valence electron of this alkali results in
electronic spin S = 1/2 and zero orbital angular momentum L = 0, while the nuclear
spin is I = 3/2. At small external magnetic fields, they couple and give rise to
two hyperfine manifolds with F = {1, 2}. Specifically, we concentrate on studying
the dynamics within the F = 1 manifold. The three magnetic sub-levels |1,mF 〉
with mF ∈ {1, 0,−1} constitute a spin-1 system. At a single-particle level, we can
represent the wave function of such a system by a three component complex vector:

Ψ =

 √ρ1e
iθ1

√
ρ0e

iθ0

√
ρ−1e

iθ−1

 = eθ0

 √ρ1e
i(θs/2+θL)

√
ρ0√

ρ−1e
i(θs/2−θL)

 (2.1)

where ρmF
and θmF

are the population and phase of the state |1,mF 〉. The wave
function is further constrained by normalization to 1 = ρ1 + ρ0 + ρ−1. As we see in
Eq (2.1), we can factorize θ0 (global phase) and re-parametrize the state in terms of
the so called Larmor phase θL = (θ1− θ−1)/2 and a spinor phase θs = θ1 + θ−1− 2θ0.
While the former corresponds to the phase difference between |1, 1〉 and |1,−1〉, the
latter captures the relative phase between the so called side modes |1,±1〉 and the
central mode |1, 0〉.

2.1.1. The Spin-1 Operators

In the textbook example of spin-1
2
systems [Sak95, Nol13] the spin-wave function can

be represented by a complex two-component vector Ψ1/2 = (ψ↑, ψ↓)
T. Moreover, the

3



2. Spinor Bose-Einstein Condensates

set of possible physical transformations acting on these states are contained in the so
called SU(2) group. This group comprises the set of 2x2 complex unitary matrices
which preserve the spin length and can be generated by the Pauli matrices σ̂j with
j ∈ {x, y, z}. These matrices can in turn be used to construct the spin-1

2
operators

Ŝj = σ̂j/2 which satisfy the commutation relation:

[Ŝx, Ŝy] = iŜz (2.2)

and all cyclic permutations thereof. We set ~ = 1.
Since spin-1 states have an additional degree of freedom, the set of possible physical

transformations is larger and contained in the so called SU(3) group comprising 3x3
complex unitary matrices. Here, we want to consider general spin states with N
particles and employ the formalism of second quantization in order to introduce
spin-1 operators for the F = 1 hyperfine manifold of a 87Rb condensate. In this
context, we define ψ̂†mF

(ψ̂mF) as the operator creating (annihilating) a particle in
the |1,mF〉 mode of our system 1. In this framework, the spin-1 dipole operators or
spin directions are given by [Kaw12]:

F̂x =
1√
2

[ψ̂†1ψ̂0 + ψ̂†0ψ̂−1] + h.c. (2.3)

F̂y = − i√
2

[ψ̂†1ψ̂0 + ψ̂†0ψ̂−1] + h.c. (2.4)

F̂z = ψ̂†1ψ̂1 − ψ̂†−1ψ̂−1 = N̂1 − N̂−1 (2.5)

where N̂±1 = ψ̂†±1ψ̂±1 is the particle number operator counting the atoms in |1,±1〉.
In contrast to spin-1

2
systems, we require additional linearly independent operators

to generate all relevant transformations. We can combine the spin dipole operators
and obtain also the so called spin-1 quadrupole operators :

Q̂ij = F̂iF̂j + F̂jF̂i −
4

3
δi,j (2.6)

where i, j ∈ {x, y, z} and δj,k is the Kronecker delta symbol. Moreover, we can
construct linear combinations of these quadrupole operators as Q̂j2−k2 = (Q̂ii−Q̂jj)/2.
A common choice of generators of the SU(3) group is given by the spin-dipole operators
together with a selection of quadrupole operators and linear combinations thereof
{F̂x, F̂y, F̂z, Q̂xz, Q̂yz, Q̂xy, Q̂zz, Q̂x2−y2 , Î} [Mar16]. Here, Î is the identity operator.
Representing the field operators as ψ̂†1 = (1, 0, 0)T , ψ̂†0 = (0, 1, 0)T and ψ̂†−1 =
(0, 0, 1)T , we can cast both the dipole and quadrupole operators:

1For clarity we implicitly assume the single-mode approximation (see subsection 2.2.2) and disregard
spatial degrees of freedom. In the general case, the relevant field operators depend explicitly on
the position in space, e.g. ψ̂mF(~x) with ~x ∈ R3 .

4



2.2. Interacting Spinor Condensates

F̂x =
1√
2

0 1 0
1 0 1
0 1 0

 F̂y =
i√
2

0 −1 0
1 0 −1
0 1 0

 F̂z =

1 0 0
0 0 0
0 0 −1

 (2.7)

Q̂yz =
i√
2

0 −1 0
1 0 1
0 −1 0

 Q̂xz =
1√
2

0 1 0
1 0 −1
0 −1 0

 Q̂xy =

0 0 −i
0 0 0
i 0 0

 (2.8)

Q̂xx =
1

3

−1 0 3
0 2 0
3 0 −1

 Q̂yy =
1

3

−1 0 −3
0 2 0
−3 0 −1

 Q̂zz =
1

3

2 0 0
0 −4 0
0 0 2


(2.9)

which we retrieve from [Hoa13].

2.2. Interacting Spinor Condensates

Spinor Bose-Einstein condensates are characterized by the fact that a group of
internal magnetic sub-levels is accessible to the dynamics of the system. At low
temperatures such as T . 100 nK in our case and in the absence of permanent dipole
moments, we can model the short-ranged interactions by two body s-wave scattering.
Within this lowest partial wave approach, the relative orbital angular momentum
of a pair of interacting spin-1 atoms vanishes (Lpair = 0). Due to the underlying
bosonic symmetry, the total spin F̂pair = F̂a + F̂b of a pair of interacting atoms {a, b}
can assume only even values Fpair ∈ {0, 2}. Therefore, the total interaction potential
is given as a sum over these two accessible scattering channels [Mar16]:

V̂int(~r) =
∑
F=0,2

4π~2

m
aF P̂F δ(~r) =

1

2

[
c0 + c1F̂a · F̂b

]
δ(~r) (2.10)

where m is the mass of a single atom and ~r the relative coordinate between the
particles. Here, aF and P̂F =

∑
mF
|F,mF,〉 〈F,mF| are the scattering length and

projection operator in the F ∈ {0, 2} scattering channel respectively. The interaction
potential can be grouped in a spin independent term parametrized by c0 = 4π~2(a0+2a2)

3m

and a spin dependent one with c1 = 4π~2(a2−a0)
3m

. For the F=1 manifold of 87Rb the
scattering lengths are on the order of (a0, a2) ≈ (101.8, 100.4)aB, with Bohr radius
aB [Wid06]. In this case, the spin-spin interaction term is negative c1 < 0 and favors
the alignment of the spin of atom pairs (ferromagnetic interactions).

Considering this type of interactions and using the formalism of second quantization,
we can write a general form for the Hamiltonian as described in [SK13].

Ĥ =

∫
d~r

1∑
j=−1

ψ̂†j(~r)

[
−~2∇2

2m
+ Vtrap(~r)

]
ψ̂j(~r) +

∫
d~r :

[
c0

2
n̂2(~r) +

c1

2

∑
k

F̂ 2
k (~r)

]
:

(2.11)

5



2. Spinor Bose-Einstein Condensates

with k = {x, y, z}. The first two terms represent single-particle contributions arising
from the kinetic energy and the external trapping potential. Meanwhile, the last
two terms encode the density-density and spin-spin interactions in the system. The
operator n̂(~r) =

∑
j ψ̂
†
j(~r)ψ̂j(~r) captures the total density operator at position ~r ∈ R3

and : [ ] : denotes normal ordering.

2.2.1. External Magnetic Fields

The experiments presented throughout this thesis are carried out in the presence of
external magnetic fields which introduce energy shifts on the magnetic sub-levels
|1,mF 〉. We define our quantization axis in z-direction and consider therefore fields in
the form ~B = (0, 0, Bz). To second-order, this modifies the Hamiltonian in Eq.(2.11)
by:

ĤB =

∫
d~r ~

[
pF̂z(~r) + q (1− n̂0(~r))

]
(2.12)

where the expressions p = µBgFBz/~ and q = (gJIµBBz)
2/(16~EHFS) correspond

to the energy splitting due to the first and second-order Zeeman shift for hyperfine
energy spitting EHFS. The constants µB, gF and gJI = gJ− gI are the Bohr magneton,
the total Landé g-factor and the difference between the electronic and nuclear ones.

While the first-order Zeeman shift (∝ F̂z) introduces an energy splitting between
the |1, 1〉 and |1,−1〉 magnetic sub-levels, the second-order shift (∝ n̂0) symmet-
rically shifts the central mode |1, 0〉 with respect to the side modes |1,±1〉. The
corresponding values for 87Rb are introduced later in section 3.1.1.

2.2.2. The Single-Mode Approximation and Spin-Changing
Collisions

Within the framework of this thesis, we want to focus on studying the dynamics
associated with the internal spin degrees of freedom. The Hamiltonian presented in
the previous section can in principle couple motional and spin degrees of freedom.
If the spatial extension of the condensate is comparable or smaller than the spin-
healing length ζs = 2π~/

√
2m|c1|n̄ [Pit03] (where n̄ is the mean particle density), we

expect that spatial spin-excitations are suppressed and can employ the single-mode
approximation [Ham12]:

ψ̂j(~r) ≈ φ(~r)ψ̂j (2.13)

Here, we assume that all the atoms in the internal state ψ̂j share the same
normalized spatial wave function φ(~r) with

∫
d~r|φ|2 = 1. Therefore, we can integrate

out the motional degrees of freedom in Eqs.(2.11) and (2.12). This simplifies the
Hamiltonian to a more compact expression depending exclusively on spin degrees of
freedom. The single-mode Hamiltonian commutes with F̂z, such that the latter is
a conserved quantity. Specifically, we want to concentrate on studying states with

6



2.2. Interacting Spinor Condensates

mF ‒1 0 1 ‒1 0 1

q

(a) (b)Bz

Figure 2.1.: Internal dynamics in a ferromagnetic spin-1 BEC under an ex-
ternal magnetic field Bz (schematic representation). The second-
order Zeeman shift introduces an energy shift q of the central mode |1, 0〉
with respect to the side modes |1,±1〉 (a). If q is reduced and becomes
comparable to the spin-spin interactions, spin-changing collisions take
place (b): Pairs of atoms in |1, 0〉 collide and are coherently scattered
into each one of the side modes and vice-versa. This process redistributes
populations between the modes and facilitates the build up of a finite
transverse magnetization. Since spin-mixing conserves the spin along
the z-direction 〈F̂z〉 ∝ N1−N−1 = constant, we can work a in a rotating
frame and disregard the first-order Zeeman shift.

zero magnetization along the quantization axis 〈F̂z〉 = 0. To this end, we transform
into a rotating frame which co-precesses with p and disregard the first-order Zeeman
shift [SK13]. The resulting single-mode Hamiltonian for a system with N atoms is:

ĤSM = ~c̃1

[
F̂ 2
x + F̂ 2

y

]
+ ~q(N − N̂0) = ~c̃1F̂

2
⊥ + ~q(N − N̂0) (2.14)

where c̃1 = c1
2~

∫
d~r |φ|4 is the single-mode spin-spin interaction parameter and

N̂0 counts the number of particles in the central mode. We define the transverse
magnetization as F̂ 2

⊥ = F̂ 2
x + F̂ 2

y .
In the particular case of the 87Rb ground state manifold F = 1, the spin-spin

interactions are ferromagnetic (c̃1 < 0) and favor the build up of transverse mag-
netization F̂⊥. Moreover, this part of the Hamiltonian also contains terms in the
form ĤSCC ∝ ψ̂†1ψ̂

†
−1ψ̂0ψ̂0 + h.c. which give rise to so called spin-changing collisions

if the detuning q is sufficiently small. This is a coherent process by which pairs
of atoms in the central mode are scattered into the side modes and vice-versa
(2 × |1, 0〉 ↔ |1, 1〉 + |1,−1〉). The relevant contributions and processes governing
the internal dynamics in our spin-1 BEC are schematically represented in Fig.2.1.

2.2.3. Mean Field Equations of Motion

In our experiments we typically work withs N ≈ 104 atoms. If the magnetic sub-
levels are macroscopically occupied, we can use a mean field ansatz. We substitute
the field operators with complex order parameters or ‘macroscopic wave functions’
ψ̂†j →

√
Njζj and ψ̂j →

√
Njζ

∗
j , where Nj is the total number of atoms and

ρj = |ζj|2 = Nj/N are the normalized populations in |1, j〉.
From now on we want to concentrate exclusively on states with zero magnetization

7



2. Spinor Bose-Einstein Condensates

along the z-direction m = 〈ζ|F̂z|ζ〉 = ρ1 − ρ−1 = 0. In this context, we introduce a
normalized mean field spinor:

ζ =

 ζ1

ζ0

ζ−1

 =


√

1−ρ0
2
ei(θs/2+θL)

√
ρ0√

1−ρ0
2
ei(θs/2−θL)

 (2.15)

which is parametrized in terms of population in the central mode ρ0, the spinor
phase θs and the Larmor phase θL in resemblance to Eq.(2.1). Within this approxi-
mation, we introduce the mean field energy functional ε(ρ0, θs) which captures the
average energy per particle and depends only on the central mode population and
the spinor phase [Mar16]:

ε(ρ0, θs) = ~ [λ1ρ0(1− ρ0)(1 + cos(θs)) + q(1− ρ0)] (2.16)

where λ1 = 2Nc̃1 is the mean field spin-spin interaction term. Within the
Thomas-Fermi approximation, we expect this term to scale as λ1 ∝ N

∫
d~r|φ|4 ∝

N(n0/N
3/5) = n0N

2/5 with total atom number N and peak density of the condensate
n0 [Ham12]. Using standard variational techniques ~ρ̇0 = −2 d

dθs
ε and ~θ̇s = 2 d

dρ0
ε,

we obtain mean field equations of motion [Cha05]:

ρ̇0 = 2λ1ρ0(1− ρ0) sin(θs)

θ̇s = 2λ1(1− 2ρ0)(1 + cos(θs))− 2q (2.17)

For the sake of completeness, we also summarize the equations of motion for the
individual components of the mean field spinor which we retrieve from [Hoa13]:

iζ̇0 = λ1[(ρ1 + ρ−1)ζ0 + 2ζ1ζ−1ζ
∗
0 ]− qζ0

iζ̇±1 = λ1

[
(ρ±1 + ρ0 − ρ∓1)ζ±1 + ζ2

0ζ
∗
∓1

]
(2.18)

2.2.4. Visualizing the Spin Dynamics in Spin-Nematic Space

In this section, we introduce the so called spin-nematic sphere and employ it to
graphically represent the internal spin dynamics arising from the non-linear equations
of motion presented in Eq.(2.17).

SU(2)-Subspaces of SU(3)

The Bloch sphere constitutes a very useful visualization of the dynamics in spin-1
2

systems: Within this framework, one computes the expectation values of the three
spin operators 〈Ŝx〉, 〈Ŝy〉 and 〈Ŝz〉 and represents them together on the surface of a
sphere, since they fulfill the commutation relation in Eq. (2.2)2.

2This commutation relation defines the SU(2) group, which can be mapped into the SO(3) group
of rotations in R3

8



2.2. Interacting Spinor Condensates

A complete graphical representation of a spin-1 system is more elusive, since in
principle we would need to simultaneously plot the expectation values of the eight
spin operators which generate the SU(3) group. However, we can rely on spin-1

2

systems and choose triples of spin-1 operators which satisfy the SU(2) commutation
relation [Ô1, Ô2] = iÔ3 in order to construct subspaces of SU(3).
A typical combination of triples is {F̂x, F̂y, F̂z} and defines the so called spin-1

sphere. This sphere is suitable for representing spin-rotations induced by Hamiltonians
of the form Ĥ ∝ F̂j as we are going to see in the next chapter.
The so called spin-nematic spheres are formally defined by the combinations

of operators {F̂y, Q̂xz, Q̂xx − Q̂zz} or {F̂x, Q̂yz, Q̂zz − Q̂yy} and are more relevant
to represent the internal spin dynamics. If we consider a mean field spinor ζ
with equal populations in each of the side modes and ignore the Larmor phase,
we can approximate the expectation values as 〈ζ|Q̂xx − Q̂zz|ζ〉 ≈ 2(2ρ0 − 1) and
〈ζ|Q̂zz − Q̂yy|ζ〉 ≈ −2(2ρ0 − 1). Hence, we can construct two approximate SU(2)-
subspaces in a similar fashion as in [Ham12]:

{F̂x, Q̂yz,−2(2ρ̂0 − 1)} and {F̂y, Q̂xz, 2(2ρ̂0 − 1)} (2.19)

where the operator ρ̂0 yields the population in |1, 0〉 .

A Geometric Spin-Nematic Sphere

Here, we want to combine the two subspaces introduced in Eq. (2.19) in order to
construct a more useful geometric representation for the dynamics arising from the
mean field equations of motion presented in Eq.(2.17). As previously stated, we
restrict ourselves to states with zero magnetization along the quantization axis with
ρ1 − ρ−1 = 0 and compute the expectation values of the relevant operators:

〈ζ|F̂x|ζ〉 = 2
√
ρ0(1− ρ0) cos(θs/2) cos(θL) = F⊥ cos(θL)

〈ζ|F̂y|ζ〉 = −F⊥ sin(θL)

〈ζ|Q̂yz|ζ〉 = −2
√
ρ0(1− ρ0) sin(θs/2) cos(θL) = −Q⊥ cos(θL)

〈ζ|Q̂xz|ζ〉 = −Q⊥ sin(θL) (2.20)

We define the average transverse magnetization as F⊥ = 2
√
ρ0(1− ρ0) cos(θs/2) and

the associated quadrupole operator accordingly Q⊥ = 2
√
ρ0(1− ρ0) sin(θs/2). Using

this representation, we directly see that 〈ζ|F̂x|ζ〉 and 〈ζ|F̂y|ζ〉 only differ by a term
depending on the Larmor phase θL. Since the mean field energy functional does not
depend on θL as we see in Eq.(2.16), the two approximate spin-nematic spaces in
Eq.(2.19) are degenerate. Hence, we can combine these two subspaces and represent
these expectation values together in a ‘geometric’ spin-nematic sphere:

{F⊥, Q⊥, 2ρ0 − 1}. (2.21)

where we closely follow the approach used in [Hoa13]. This particular choice has
the practical advantage that the corresponding expectation values can be represented

9



2. Spinor Bose-Einstein Condensates

together on the surface of a unit sphere as F 2
⊥ +Q2

⊥ + (2ρ0 − 1)2 = 1. It is especially
suitable for visualizing the spin-mixing dynamics in our system since the single-mode
Hamiltonian depends explicitly on both the transverse spin F̂ 2

⊥ and the central mode
population N̂0 or ρ0 in a mean field treatment.

Visualization of the Spin Dynamics

The mean field trajectories on the spin-nematic sphere depend only on the ratio q/λ1

since the explicit λ1 dependence can be absorbed by re-parameterizing the time in
Eq.(2.17). We solve the mean field equations of motion numerically3 and obtain
(ρ0(t), θs(t)) for different choices of q/λ1 and initial conditions. We restrict ourselves
to λ1 < 0 in order to reproduce the ferromagnetic spin-spin interactions in the F=1
manifold of 87Rb . We extract {F⊥(t), Q⊥(t), 2ρ0(t) − 1} following Eqs.(2.20) and
plot the trajectories on the spin-nematic spheres in Fig.2.2.

If the second-order Zeeman shift is the dominant energy scale with q/|λ1| > 2, the
energy functional ε ≈ ~q(1 − ρ0) is minimized by a ground state where all atoms
populate the |1, 0〉 mode such that ρ0 = 1. This corresponds to a fixpoint of the
dynamics at the north pole of the sphere (polar phase). If the system is initialized
away from its ground state with ρ0 < 1, the second-order Zeeman shift induces
rotations around the 2ρ0-1 axis resulting in trajectories that explore a wide range of
F⊥ and Q⊥ values. This open trajectories are equal energy contours with ε > 0 and
traverse phase space in mathematical positive direction.
As the second-order Zeeman shift is reduced and becomes comparable to the

spin-spin interactions, a phase transition occurs at q/|λ1| = 2. For q/|λ1| < 2 the
competition between these two terms gives rise to a mean field ground state with
finite transverse magnetization F⊥ 6= 0 (easy-plane ferromagnetic phase). If the
system is initialized close to the fixpoint it displays oscillations around this value
which explore a limited range of phase space parameters. Moreover, a separatrix
emerges in the system distinguishing between closed (ε < 0) and open trajectories
(ε > 0). The latter are again dominated by a rotation around the 2ρ0-1 axis.

In the special case of q = 0, the dynamics is uniquely determined by the ferro-
magnetic spin-spin interactions. The Hamiltonian ĤSM = ~c̃1F̂

2
⊥ in Eq.(2.14) favors

a fully magnetized ground state with F⊥ = 1 and ρ0 = 1/2. This corresponds to
a fixpoint on the equator of the spin-nematic sphere. Moreover, if the system is
initialized away from the ground state the Hamiltonian gives rise only to closed
trajectories circling the F⊥-axis with ε < 0.

3We use a MATLAB solver for ordinary differential equations ode45, which relies on a 5th order
Runge-Kutta method.
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Phase
Transition

2

q/|λ1|=4q/|λ1|=0

q/|λ1|

(a)

q/|λ1|=1

(b) (c)

Figure 2.2.: Mean field trajectories on the spin-nematic sphere for different
ratios q/|λ1| = {0, 1, 4}. We consider ferromagnetic interactions
λ1 < 0 and plot the trajectories on the spin-nematic sphere. If the
second-order Zeeman shift q is the dominant energy scale (c), the ground
state is located at the north pole of the sphere with ρ0 = 1. Away from
this fixpoint of the dynamics, the second-order Zeeman shift gives rise to
rotations around the 2ρ0-1 axis resulting in positive energy contours ε > 0
(blue curves), which explore a wide range of F⊥ values. As q becomes
comparable to |λ1|, a phase transition occurs at q/|λ1| = 2. For smaller
ratios, a separatrix appears in the system (black line) distinguishing
between closed (red) and open trajectories (blue curves) as shown in
(b). The direct competition between q and λ1 results in a fixpoint
with F⊥ 6= 0. In the limiting case of q = 0 (a), the dynamics is solely
determined by the spin-spin interactions which favor a fully magnetized
ground state with F⊥=1. When initialized away from this fixpoint, there
are only closed trajectories with ε < 0 (red curves) circling the F⊥ axis.
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2. Spinor Bose-Einstein Condensates

2.3. Condensates at Finite Temperatures

So far, we have implicitly assumed zero temperature when discussing the coherent
spin dynamics. As we want to study spin-mixing for q/|λ1| ∼ 1 and |λ1| ≈ 2π× 2 Hz
in our system, the relevant experimental timescales can extend up to few seconds.
Within these long evolution times the system might be significantly affected by
dissipative processes such as atom loss and heating. In this section, we discuss finite
temperature effects and how they affect the density distribution of a condensate.
Specifically, we present functional forms for the condensate and thermal fractions of
an interacting BEC at finite temperatures. These are employed in later chapters to
assess heating in our system.

2.3.1. Density Distribution of the Thermal and Condensate
Fractions

In the F=1 manifold of 87Rb , the density-density interactions are significantly larger
than the spin-spin interactions with |c0/c1| ≈ 200. Thus, we expect the former ones
to primarily determine the density distribution of the atomic cloud. Throughout this
section we consider therefore only the theoretical framework for a single component
Bose gas without internal degrees of freedom. The repulsive interactions of the system
are modeled via s-wave scattering with coupling constant g = 4π~2a

m
and scattering

length a > 0. This approximation is justified, since our condensate is a dilute gas
with diluteness parameter na3 ≈ 10−5 � 1. In accordance to our experimental setup,
we consider radially symmetric harmonic confinement with frequencies ω|| = ωx
and ω⊥ = ωz = ωy. Using the Thomas-Fermi approximation, which neglects the
kinetic energy of the condensate, one obtains the following expression for the density
distribution of condensate nC at T = 0 [Dal99, Pit03]:

nC(~r) =

{
1
g

[µ− Vtrap(~r)] , for Vtrap < µ

0 , otherwise
(2.22)

where Vtrap(~r) = 1
2
mω2

||x
2 + 1

2
mω2

⊥r
2 (r2 = y2 + z2) is the trapping potential of the

system. The chemical potential µ is fixed by the total atom number N to:

N =

∫
d~r nC(~r) ⇒ µ =

~ωHO

2

(
15Na

aHO

)2/5

(2.23)

where ωHO = (ω||ω
2
⊥)1/3 is the geometric mean of the trapping frequencies and

aHO = [~/(mωHO)]1/2 is the harmonic oscillator length. We directly see in Eq.(2.22)
that the condensate mimics the shape of the trapping potential and exhibits an
inverted parabola extending in every spatial direction up to µ = 1

2
mω2

⊥R
2
⊥ = 1

2
mω2

||R
2
||.

This relation defines the Thomas-Fermi radii in longitudinal R|| and transverse R⊥
direction, which capture the spatial extension of the condensate. While the Thomas-
Fermi approximation is strictly valid only at T = 0, it provides a good estimate at
finite temperatures for macroscopic condensates with NC(T )a/aHO >> 1.
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For finite temperatures T below the critical temperature TC the condensate coexists
with a cloud of non-condensed thermal atoms. The thermal atoms are effectively
displaced towards outer trap regions due to the repulsive interactions with the
significantly denser condensate which fills the central region of the trap. This
behavior can be modeled by introducing an effective potential experienced by the
thermal atoms [Dal99].

Veff(~r) =

{
Vtrap(~r) + 2gnC(~r) , if 1

2
mω2

⊥r
2 + 1

2
mω2

||x
2 < µ

Vtrap(~r) , otherwise
(2.24)

where the harmonic trapping potential Vtrap is modified by a mean field term
2gnC(~r) inside the region shared with the condensate and the factor 2 accounts for
the bosonic symmetry of the system. This approach disregards interactions between
pairs of thermal atoms and the back-action of the thermal cloud on the condensate.
Using this effective potential and a standard grand-canonical approach we can

write an expression for the density distribution of thermal atoms in real space:

nT(~r) =
1

(2π~)3

∫
d~p

1

eβ(p2/2m+Veff(~r)−µ) − 1
= λ−3

T g3/2(e−β(Veff(~r)−µ)) (2.25)

where the integrand in the first term corresponds to the Bose-Einstein distribution
and β = 1/(kBT ) and kB are the Boltzmann factor and constant respectively.
The real space density distribution in the final term is obtained after integrating
out the momentum coordinates and the thermal wavelength is defined as λT =√

2π~2/(mkBT ). The g3/2(z) function belongs to the class of generalized Riemann
zeta functions gγ(z) =

∑∞
k=1 z

k/kγ.
For an ideal Bose gas in the presence of harmonic trapping potentials, the critical

temperature TC and the condensate fraction NC/N at finite temperature T < TC are
given by [Ket99]:

TC =
~ωHO

kB

(
N

ζ(3)

)1/3

≈ 0.94
~ωHO

kB
N1/3 (2.26)

NC

N
= 1−

(
T

TC

)3

(2.27)

First-order corrections to the critical temperature due to interactions are given
by ∆TC/TC = −1.3(a/aHO)N1/6 [Gio96]. For typical experimental parameters
N ≈ 12000 atoms, (ω⊥, ω||) ≈ 2π× (220, 46)Hz and a ≈ 100aB the relative correction
is on the order of few percent ∆TC/TC ≈ −0.033 = −3.3% and therefore ignored
within the scope of this thesis.

2.3.2. 1D Integrated Thermal and Condensate Profiles

In the experiment, we work with 1D density profiles which are integrated along the
two directions (y, z) of tight confinement ω⊥. Therefore, we also need to integrate out

13



2. Spinor Bose-Einstein Condensates

the radial dependency of the condensate and thermal profiles to obtain distributions
which we can compare to our experimental observations.

We consider first the condensate profile in Eq.(2.22) and introduce cylindric
coordinates (x, r) = (x,

√
y2 + z2) to exploit the symmetry of the problem. Taking

into account that the spatial extension of the condensate is fixed by the chemical
potential 1

2
mω2

⊥r
2 + 1

2
mω2

||x
2 < µ, we can integrate out the radial dependence:

n1D
C (x) = 2π

∫ R(x)

0

dr r
1

g

[
µ− 1

2
mω2

⊥r
2 − 1

2
mω2

||x
2

]
=

π

gmω2
⊥

[
µ− 1

2
mω2

||x
2

]2

(2.28)

where R(x) =

[
2µ
mω2
⊥
−

ω2
||

ω2
⊥
x2

]1/2

is the radial extension of the condensate at position

x. We directly see that the 1D integrated profile of the condensate is captured by a
fourth-oder polynomial instead of the inverted parabola in the 3D case.
For the computation of the 1D thermal profiles, we need to consider different

functional forms for regions with and without overlap with the condensate cloud.
Taking this into account, we integrate Eq.(2.25) and derive the final expression:

n1D
T (x) =

2π

λ3
Tmβω

2
⊥

g5/2

(
e−β( 1

2
mω2
||x

2−µ)
)

, if x > R|| =
√

2µ
mω2
||

g5/2

(
2− e−β(µ− 1

2
mω2
||x

2)
)

, otherwise
(2.29)

with g5/2(z) =
∑∞

k=1 z
k/k5/2. While outside the condensate region (x > R||)

the thermal atoms follow the trapping potential and exhibit a Gaussian profile
∝ exp(−β(1

2
mω2

||x
2)) to first-order, the repulsive interactions with the condensate

result in an effective depletion of the thermal fraction when overlapping with the
BEC as the leading term is ∝ 2− exp(−β(µ− 1

2
mω2

||x
2)).

In order improve our intuitive understanding of these profiles, we plot them for
representative experimental parameters N = 12000 atoms and trapping frequencies
(ω⊥, ω||) = 2π × (220, 46)Hz in Fig.2.3. We choose temperatures {40, 60, 90, 110}nK
below the critical temperature TC ≈ 135 nK and plot also the distribution of both
the condensate and thermal components (dashed lines). We additionally integrate
the density profiles within regions of 0.42 µm in longitudinal direction corresponding
to the effective pixel size of our CCD camera, in order to have better comparability
with the experiment. As we can directly see in the profiles, the Thomas-Fermi
radius in longitudinal direction is on the order of R|| ≈ 10 µm. For the two lowest
temperatures displayed, the condensate fraction is large NC/N > 90% and the
profiles are dominated by the Thomas-Fermi shape of the BEC. As we increase the
temperature and approach TC , thermal wings become more predominant resulting in
significantly reduced condensate fractions such as NC/N ≈ 45% for T = 110 nK.
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T=40 nK T=60 nK

T=90 nK T=110nK

(a)

(c)

(b)

(d)

Nc/N=0.45Nc/N=0.70

Nc/N=0.91Nc/N=0.97

Figure 2.3.: 1D integrated profiles for different temperatures and ex-
perimental parameters N=12000 atoms, (ω⊥, ω||) = 2π ×
(220, 46)Hz and critical temperature TC ≈ 135 nK. We plot
the 1D integrated profiles (solid lines) together with the thermal and
condensate ones (dashed lines) for representative temperatures 40 nK
(a), 60 nK (b), 90 nK (c) and 110 nK (d). The Thomas-Fermi radius
in longitudinal direction is around R|| ≈ 10 µm. We clearly see that for
low temperatures T ≤ 60 nK the density profile is dominated by the
condensate fraction as NC/N > 0.9, while the thermal wings start to
gain importance as the temperature is increased and approaches TC .
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3. Preparing and Probing a Spinor
Condensate

In this chapter we present our experimental system. We start by providing a brief
overview of the setup and discussing the level scheme of 87Rb . Moreover, we also
present a technique which we employ to prepare initial states with tunable transverse
magnetization F⊥. Afterwards, we describe in more detail a newly developed readout
scheme which allows us to extract the two orthogonal directions of the transverse
magnetization Fx and Fy in a single experimental run.

3.1. Overview of the Experimental System

3.1.1. Level Structure of 87Rb

As previously stated, we perform experiments with 87Rb atoms within the hyperfine
manifolds of the electronic ground state. In the limit of small external fields, two
manifolds F = {1, 2} are in principle available and separated by the hyperfine
splitting EHFS ≈ h × 6.835 GHz. In the presence of an external magnetic field
~B = (0, 0, Bz), the magnetic sub-levels |F,mF 〉 exhibit a first-order Zeeman splitting
given by p = gFµBmFBz/~ where µB is the Bohr magneton and gF ≈ {−1

2
, 1

2
} are

the approximate Landé g-factors in F = {1, 2}. The splittings in the two manifolds
p1/Bz ≈ −2π × 702.4 kHz

G
(F=1) and p2/Bz ≈ 2π × 699.6 kHz

G
(F = 2) are similar

in magnitude but have opposite signs as we see in the sketch in Fig.3.1. This is
going to be crucial to selectively address only the atoms in F=1 with radio frequency
rotations and will enable our Fx-Fy readout scheme (see section 3.3.2).
As we know from the previous chapter, the second-order Zeeman shift directly

determines the detuning of the spin-mixing dynamics in F=1 since we can transform
into a rotating frame and disregard the first-order splitting. As also represented
in Fig.3.1, it symmetrically shifts the central mode |1, 0〉 with respect to the side
modes |1,±1〉 by q = (gJ − gI)2µ2

BB
2
z/(16~EHFS) ≈ 2π × 72 Hz

G2B
2
z . Here, gJ ≈ 2 and

gI ≈ −0.001 are the fine structure and nuclear g-factors [Ste01].

3.1.2. Experimental Setup

We start our experimental sequence by loading a 87Rb atomic sample in a 3D
magneto-optical trap (MOT) from a 2D MOT. Afterwards, the atoms are optically
pumped to the F=1 manifold and transfered to a magnetic trap which only confines
atoms in the |1,−1〉 internal state. When the radius of this time-orbiting potential
is reduced, the hotter atoms at the edge of the trap can escape resulting in a first
stage of forced evaporation. The atoms are then transfered to a crossed beam optical
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3. Preparing and Probing a Spinor Condensate

dipole trap derived form a Yb:YAG laser with wavelength λ ≈ 1030 nm, which is
far red-detuned with respect to the 87Rb D1,2-doublet at λ ≈ (795, 780)nm. As the
optical trapping depth is reduced, a second stage of evaporative cooling takes place.
We thereby reduce the temperature of atomic cloud below the critical temperature
and obtain a spin polarized Bose-Einstein condensate of ∼ 104 atoms in the |1,−1〉
magnetic sub-level. The duty cycle of the experiment is on the order of ∼ 40 s.
We can carry out experiments with two different trapping configurations: We

can work in a crossed beam dipole trap (see Fig.3.2(a)), which gives rise to tightly
confined condensates and harmonic trapping frequencies on the order of (ω⊥, ω||) ≈
2π × (220, 46)Hz with ω⊥ = ωy,z and ω|| = ωx. As we are going to see in later
chapters, this trapping configuration is suitable to study spin dynamics within
the single-mode approximation. Alternatively, we can adiabatically switch-off the
vertical trap arm and allow the atoms to expand in the remaining waveguide trap
(see Fig.3.2(b)). This results in an elongated condensate with trapping frequencies
(ω⊥, ω||) ≈ 2π × (220, 2.2)Hz, suitable for investigating 1D spin dynamics [Prü18].

Experimental Control of q

As discussed before, spin-mixing is controlled by the energy difference between
the central and side modes. We work at fixed magnetic offset field Bz = 0.884 G
which results in a second-order Zeeman shift around qB ≈ 2π × 56.2 Hz. We tune
q by applying microwave radiation blue-detuned with respect to the |1, 0〉 ↔ |2, 0〉
transition. The induced AC-Stark shift shifts |1, 0〉 by qAC=−Ω2

4δ
[Ger06], such that:

q = qB + qAC = 2π × 56.2Hz− Ω2

4δ
(3.1)

The Rabi frequency is around Ω ≈ 2π × 6 kHz. We adjust the detuning δ in order
to experimentally control q. The employed detuning values are substantially larger
than the Rabi frequency with δ ≈ 2π × 150 kHz, such that population transfer to
|2, 0〉 is suppressed. Due to power stabilization of the microwave dressing, the relative
fluctuations of q are small and on the order of ∆q/qB ≈ 0.4% [Kun18b].

State Selective Imaging

After a period of evolution tevo, the atomic sample is destructively probed by means
of high-intensity absorption imaging. A Stern-Gerlach pulse along the z-direction is
applied beforehand in order to spatially separate the different hyperfine components
|F,mF 〉 after a short free time of flight expansion ∼ 1ms. The populations in the
F=1 and F=2 manifolds can be distinguished in a two-step process: First, only
the imaging beam in switched on for about 15 µs (λ = 780.2nm). This resonantly
addresses the 2S 1

2
F=2 → 2P 3

2
F ′=3 transition, images the atoms in F=2 and

displaces them out of the trap. Afterwards, the re-pumper laser is combined with
the imaging beam in order to resonantly address the atoms in the F=1 manifold
(F=1 → F ′= 2). After recording reference and dark pictures, we can extract the
atom number per pixel in each of the |F,mF 〉 sub-levels of both manifolds [Mü14].

More details concerning the experimental setup can be found in the supplementary
materials of [Kun18b, Prü18] as well as in [Str16, Lin17].
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3.1. Overview of the Experimental System

F = 2

F = 1

mF ‒1 0 1-2  2 ‒1 0 1

Figure 3.1.: 87Rb level scheme. At low external fields Bz, the electronic ground
state of 87Rb consists of two hyperfine manifolds F = {1, 2} separated
by EHFS (left). The first-order Zeeman splitting is on the order of
∼ 2π × 700Hz

G
Bz but in opposite direction for F = {1, 2} due to the

different sign of the Landé g-factors g ≈ {−1
2
, 1

2
}. The second-order

Zeeman splitting in F = 1 (right) introduces a shift between |1, 0〉 and
the side modes |1,±1〉. The values are retrieved from [Ste01].

(a) (b)

Waveguide TrapCrossed Beam
Dipole Trap

Z

x
y

20 μm 250 μm 

Figure 3.2.: Trapping configurations. We can perform experiments directly in a
crossed beam dipole trap (a) and work with tightly confined condensates
experiencing trapping frequencies around (ω⊥, ω||) ≈ 2π × (220, 46)Hz
with ω⊥ = ωy,z. This configuration is suitable to study single-mode spin
dynamics. Alternatively, we can adiabatically switch-off the vertical
trapping arm and let the atoms expand in the remaining waveguide trap
(b). The resulting elongated BEC with (ω⊥, ω||) ≈ 2π × (220, 2.2)Hz is
appropriate for investigating 1D spin-1 physics.
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3.2. Preparation of Initial States with Tunable F⊥
In this section, we present a procedure to prepare initial states with tunable transverse
magnetization F⊥. A detailed discussion of the preparation of different initial
conditions in our spin-1 87Rb condensate can be found in [Lan18].

We start by applying two successive resonant microwave (MW) π-pulses in order
to transfer all the atomic population to the polar state |1,−1〉 → |2, 0〉 → |1, 0〉.
The resulting state can be represented by the normalized spinor ψ = (0, 1, 0)T .
Afterwards, we apply a radio frequency (RF) pulse resonant with the first-order
Zeeman splitting in F = 1, which couples the individual magnetic sub-levels. The
action of the RF pulse can be modeled by the Hamiltonian ĤRF = ~ΩRFF̂x, with
Rabi frequency around ΩRF ≈ 2π × 3 kHz. The employed φRF-pulse transfers atomic
populations to the side modes and rotates the polar to a ‘tilted polar’. The phase
φRF = ΩRFtRF is controlled by the pulse time tRF.
The resulting state evolves then for ts under the influence of the second-order

Zeeman shift q = qB = 2π × 56.2 Hz. This process is captured by the Hamiltonian
Ĥs = ~ q

2
Q̂zz = ~q(1

3
− ρ̂0), where the operator ρ̂0 = 1

N
ψ̂†0ψ̂0 counts the population

in |1, 0〉 [Lan18]. This Hamiltonian introduces a relative phase between central
mode and the side modes ∆θ = −qts and modifies thereby also the spinor phase
θs = π

2
− 2∆θ = π

2
− 2qts. We choose ts = π

4q
≈ 4.4 ms of evolution to enforce θs = 0

spinor phase, such that F⊥ becomes maximal for the corresponding central mode
population ρ0 as we see in Eq.(2.20). We obtain the following expectation values for
the two directions of the transverse spin while tuning the duration of the RF-pulse:

〈ψ′|F̂x|ψ′〉 = − sin(2φRF) and 〈ψ′|F̂y|ψ′〉 = 0 (3.2)

with |ψ′〉 = exp(−iπ
4
Q̂zz) exp(−iφRFF̂x) |ψ〉. Hence, the magnitude of the initial

transverse spin can be adjusted by controlling the duration of the initial RF-pulse
and is |F⊥| = | sin(2ΩRFtRF)|.

3.3. Simultaneous Readout of Fx and Fy

In this section, we present a newly developed readout scheme which allows us to
extract two orthogonal directions of the transverse magnetization Fx and Fy in a
single experimental run. In contrast to other existing techniques such as ‘absorptive
spin-sensitive in-situ imaging’ (ASSISI) [Mar16] which employ multiple imaging
pulses, we rely on state selective radio frequency rotations and on using the F = 2
manifold as a storage platform for one of the probed spin directions.

3.3.1. Fx-Fy Readout Scheme: Motivation and Description

Throughout this section, we consider a normalized mean field spinor:

ψ =
1√
N

(
√
N1e

iθ1 ,
√
N0e

iθ0 ,
√
N−1e

iθ−1)T (3.3)
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3.3. Simultaneous Readout of Fx and Fy

where NmF
and θmF

are the number of atoms and phases of the |1,mF 〉 magnetic
sub-level. As discussed in the previous section, we can extract the atomic population
in the individual sub-levels by applying a Stern-Gerlach pulse before imaging. In
this way, we can readily extract the magnetization along the quantization axis using
Eq.(2.9):

〈F̂z〉 = 〈ψ|F̂z|ψ〉 =
1

N
[N1 −N−1] (3.4)

This observable is directly accessible by measuring populations and computing the
particle number imbalance between atoms in the side modes ∝ N1 −N−1. However,
we are rather interested in studying spin-mixing dynamics for states with 〈F̂z〉 = 0
but finite transverse magnetization F⊥. In order to obtain this quantity, we want to
measure the spin along the x and y-directions which are given by:

〈F̂x〉 =

√
2

N

[√
N1N0 cos(∆θ1) +

√
N−1N0 cos(∆θ−1)

]
〈F̂y〉 = −

√
2

N

[√
N1N0 sin(∆θ1)−

√
N−1N0 sin(∆θ−1)

]
(3.5)

with relative phases ∆θ±1 = θ±1 − θ0 . Hence, these quantities capture phase
coherences between the central mode and the side modes of the system and are
not directly experimentally accessible by measuring atom numbers in the hyperfine
manifolds. We will employ radio frequency pulses to map Fx and Fy into the
accessible readout axis Fz. The employed radio frequency pulses are generated by
time dependent B-fields which oscillate in the x-y plane with phase φ. We choose
the oscillation frequency ω = |p| ≈ 2π × 621 kHz to match the first-order Zeeman
splitting in F=1 and resonantly address the atoms. Transforming into the rotating
frame of the atoms, we obtain the effective Hamiltonian [Per13]:

ĤRF = −~ΩRF

[
cos(φ)F̂x − sin(φ)F̂y

]
(3.6)

with Rabi frequency ΩRF = |g1|µBB/~. Its effect on spin-1 states can be graphically
represented on the spin-1 sphere, where we represent the expectation values of the
three spin directions {Fx = 〈F̂x〉 , Fy = 〈F̂y〉 , Fz = 〈F̂z〉}. On this sphere, the RF-
pulses generate rotations around the Fx cos(φ) + Fy sin(φ) axis where the phase φ
corresponds to the polar angle in the spin-1 sphere. Experimentally, we adjust only
relative phases between the different RF pulses and are free to define Fy as the axis
for the first RF-rotation.

The Readout Scheme

We start by applying a first π
2
-RF pulse in order to rotate the spin state around the

Fy-axis and effectively map 〈F̂x〉 into the Fz-axis:
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3. Preparing and Probing a Spinor Condensate

〈ψ|F̂x|ψ〉 = 〈exp
(
−iπ

2
F̂y

)
ψ|F̂z| exp

(
−iπ

2
F̂x

)
ψ〉 =

1

N

[
N ′1 −N ′−1

]
(3.7)

where we define the phase of the first pulse to be φ1 = π
2
in order to enforce rotations

with the Hamiltonian ĤRF,1 = ΩRFF̂y. We can extract then 〈F̂x〉 by measuring
population differences between the side modes N ′1 −N ′−1 after the RF-rotation.
Afterwards, we transfer half of the atomic populations to different magnetic sub-

levels of the F=2 manifold by applying three successive resonant microwave π
2
-pulses

|1,−1〉 → |2,−2〉, |1, 0〉 → |2, 0〉 and |1, 1〉 → |2, 2〉. This allows us to use the F=2
manifold as a storage platform for shelving 〈F̂x〉.

Finally, we apply a second π
2
-RF pulse phase shifted by π

2
with respect to the first

one (φ2 = φ1 + π
2
). The resulting Hamiltonian ĤRF,2 = ΩRFF̂x generates rotations

around the Fx-axis in the spin-1 sphere. We selectively address only the atoms in
F = 1 with an RF π

2
-pulse leaving the atoms in F = 2 unaffected (see section 3.3.2).

Thereby we effectively map 〈F̂y〉 into the F̂z-axis:

〈ψ|F̂y|ψ〉 = 〈exp
(
−iπ

2
F̂x

)
exp

(
−iπ

2
F̂y

)
ψ|F̂z| exp

(
−iπ

2
F̂x

)
exp

(
−iπ

2
F̂y

)
ψ〉

=
1

N

[
N ′′1 −N ′′−1

]
(3.8)

and can extract this quantity from imbalance between the side modes after the two
RF-rotations N ′′1 −N ′′−1.
Hence, we can extract 〈F̂x〉 and 〈F̂y〉 in a single experimental run by measuring

normalized atom number differences in the side modes of F = 2 and F = 1 respectively
after the corresponding RF-rotations. These quantities can be obtained employing
our state selective absorption imaging setup.

The employed pulse sequence is represented in Fig.3.3(a) together with a schematic
visualization of the readout scheme using spin-1 spheres in Fig.3.3(b).

3.3.2. Selective Rotations in F=1

So far we have presented the Fx-Fy readout schematically and assumed that we can
address the atoms in F = 1 without inducing RF-rotations on the state stored in
F = 2. This is a priori not trivial, since for Bz = 0.884 G the difference between the
first-order Zeeman splittings in the two manifolds δ = |p2| − |p1| ≈ −2π × 2.5 kHz is
smaller than the typical values for the RF-Rabi frequency ΩRF ≈ 2π × 10 kHz.

Selective rotations in F = 1 are indeed possible by combining the time-dependent
magnetic fields of two orthogonal coils which are sketched in Fig.3.4(a). For illustrative
purposes, we assume that the Zeeman splitting in F = {1, 2} is equal in magnitude
δ = 0 and that the fields are homogeneous within the spatial extension of the
BEC. Moreover, we assume that the coils produce two perfectly orthogonal linearly
polarized fields in the x-y plane which oscillate with ω = |p1| ≈ 2π × 621 kHz,
equal maximal amplitude B and relative phase φc. Considering also the offset field
Bz = 0.884 G, the total magnetic field is given by:
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π/2-RF Pulse π/2-MW Pulse
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F = 2
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π/2-MW
Pulses

F = 1

mF

‒1 0 1

400 μs 

Evolution

π/2-MW Pulse π/2-MW Pulse π/2-RF Pulse
(π/2 phase delay)

Fz
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F
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y
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(b1) (b2) (b3) (b4)

Figure 3.3.: Pulse sequence (a) and schematic representation (b) of Fx-Fy

readout scheme. We extract two orthogonal directions Fx (blue) and
Fy (light blue) of the transverse spin (red arrow) in a single experimental
run and employ spin-1 spheres for visualization (b1). We start the
sequence by applying a first RF π

2
-pulse (green arrow) which couples the

magnetic sub-levels in F = 1 and maps Fx into Fz (b2). Afterwards, we
apply three successive resonant microwave π

2
-pulses in order to transfer

half of the atomic populations to different magnetic sub-levels in F = 2
(b3). Thereby, we shelve Fx in F = 2. Finally, we apply a second RF
π
2
-pulse which is phase shifted by π

2
with respect to the first one and

address the atoms in F = 1 selectively (b4). This rotates the state
around the Fx-axis and maps Fy into the readout axis Fz. Thus, we
extract {Fy, Fx} in F = {1, 2} as population differences between the
side modes.
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3. Preparing and Probing a Spinor Condensate

~B = (B cos(ωt), B cos(ωt+ φc), Bz) (3.9)

We represent this field in a spherical basis with ~e± = 1√
2

(∓~ex + i~ey), where
{~ex, ~ey, ~ez} are the basis vector of a Cartesian coordinate system:

〈~e±| ~B〉 =
B

2
√

2

(
∓1 + ie−iφc

)
e−iωt + c.c. = B±e

−iωt + c.c.

⇒ ~B =
(
B+e

−iωt~e+ +B−e
−iωt~e− + c.c.

)
+Bz~ez (3.10)

The corresponding complex field amplitudes are defined as B± = B
2
√

2

(
∓1 + ie−iφc

)
.

We can now proceed to write the Hamiltonian associated to the total magnetic field
using the corresponding spin-1 operators {F̂+, F̂−, F̂z} with F̂± = F̂x± iF̂y. Here, we
distinguish the fact that the Landé g-factors in F = 1 and F = 2 have different signs,
giving rise to Larmor precessions in opposite directions. We write this as gF = α|gF |
with α = {−1, 1} for F = {1, 2} and cast the Hamiltonian to:

Ĥ = α|pF |F̂z +
α|gF |µB√

2

[
−B+e

−iωtF̂+ +B−e
−iωtF̂− + h.c.

]
(3.11)

where we use the identity ~̂F~e± = ∓ 1√
2
F̂± [Per13]. We go into the rotating frame of

the F manifold which co-precesses with pF and transform the operators accordingly
F̂± → e±iωtF̂± and F̂z → 0 since we assume ω = |pF | and δ = 0. Thereby we obtain
the effective Hamiltonian:

Ĥeff =
α|gF |µB√

2

[
−B+e

−i(1−α)ωtF̂+ +B−e
−i(1+α)ωtF̂− + h.c.

]
(3.12)

We employ the rotating wave approximation, neglect the terms oscillating with 2ω
in Ĥeff as they averaged out and consider only the static ones in the corresponding
rotating frames:

Ĥeff =

 − |g2|µB√
2

(
B+F̂+ + h.c.

)
, for F = 2

− |g1|µB√
2

(
B−F̂− + h.c.

)
, for F = 1

(3.13)

From this effective Hamiltonian, it becomes clear that the atoms in F = {1, 2}
are only addressed by the circularly polarized σ−,+ components of the RF-field
with complex amplitudes B−,+. This is due to the opposite direction of the Larmor
precession in the two manifolds and is schematically represented in Fig.3.4(b). Taking
this into account, we choose the relative phase between the RF-fields of the coils to
be φc = π

2
. Thereby we generate a σ−-field which selectively addresses the atoms in

F = 1:

Ĥeff

(
φc =

π

2

)
=

{
0 , for F = 2

−|g1|µBBF̂x , for F = 1
(3.14)

where we use B±
(
φc = π

2

)
= 1

2
√

2
[∓1 + 1].
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F=2 F=1

Fy

Fx

σ- RF 
 FieldAtomic Cloud

RF Coil 1

RF Coil 2

z

(a) (b)

ω2t -ω1t

e+

e----ωt

Figure 3.4.: Selective addressing of atoms F=1 using a two coil RF setup .
We employ two orthogonal coils (a) to produce linearly polarized RF-
fields in the x-y plane which can be superimposed to generate circularly
polarized fields σ±. Due to the opposite sign of the Landé g-factors
in F=1 and F=2, the Larmor precession (b) takes place in opposite
directions (red arrows). A σ− RF-field oscillating with the same frequency
ω = ω1 (green arrow) selectively addresses the atoms in F=1. This can
be explained after transforming into the rotating frame of the atoms in
the different manifolds, since the RF field is only static in the F = 1
frame of reference.

Calibration of Selective Addressing of Atoms in F = 1

We experimentally verify whether we can selectively address the atoms in F = 1 with
RF-pulses and experimentally calibrate the phase φc. For this purpose, we prepare
balanced superpositions |1,−1〉 + |2,−2〉 of N ≈ 35000 atoms in the waveguide
trap using a resonant MW π

2
-pulse to transfer half of the atomic populations to

|2,−2〉. We address this state for tRabi ≤ 2 ms with RF-fields resonant to the first-
order Zeeman splitting in F = 1 and tune the relative phase of the two coils φc.
We probe the induced Rabi oscillations by examining the magnetization in the
z-direction which we extract as 〈F̂z〉1 = 1

N1
[N1,1 −N1,−1] in F = 1 and 〈F̂z〉2 =

1
N2

[2N2,2 +N2,1 −N2,−1 − 2N2,−2] in F = 2, where NF and NF,mF
are the atom

numbers in the F manifold and the in magnetic sub-level |F,mF 〉. Exemplary Rabi
oscillations in F = 1 and F = 2 for different relative phases φc are plotted in Fig.A.1
and A.2 in the appendix.

We fit the oscillations of the magnetization with sinusoidal functions and estimate
thereby the Rabi frequency ΩRF/(2π). We plot the Rabi frequencies in F = 1 and
F = 2 for different values of φc in Fig.3.5. The detuning δ ≈ 2π × 2.5 kHz of the
RF-Rabi in F = 2 is corrected using the formula ΩRF =

√
Ω2
RF,fit − δ2.

We clearly see that the Rabi frequencies in F = 1 and F = 2 are anti-correlated
as we adjust φc, which is consistent with the theoretical expectations discussed
before. The RF-Rabi frequency in F = 1 and F = 2 are minimized for the phases
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3. Preparing and Probing a Spinor Condensate

Figure 3.5.: Calibration of selective RF-rotations in F=1 and F=2 . We
prepare balanced superpositions |2,−2〉+ |1,−1〉 and address them with
RF-fields from the two coil setup sketched in Fig.3.4(a). The Rabi
frequency ΩRF is estimated by fitting 〈Fz〉 with a sine. We plot ΩRF

vs. the relative phase of the fields originating from the two coils φc for
F = 1 (blue) and F = 2 (red circles). The small error bars correspond to
the 1σ fitting error. We clearly see an anti-correlated trend of the Rabi
frequencies in the two manifolds when adjusting φc, which is expected
since thereby we generate σ−,+ RF-fields which address only the atoms
in F = {1, 2}. Fitting ΩRF

2π
= A |sin (φc − φc,F )| (solid black line) we can

estimate the phases minimizing the Rabi frequency in F = {1, 2} and
obtain φc,1 = −0.43π and φc,2 = 0.69π. We choose φc,2 to selectively
address the atoms in F = 1 during the Fx-Fy readout.

φc,1 ≈ −0.43π and φc,2 ≈ 0.69π which we extract by fitting ΩRF
2π

= A |sin (φc − φc,F )|.
The discrepancy between the experimental ∆φc = φc,1 − φc,2 = 1.12π and theoretical
phase difference ∆φc,theo = π is most likely due to the fact that the two coils do not
generate perfectly orthogonal fields. Hence, we choose φc = 0.69π from now on in
order to address only the atoms in F = 1 during Fx-Fy readout.

3.3.3. Error Characterization of the Fx - Fy Readout

In order to quantify the systematic error of the readout and understand the underlying
causes we perform control measurements. We prepare an initial polar state |ψ0〉 =
(0, 1, 0)T and let it evolve for variable long evolution times tevo ≤ 15 s and suppressed
spin-mixing. We examine these states using the Fx-Fy readout scheme. Ideally, the
RF-rotated polars in F = 1 and F = 2 are expected to have populations only in the
side modes:
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|ψ(F = 2)〉 = exp
(
−iπ

2
F̂y

)0
1
0

 =

 1√
2

0
− 1√

2


|ψ(F = 1)〉 = exp

(
−iπ

2
F̂x

)
exp

(
−iπ

2
F̂y

)0
1
0

 =

 1√
2

0
− 1√

2

 (3.15)

While this is indeed the case for the atoms in F = 2 as we see in Fig.3.6(a), we
observe that the normalized population in |1, 0〉 after the readout pulses growths up
to ρ0 ≈ 0.17 within tevo ≤ 15 s accompanied also by increasingly larger fluctuations.

This is most likely due to drifts and increasingly large fluctuations of the bias field
∆Bz for longer duty cycles. As we see in the pulse sequence in Fig.3.3(a), there is
a finite waiting time tw = 400 µs between the two RF-readout pulses required to
shelve atoms in the F=2 manifold. During this time the system precesses under the
influence of the first-order Zeeman shift Ĥ = gFµBBz with Bz = 0.884G. Thus, an
error ∆Bz of the bias field gives rise to an additional Larmor phase error ∆φ:

|ψ(F = 1)〉 = exp
(
−iπ

2
F̂x

)
exp

(
i∆φF̂z

)
exp

(
−iπ

2
F̂y

)
|ψ0〉 (3.16)

with ∆φ = |g1|µB∆Bz

~ . The expected Larmor phase accumulated during tw is
compensated by adding |g1|µBBz

~ to the relative phase of the second RF-pulse.
We evaluate the expression in Eq.(3.16) numerically to obtain ∆φ as a function

of the population in |1, 0〉 and plot ∆φ(tevo) together with its standard deviation in
Fig.3.3(b). While the Larmor phase error is initially small ∆φ(0) = (0.05± 0.02)π,
both the average and fluctuations of the error constantly increase with the evolution
time reaching ∆φ(15 s) = (0.13± 0.06)π.
This Larmor phase uncertainty directly corresponds to an error in the angle of

second RF-rotation when represented in the spin-1 sphere. Thus, the second readout
axis is not orthogonal to the first one but rather displaced by ∆φ . 0.14π = 25° at
late times, moderately affecting the experimentally extracted transverse spin length:
For states with 〈F̂z〉 = 0 this introduces a maximal systematic error on the order of
∆F⊥/F⊥ = [1− cos(∆φ)] . 0.1 for evolution times tevo ≤ 15 s.

As previously stated, this readout error probably originates from fluctuations and
drifts of the bias field ∆Bz which seem to increase with the duration of the duty cycle
(evolution time). We can estimate them via ∆φ = |g1|µB∆Bz/~ and plot ∆Bz(tevo)
in Fig.3.3(c). At small times the inferred B-Field fluctuations ∆Bz(0) = (100±24)µG
are comparable with the typical B-field stability ∼ 40 µG. The latter was obtained
from a direct characterization of the active magnetic field control setup in [Str16].
Meanwhile, at lager times both the average and standard deviation of the magnetic
field error increase reaching values around ∆Bz(15s) = (270± 120)µG. The inferred
magnetic field drift for long tevo and can be due to the fact that the active B-field
control is optimized for tevo < 1 s. Moreover, the increasing fluctuations also suggest
that the experiment is more susceptible to external noise for longer duty cycles such
as for instance the 50 Hz noise from the power grid.
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(a)

(b)

(c)

Figure 3.6.: Systematic error of the Fx - Fy readout. We examine a polar
state after variable evolution and suppressed spin-mixing with the Fx-Fy
readout. We plot the mean and standard deviation (error bars) of the
central mode population ρ0 in F = {1, 2} after the corresponding RF-
rotations (a). While in F=2 we consistently obtain ρ0 ≈ 0 as expected,
the mean and fluctuations of the population in |1, 0〉 steadily increase.
This trend is numerically related to a Larmor phase error ∆φ plotted in
(b). The mean and standard deviation (error bars) significantly increase
for longer duty cycles. They directly correspond to an increasing error
in the angle of the second RF-rotation and affect the extracted F⊥ value.
This most likely originates from errors of offset bias field ∆Bz (c) which
we estimate from ∆φ. The inferred initial error is comparable within 3σ’s
to the ∼ 40 µG active B-field stabilization [Str16], whereas it significantly
drifts at longer evolution times. Together with the increasing fluctuations
(error bars), this trend suggests that the experiment is increasingly more
susceptible to technical noise for longer duty cycles.
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4. Coherent Spin Dynamics

After discussing the theoretical background and the relevant experimental techniques,
we can experimentally study coherent spin dynamics in our system. We introduce
a Truncated Wigner simulation beforehand, which allows us to model the spin
dynamics in our system taking into account the dephasing due to intrinsic quantum
fluctuations. Afterwards, we present first experimental results for the short-time
dynamics of the transverse spin F⊥ examining evolution times up to tevo ≤ 1 s. A
direct comparison shows that the experimental observations are compatible with the
predictions arising from the mean field equations of motion.

4.1. Simulating Spin Dynamics with Quantum
Fluctuations

4.1.1. Motivation: The Role of Quantum Fluctuations

So far we have modeled the evolution of single-mode spin-1 system using the mean
field equations of motion listed in Eq.(2.17). By construction, this approach disregards
the effect of quantum fluctuations on the dynamics.
If we consider a coherent spin-1 state consisting of N uncorrelated particles, the

intrinsic fluctuations of an observable Ô such as a spin direction are expected to
scale as ∆Ô ∝

√
N [Kit93]. However, since expectation values linearly increase with

the system size 〈Ô〉 ∝ N the relative uncertainty scales as ∆Ô/ 〈Ô〉 ∝ 1/
√
N and

is neglected for macroscopic systems within mean field approaches. Attempting to
consider the impact of fluctuations on the dynamics and simulate the full quantum
mechanical evolution of the system is a difficult task, even within the single-mode
approximation: The complexity of typical sparse matrix algorithms required to
diagonalize the Hamiltonian in Eq.(2.14) increases exponentially with the number of
atoms O(2N ) [Hal12], since the size of the Hilbert space grows as ∝ N in a Fock state
representation [Ger13]. Thus, a full quantum computation for typical experimental
atom numbers N ∼ 104 is time intensive and beyond the scope of this thesis.

Here, we resort instead to a Truncated Wigner approach in order to simulate the
spin dynamics in our system. This semi-classical method relies on stochastically
sampling the fluctuations of the initial state and evolving the system afterwards
using classical mean field equations of motion. These methods are commonly used
to simulate the dynamics of interacting Bose gases [Bla08, Sin02]. More details
concerning their applicability to our experimental system can be found in [Lin17].
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4.1.2. Implementation of the Simulation

In order to reproduce the experimental preparation, we start the simulation with
a polar state (0,

√
N, 0)T with N particles and consider the associated fluctuations.

We record S samples of the initial state and introduce complex ‘quantum 1
2
noise’ in

the empty modes of the polar state in each realization s ∈ S of the simulation:

|ψs〉 = (
1

2
[α1 + iβ1],

√
N,

1

2
[α−1 + iβ−1])T (4.1)

where the α±1 and β±1 are random numbers drawn from a normal distribution with
mean and standard deviation (µ, σ) = (0, 1). The factor 1

2
effectively enforces half a

particle on average in the empty side modes of the polar state.
We normalize |ψs〉 and prepare an initial state with finite transverse magnetization

by applying a φRF-rotation around F̂x in order to transfer populations to the side
modes. We enforce a subsequent spinor phase evolution, mimicking thereby the
experimental preparation sequence:

|ψ〉 = exp
(
−iπ

4
Q̂zz

)
exp

(
−iφRFF̂x

) 1

N̄
|ψs〉 (4.2)

with inner product N̄ = 〈ψs|ψs〉. This particular noise sampling procedure ensures
coherent state fluctuations : We assess this by examining not-normalized initial states
N̄ |ψ〉 and computing the variances of the atom numbers in the individual modes Nj

within the sample set S, with j ∈ {−1, 0, 1}. We observe coherent state fluctuations
compatible with a multinomial distribution σ2

Nj
≈ pj(1 − pj)Nj, with occupation

probabilities pj = Nj/N .
Afterwards, we evolve the individual samples |ψs〉 numerically using the coupled

mean field equations of motion for the individual components of a spinor presented
in Eq.(2.18). We estimate the expectation values of spin-1 observables such as F̂x,y
by computing the mean over all the samples s ∈ S at fixed evolution times:

〈Ô(tevo)〉 = 〈Ô(tevo)〉S (4.3)

where 〈〉S denotes an average over the sample set S. The fluctuations can be extracted
accordingly. We typically employ samples of S ≈ 1000 runs in order to ensure that
the computed averages and variances are numerically stable. A key advantage of this
method is that the complexity scales only linearly with the sample size O(S), but is
independent of the particle number N allowing us to simulate the dynamics 1 for
typical experimental atom numbers N ∼ 104.

4.1.3. Simulation for typical Experimental Parameters

In order to examine impact of quantum fluctuations on the dynamics, we use this
Truncated Wigner method and simulate the dynamics for typical experimental

1A direct comparison of this method to a full numerical quantum computation for N ≤ 1000
atoms has been carried out in our group by Martin Gärttner and shows reasonable agreement
between expectation values (e.g. F⊥ and ρ0) even after long evolution times tevo ∼ 10 s.
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4.1. Simulating Spin Dynamics with Quantum Fluctuations

parameters N = 10000 atoms and (q, λ1) = 2π × (1.25,−2)Hz. We use S = 1000
samples and enforce a φRF = π

4
rotation around F̂x in order to produce an initial

state with maximal transverse spin 〈F⊥〉 = 1.
We present the expectation values of F⊥ and 2ρ0 − 1 in Fig.4.1 (a) and (b)

respectively covering evolution times up to tevo ≤ 18 s. At small times, we observe
oscillations with moderate amplitude (e.g. ∼ 0.2 peak to peak for F⊥) and frequency
f ≈ 3.5 Hz which are only minimally damped within the first few seconds of evolution.
Moreover, these two observables oscillate in an anti-correlated fashion which is
expected from the form of the mean field trajectories in the spin-nematic sphere. As
tevo is increased, the oscillations damp towards stationary values 〈F⊥〉st ≈ 0.88 and
〈2ρ0 − 1〉st ≈ 0.32 within a rather long timescale of ∼ 15 s.

In order to understand the underlying mechanism leading to this damping, we plot
the individual samples in spin-nematic spheres (orange points) for representative
evolution times {0, 0.8, 5.1, 18}s in Fig.4.1(c). We also plot the corresponding phase-
space trajectories for q/λ1 = −0.625 as a guide to the eye. The initial fluctuations
are small and compatible with the coherent state expectations of a fully elongated
spin in the transverse plane ∆ρ0 ≈ 1/

√
N and ∆F⊥ ≈ 0. As the evolution time is

increased, the individual realizations traverse the phase space and start to shear
along the associated trajectories: Because of the introduced quantum noise, the
individual samples are initialized in slightly different positions of the phase space
and anharmonically oscillate with different frequencies due to the non-linear mean
field equations of motion. As the evolution time is further increased (∼ 18 s),
the individual samples are governed by dephasing and fully delocalize around the
corresponding mean field trajectory. Since the associated spin-1 state is then equally
likely to be measured in each point of the trajectory, the expectation values damp and
become stationary. Moreover, the late-time fluctuations of the system are expected
to saturate and be commensurate with the region of the spin-nematic sphere sampled
by the initial dynamics or equivalently with the amplitude of the initial oscillations.
This distinctive trend of the fluctuations is employed later in chapter 6, in order to
diagnose late-time dephasing in our system.
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(a)

(b)

(c)

Figure 4.1.: Truncated Wigner simulations for typical experimental param-
eters. We employ N = 10000 atoms, (q, λ1) = 2π × (1.25,−2)Hz, 1000
samples and (F⊥(0), ρ0(0)) = (1, 0.5). The simulated evolution of the
expectation values of F⊥ and 2ρ0 − 1 is displayed in (a) and (b). These
quantities exhibit anti-correlated oscillations with frequency around
∼ 3.5 Hz which damp within ∼ 15 s. In order to understand this damp-
ing, we plot the individual samples (orange points) in spin-nematic
spheres (c) for representative times {0, 0.8, 5.1, 18}s together with the
corresponding phase space trajectories (solid lines). The initial condition
exhibits small fluctuations compatible with a coherent spin state. As the
time progresses, the individual runs oscillate with different frequencies
due to the introduced noise and the underlying non-linear equations of
motion and start to shear along the corresponding mean field trajectory.
At long-times around ∼ 18 s, the state fully dephases and delocalizes
along the corresponding trajectory. This results in stationary expectation
values for F⊥ and 2ρ0 − 1 and explains the observed damping.
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4.2. Examining F⊥ Oscillations

Once we have developed tools to experimentally probe and simulate our system, we
can examine whether coherent spin dynamics takes place. This type of evolution
has already been studied in detail for both ferromagnetic (λ1 < 0) [Cha05] and
antiferromagnetic (λ1 > 0) [Bla07] spin-1 condensates. These studies mainly focus
on probing population oscillations between the individual magnetic sub-levels such
as ρ0, since these quantities are readily accessible by means of state selective imaging.
In order to complement these studies, we focus here rather on probing the transverse
magnetization and examine short-time F⊥ oscillations within tevo ≤ 1s. We prepare
non-equilibrium initial conditions away from the mean field fixpoint by adjusting the
initial transverse spin length. The Fx-Fy readout is here essential in order to directly
extract the transverse spin.

Throughout this section we work in the waveguide trap with N ≈ 40000 atoms
(λ1 ≈ −2π × 2.1 Hz) and set q ≈ 2π × 3.7 Hz. The condensate confined in the
waveguide trap is in principle a multi-mode system, since its longitudinal extension
∼ 200 µm is significantly larger than the spin healing length which is on the order
of few microns. However, we have experimentally observed that Fx and Fy do
not develop significant spatial structures within the first second of evolution for
F⊥(0) > 0. We further restrict the evaluation to a central region of . 40 µm where
the relative variation of the total density is on the order of ∆n/n . 5% in accordance
with a local-density approximation. In this way we seek to minimize the role of
potential spatial spin excitations since we want to compare the observed dynamics to
a single-mode theoretical picture. The mean field parameters q and λ1 are estimated
by minimizing the deviation between theoretical and experimental ρ0 oscillations.
This procedure is explained in section in A.5 in the appendix.

Here, we want to probe the phase space for a representative mean field ratio
q/|λ1| = 1.75. To this end, we prepare states with different initial transverse spin
lengths by adjusting the duration of RF preparation pulse as described in Eq.(3.2).
We measure the two directions of the transverse magnetization after variable evolution
time tevo using the Fx-Fy readout scheme and quadratically add them to obtain
F⊥ =

√
F 2
x + F 2

y . The extracted transverse spin is positive2 by construction F⊥ > 0.
In Fig.4.2 (a)-(c) we plot the experimental oscillations of the average transverse

spin (blue points) for different initial conditions 〈F⊥(0)〉 ≈ {0.25, 0.53, 0.91} within
tevo ≤ 1s. We compute the expectation values by averaging over ∼ 10 independent
realizations. For the smallest displayed initial F⊥ value, we observe clear oscillations
with amplitude ∼ 0.2. As the initial spin length is increased (b), the oscillations
are significantly suppressed. This is expected, since we initialize the system close
to the fixpoint FFP

⊥ ≈ 0.48 of the mean field dynamics as we also see in the spin-
nematic spheres plotted in Fig.4.2(d). If we further increase the initial spin length
to 〈F⊥(0)〉 ≈ 0.91 (c), we observe oscillations exploring a wide range of transverse

2This experimental value is proportional to F⊥ ∝ | cos
(
θs
2

)
| (see Eq.(2.20)). In order to assess the

sign of F⊥, we would need to extract the actual value of the spinor phase θs. This quantity can be
inferred after simultaneously probing Fx and Qyz, which is possible after minimal modifications
of the readout scheme but beyond the scope of this thesis.
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magnetizations as the system is initialized in an open trajectory.
Since damping does not seem to substantially affect the dynamics within the

first second of evolution, we compare the experimental results to theory predictions
obtained after solving the mean field equations of motion numerically for (q, λ1) =
2π × (3.7,−2.1)Hz (solid black lines in Fig.4.2). Especially for small evolution times,
we observe qualitative agreement between theory and experiment. The data in (a)
and (c) exhibits more outliers at lager evolution times tevo ≥ 0.6s. Moreover, if the
system is initialized close to the fixpoint (b) the experimental data seems to be
affected by fluctuations limiting the compatibility with the theoretical predictions.
A more systematic comparison to mean field theory is displayed in Fig.4.3. We

tune a wide range of initial spin lengths for fixed mean field ratio q/|λ1| ≈ 1.75
and compare the amplitude of the experimental and theoretical F⊥-oscillations. We
estimate the experimental amplitudes by fitting a sine (or its absolute value) in
the case of closed (open) trajectories and extract the theoretical values from the
numerics as half of the peak-to-peak amplitude. We observe reasonable agreement
between theory and experiment as nearly all points are consistent within 3σ’s of the
fit errors. The behavior of the oscillation amplitude can be explained relying on
the trajectories on the spin-nematic sphere displayed in Fig.4.2(d): As 〈F⊥(0)〉 is
increased, the oscillation amplitude first decreases since we approach the fixpoint
of the dynamics 〈F⊥(0)〉 ≈ 0.48 and then increases again as we depart from this
point. Crossing the separatrix around 〈F⊥(0)〉 ≈ 0.66 modifies the growth rate of
the oscillation amplitudes, since we enter the region of open trajectories.
We have also assessed the agreement of the short-time F⊥-oscillations with the

theoretical predictions for further mean field ratios q/|λ1| ≈ 0.25 and q/|λ1| ≈ 0.6
and comparable initial conditions.

Conclusions

In this chapter, we experimentally studied the short-time dynamics within tevo ≤ 1s
for states with finite initial transverse spin 〈F⊥(0)〉 > 0. We specifically concentrate
on mean field parameters for which we expect spin-mixing dynamics q/|λ1| = 1.75 < 2
and therefore also coherent oscillations of both populations (e.g ρ0) and coherences
(e.g F⊥). The short-time oscillations of the transverse spin 〈F⊥〉 are compatible with
the theoretical mean field predictions for different initial conditions.
In the next chapters, we shift our focus to considerably larger evolution on the

order of tevo ≈ 10 s where the comparability with mean field and even with Truncated
Wigner approaches breaks down. We observe then not only damping of the oscillations
but also a decay of the transverse spin 〈F⊥〉 → 0 indicating long-time decoherence in
our system.
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(a) (b)

(c) (d)

Figure 4.2.: Experimental oscillations of the transverse spin for different
initial conditions and mean field predictions. We average over ∼
10 realizations and plot the evolution of 〈F⊥〉 (blue points) for initial spin
lengths 〈F⊥(0)〉 ≈ {0.25, 0.53, 0.91} (a)-(c). The error bars correspond
to the standard error of the mean (SEM). For the smallest initial value
examined (a) we observe clear oscillations. As we increase the initial spin
length, they are first nearly suppressed (b) and then increase significantly
(c). This can be explained relying on the trajectories on spin-nematic
sphere (d): While the first initial condition (green circle) evolves within
a closed trajectory (red curves), the second one (black circle) is initialized
close to the fixpoint and exhibits therefore minimal oscillations. Moreover,
the last one (orange circle) is initialized in the region of open trajectories
(blue lines) and samples therefore a broad range of F⊥ values. We observe
reasonable agreement between the experimental observations and the
mean field predictions for (q, λ1) = 2π× (3.7,−2.1)Hz (solid black lines),
especially for tevo . 0.6 s and away from the fixpoint.
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4. Coherent Spin Dynamics

Figure 4.3.: Comparison of the amplitude of experimental and mean field
F⊥ oscillations for different initial conditions. The experimental
amplitudes (red points) for different initial spin lengths 〈F⊥(0)〉 are
estimated by fitting a sine (or its magnitude) for closed (open) trajectories.
The error bars reflect 1σ fit errors. Meanwhile, the theoretical values
(solid black line) are directly extracted from the numerics for q/|λ1| =
1.75. We observe a compatible trend for theory and experiment and that
the majority of values coincide within 3σ’s. The observed behavior can be
explained in a mean field picture: The oscillation amplitude is minimized
close to the fixpoint at 〈F⊥(0)〉 ≈ 0.48, while the growth rate of the
amplitude changes as we cross the separatrix around 〈F⊥(0)〉 ≈ 0.66.
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After examining the short-time spin oscillations, we go one step further and probe
the dynamics in our system after long evolution times on the order of ∼ 10 s.
This timescales are large compared to the internal one introduced by spin-spin
interactions (∼ 2 Hz). We observe that the transverse magnetization decays towards
zero indicating the progressive decoherence in the system. In this context, we
examine the influence of different experimental parameters on this process: First,
we study the impact of the detuning q and realize that the transverse spin survives
significantly longer within the q regime exhibiting spin-mixing. Afterwards, we
concentrate on finite temperature effects. We experimentally control the heating
of the condensate density by adjusting the power of the waveguide trapping beam.
After examining different settings, we observe a clear correlation between the heating
of the condensate and the long-time behavior of the transverse spin F⊥. The latter
survives considerably longer (tevo & 15 s) if we mitigate the impact of heating.

5.1. Long-Time Decoherence

From now on we restrict our studies to condensates prepared in the tightly confining
crossed beam dipole trap (see Fig.3.2(a)) since we want to concentrate on studying
the internal spin dynamics. Even for comparably tightly confined condensates, spin-
mixing dynamics can exhibit multiple resonances as q is tuned [Kle09] and excite
higher trapping modes [Sch10] giving rise to spatially dependent spin-patterns. In our
crossed-beam dipole trap, this behavior is also observable after parametric quenches
of an initial polar state (ρ0 = 1) across the phase transition towards the easy-plane
ferromagnetic phase q0 > 2|λ1| → q1 < 2|λ1|. Excitations of higher trapping modes
are visible for N & 20000 atoms and small detuning values q . 0 as modulations
of the density profiles of the individual magnetic sub-levels. Since we want to stay
in the single-mode regime, we restrict our studies to atom numbers N < 20000 and
positive detuning values q > 0. If not specified otherwise, we operate with trapping
frequencies on the order of (ω||, ω⊥) ≈ 2π × (46, 220)Hz.
We prepare states with N ≈ 14000 atoms and initial spin 〈F⊥(0)〉 = 0.8 and

monitor the dynamics for (q, λ1) ≈ 2π × (1,−2.75)Hz. We plot the temporal
evolution of the average transverse spin in Fig.5.1 for both short (a) and long times
(b). We extract 〈F⊥〉 as in the previous chapter after averaging over ∼ 15 realizations.
Within the first second of evolution, we observe clear oscillations with a frequency
around ∼ 4.5 Hz. However, the dynamics is remarkably different to the one predicted
by mean field theory and 〈F⊥〉 exhibits a decaying trend already within the first
second of evolution.
We plot also the long-time evolution of the transverse spin up to tevo ≤ 14 s in
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5. Decoherence and Heating

Fig.5.1(b) and observe a constant decay towards zero. This trend indicates long-term
decoherence in the system as F⊥ is determined by the relative phases between the
central and side modes as we see in Eq.(3.5). We estimate the associated timescale
using an exponential fit (red line) with fixed amplitude and offset1 and obtain the 1

e

life-time TLT = (11.77±0.33)s. Moreover, 〈F⊥〉 does not discernibly oscillate after 2 s
of evolution most likely due to the combined influence of dephasing and decoherence.

(a)

(b)

Figure 5.1.: Short and long-time evolution of the mean transverse magne-
tization. We prepare states with N ≈ 14000 atoms, 〈F⊥(0)〉 = 0.8
and (q, λ1) ≈ 2π × (1,−2.75)Hz and plot the mean transverse spin 〈F⊥〉
within tevo ≤ 1 s (a) and tevo ≤ 14 s (b). The experimental data (blue
points) is averaged over ∼ 15 realizations and the error bars are the SEM.
Examining the short-time dynamics, we observe that 〈F⊥〉 oscillates with
frequency f ≈ 4.5 Hz and also exhibits a decaying trend. This trend
becomes more evident in the long-term evolution as 〈F⊥〉 decays towards
zero. The 1

e
life-time TLT ≈ 12 s is estimated from an exponential fit

(red line). This decay indicates the progressive loss of coherences in the
system. Moreover, the oscillations are suppressed after tevo > 2s which
is attributed to the combined influence of dephasing and decoherence.

1We use the fit function 〈F⊥〉 = 0.75 exp(−t/TLT) + 0.1. The offset approximately corresponds to
the experimental F⊥ value for a polar state with zero transverse spin. The amplitude is selected
to match the average spin of the system 〈F⊥〉 = 0.85 within the first second of evolution.
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5.2. The Role of the Detuning q

We explore now the impact of different experimental parameters on the long-time
decay of the transverse spin. First, we examine the role of the detuning q which we
experimentally adjust using our microwave dressing setup. We prepare initial states
with spin-length 〈F⊥(0)〉 ≈ 0.85, N ≈ 19000 atoms and probe the evolution of the
transverse spin after tevo ≤ 10 s. We estimate the 1/e life-time TLT of 〈F⊥〉 using
exponential fits with fixed offsets and amplitudes. We exclude the point at tevo = 1 s
from the fitting routines since 〈F⊥〉 is expected to oscillate at small evolution times.

We plot the spin life-time vs. q in Fig.5.2 and observe that it is maximized within
the q regime exhibiting spin-changing collisions. We independently probe this region
using a spin-mixing spectroscopy : We prepare initial polar states, adjust q and
monitor the side mode population after a fixed evolution time of tevo = 4 s. The
highlighted region in Fig.5.2 corresponds to the q regime with non-negligible side mode
population. We show the corresponding spectroscopy in Fig.A.3 in the appendix. The
displayed q-axis is shifted with respect to the experimental parameters qexp such that
the right border of the spectroscopy matches the expectation 2|λ1| ≈ 2π × 6.6 Hz.
The spin life-time peaks around q = 2π × 0.4 Hz at TLT ≈ 14.5 s (q/|λ1| ≈ 0.125),

whereas it is drastically reduced as we depart from the maximum to values on the
order of TLT ≈ 3.5 s and 1.5 s for q = 2π×9.4 Hz and −4.6 Hz. This signalizes a faster
loss of phase coherence in the system. This is further stressed in the inset, where
we plot the evolution of 〈F⊥〉 for representative values q = 2π × {0.4, 2.4, 7.4}Hz
together with the corresponding fits. There, we observe that the transverse spin fully
vanishes already after 5 s of evolution for the largest displayed q-value.

This trends seems plausible, since spin-changing collisions enable population
redistribution between the central and the side modes and facilitate mean field
ground states with finite transverse spin for |q|/|λ1| < 2. This is directly noticeable
after solving for the fixpoint (ρ̇0, θ̇0) = (0, 0) of the equations of motion in Eq.(2.17),
which yields (ρFP0 , θFPs ) = (1+q/2|λ1|

2
, 0) for |q| < 2|λ1|. This corresponds to a ground

state with finite transverse spin length:

〈FFP
⊥ 〉 =

{
2
√
ρFP0 (1− ρFP0 ) cos( θ

FP
s

2
) =

√
(1 + q

2|λ1|)(1−
q

2|λ1|) , |q| < 2|λ1|

0 , |q| > 2|λ1|
(5.1)

The ground state spin length is maximized at 〈FFP
⊥ 〉 = 1 for q = 0. Hence, it

seems plausible that close to this value spin-changing collisions dynamically build up
coherences and compete with the processes driving the decoherence in the system.
Additionally, we have studied the evolution of the transverse spin for different

initial atom numbers ranging from N ≈ 10000 to 30000 and observed comparable
maximal life-times around TLT ≈ 14 s close to q ≈ 0. For these measurements, we
adjusted the initial atom number by transferring different fractions |1,−1〉 → |1, 0〉
during the preparation and cleaning the remaining atoms in |1,−1〉 using a Stern-
Gerlach pulse rather than tuning the evaporation threshold. Thereby we intend to
keep the initial condensate fractions comparable.
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Spin-Changing Collisions

F=1

Figure 5.2.: Life-time of the average transverse magnetization 〈F⊥〉 for dif-
ferent values of q. We prepare states with 〈F⊥(0)〉 = 0.85, N≈ 19000
atoms and use exponential fits to estimate the 1

e
life-time TLT of 〈F⊥〉.

We plot TLT (blue points) for different values of the detuning q. The
error bars represent the 1σ fit error. We observe that the life-time
is maximized around q = 2π × 0.4 Hz within the q regime displaying
spin-changing collisions and drastically reduced for both larger and
smaller values. The inset displays representative 〈F⊥〉 evolutions for
q = 2π × {0.4, 2.4, 7.4}Hz with the corresponding exponential fits (solid
lines). While a significant spin survives after ∼ 10 s for q = 2π × 0.4 Hz,
it fully vanishes already after 5 s for q = 2π × 7.4 Hz indicating a faster
decoherence. This seems plausible, since spin-mixing might dynamically
build up coherences and compete with the processes responsible for the
decoherence.
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5.3. Controlling and Diagnosing Heating

So far, we have assumed that atom loss and finite temperature effects do not
significantly affect the spin dynamics in BEC even after long evolution times on the
order of ∼ 10 s. Here, we want to take a closer look at the latter and study the
interplay between heating of the condensate density and the long-time spin dynamics.
We start this section by presenting analysis tools to assess and compare heating in
our system. Afterwards, we examine the heating for different trapping configurations
and find experimental settings where it is substantially reduced.

5.3.1. Heating Analysis

In order to quantify the heating in our system, we resort to the theoretical framework
for interacting condensates at finite temperature presented in section 2.3. Within
this approach, the thermal cloud is displaced towards the flanks of the trap due to
repulsive interactions with the denser condensate which predominantly occupies the
central region of the trap.
We can not accurately assess the condensate and thermal fractions in-situ since

the spatial extension of the condensate is small: The typical longitudinal Thomas-
Fermi radii R|| ≈ 10 µm are not even an order of magnitude larger than the ∼ 1.2 µm
imaging resolution. Moreover, we can not perform proper time of flight measurements
with the current imaging setup since already after texp ≈ 5 ms of free expansion a
significant part of the cloud falls out of the field of view of the camera, especially
after Stern-Gerlach separation of the individual magnetic sub-levels. Therefore, we
settle for an intermediate approach and rapidly switch off the transverse confinement
such that the atomic cloud expands in the remaining potential of the waveguide
trap (ω⊥, ω||) = (220, 46)Hz→ (220, 2.2)Hz for short expansion times texp = 10 ms
in comparison to 2π/ω||(t > 0) ≈ 450 ms.
We expect the condensate cloud to expand in a self-similar fashion after this

confinement quench, if the Thomas-Fermi approximation is still valid and if the
trapping potential remains harmonic. The condensate retains a 3D parabolic shape
and the relevant length scales of the system, such as the Thomas-Fermi Radii
Rj(t) = λj(t)Rj(0), are scaled by time dependent factors λj(t) which fulfill coupled
differential equations [Cas96]:

λ̈j(t) =
ωj(0)

λj(t)
∏

k λk(t)
− ω2

j (t)λj(t) (5.2)

with j, k ∈ {x, y, z}. Inserting the relevant parameters for the quench of the trapping
potential (ω||(0), ω||(t > 0)) = (46, 2.2)Hz and ω⊥(t > 0) = ω⊥(0) = 220 Hz , we
obtain a longitudinal scaling factor around λ||(10ms) ≈ 4 after solving the equations
of motion numerically. This is compatible with the observations in Fig.5.3.

In the case of the thermal component, it is not clear a priori how it exactly expands
after we quench the transverse trapping potential and whether it significantly affects
the dynamics of an expanding condensate at finite temperatures and short expansion
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times2.
We are primarily interested in assessing and comparing the heating in our system

for different experimental settings rather than performing precise thermometry of
our system. Hence, we make the simplifying assumption that both the thermal and
condensate clouds expand self-similarly for small expansion times retaining the form
of the corresponding in-situ density profiles. This assumption seems sensible at least
for T ≤ 100 nK and typical longitudinal Thomas-Fermi Radius R|| ≈ 12 µm: The
self-similar expansion of the condensate ∆Rss = [λ||(texp) − 1]R|| ≈ 40 µm exceeds
the estimated thermal expansion ∆RT = σv(T )texp ≤ 15 µm after texp = 10 ms. For
the thermal expansion, we assume a Maxwell-Boltzmann velocity distribution with
standard deviation σv(T ) =

√
kBT/m. Moreover, the potential energy dominates

over the kinetic energy of the BEC with Eint/Ekin ≈ Na/[λ||(texp)aHO] ≈ 10 for N≈
12000 atoms even after the expansion process supporting also the Thomas-Fermi
approximation. We use λ||(10ms) ≈ 4.

Experimentally, we record 1D density profiles n(x) which are integrated along the
two transverse directions of tight confinement ω⊥, either indirectly by the absorption
imaging or explicitly during the evaluation. We cast the profiles for the thermal
and condensate 1D density in Eqs.(2.29) and (2.28) into a bimodal fit of the form
nfit(x) = nfitC (x) + nfitT (x):

nfitT (x) = B′


∑8

k=1 exp (−C ′[(x− x′0)2 −R′2]) /k5/2 if |x− x′0| > R′

∑8
k=1{2− exp (−C ′[R′2 − (x− x′0)2])}/k5/2 if |x− x′0| < R′

(5.3)

nfitC (x) =


0 if |x− x′0| > R′

A′
[
1−

(
x−x′0
R′

)2
]2

if |x− x′0| < R′

where {A′, B′, C ′, R′, x′0} are independent fit parameters. The two last ones reflect the
Thomas-Fermi Radius after the expansion and the central position of the condensate
respectively. We use the first eight terms of the series expansion in order to fit
the thermal part and estimate the condensate fraction in our system as NC/N ≈∑

x n
fit
C (x)/

∑
x

[
nfitC (x) +

∑
x n

fit
T (x)

]
.

We also take a closer look at the statistical uncertainty of this fitting procedure.
The scaling of fluctuations of the estimated condensate fraction with the number
of images averaged beforehand suggests that the method is limited by white-noise
affecting the density profiles. Moreover, the statistical uncertainty of the estimated
condensate fraction is reduced to values on the order σ ≤ 1% by averaging over ≥ 20
identical realizations before fitting the mean density profiles. More details concerning
this analysis can be found in Fig.A.5 in the appendix. At this stage we can not
assess the impact of systematic errors since we have not yet computed theoretical
expectations for the heating in our condensate.

2There is experimental evidence that the expansion rate of a condensate in free space decreases at
higher temperatures as the increasingly large thermal cloud might dynamically compress the
condensate while expanding [Zaw08].
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5.3.2. Heating For Different Trapping Configurations

Once we have developed a method to assess the heating by examining the density
profiles, we turn to relevant experimental configurations. Specifically, we adjust the
power of the waveguide trapping beam and expect the heating rates to increase for
higher powers as the scattering rate of trap photons also increases.
Both the maximal trapping depth V and the transverse trapping frequency f⊥

depend on the beam power, which we tune to obtain the operating frequencies f⊥ ≈
{150, 170, 220, 260}Hz 3. Taking into account the gravitational sag and assuming a
focused beam, these frequencies correspond to maximal trap depths on the order of
V = h× {56, 62, 84, 107}kHz in vertical direction. We extract these values from a
previous calibration presented in [Str16]. The smallest confining trap depth in the
presence of gravity is approximately Vmin ≈ h× 50 kHz.
As previously mentioned, higher trapping powers give rise to larger spontaneous

scattering rates Γsc of trap photons. We can estimate the associated heating rate
from Γsc and the recoil temperature Trec [Gri00]:

Ṫ =
2

3
TrecΓsc =

2

3

(
4π2~2

2mkBλ2

)(
ΓV

~∆eff

)
(5.4)

The wavelength of the waveguide beam is λ = 1030 nm and the spontaneous decay
rate of the excited state for the D-line transition is Γ ≈ 2π×6 MHz. The effective de-
tuning 1

∆2
eff

= 2
∆2

1
+ 1

∆2
2
is determined by the detuning ∆1,2 of the waveguide beam with

respect to the D1,2 line. For the studied trapping depths V = h×{56, 62, 84, 107}Hz,
we estimate heating rates on the order of Ṫ = {1.3, 1.4, 1.9, 2.5}nK

s
.

We prepare condensates of N ≈ 12000 atoms and estimate the condensate fraction
for the different trapping configurations f⊥ ≈ {150, 170, 220, 260}Hz within tevo ≤ 15s
of evolution using the bimodal fits introduced in Eq.(5.4). We average over ∼ 50
independent realizations and present the experimental mean density profiles together
with the bimodal fits in Fig.5.3. We observe substantial differences between the
different settings: For the two shallower trapping configurations f⊥ = {150, 170}Hz
in (a) and (b), the density profiles develop only minimal thermal wings after long
evolution times and seem to be primarily affected by atom loss. This behavior
is further stressed by the individual fits of the thermal and condensate fractions
for tevo = 0 and 15 s. By contrast, the density profiles for the tighter confinements
f⊥ = {220, 260}Hz in (c) and (d) exhibit substantial heating and develop a significant
thermal component within the same window of evolution times.
We perform now a more systematic comparison of the heating for the different

trapping configurations. We extract the condensate fractions from the respective fits
and plot them in Fig.5.1(a) for different transverse confinements f⊥. The two shal-
lower trap settings f⊥ = {150, 170}Hz exhibit only minimal heating as the estimated
condensate fraction minimally changes NC/N ≈ 0.95→ 0.86-0.9. By contrast, the
tighter configurations exhibit substantially larger heating as the condensate fraction
is reduced to NC/N ≈ {0.53, 0.09} after 15 s for f⊥ = {220, 260}Hz.

3These values are experimentally calibrated by displacing the cloud from the trap center and
monitoring the subsequent oscillations of the BEC center of mass.
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(a) (b)

(c) (d)

f⟂=150Hz f⟂=170Hz

f⟂=220Hz f⟂=260Hz

Figure 5.3.: Evolution of 1D density profiles for different trapping config-
urations. We average over ∼ 50 realizations and plot the mean 1D
integrated density profiles for tevo ≤ 15 s and transverse trapping frequen-
cies f⊥ ≈ {150, 170, 220, 260}Hz (a)-(d) after texp = 10 ms of expansion
in the waveguide trap. For the two shallower confinements (a,b), we
observe that the profiles (colored lines) develop only minimal thermal
wings within tevo ≤ 15 s. This is also captured in the bimodal fits (black
lines) and the individual fits of the thermal and condensate fractions
(dashed lines) at 0 and 15 s. By contrast, the tighter trapping configura-
tions (c,d) seem to be considerably affected by heating as we directly
observe in the late-time profiles. The trapping frequencies are tuned by
adjusting the power of the waveguide beam.
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Figure 5.4.: Heating for different trapping configurations. We plot the evo-
lution of the condensate fraction for settings with different transverse
trapping frequencies f⊥ (a), which is estimated using the fits displayed
in Fig.5.4. The error bars reflect the 1σ fit error. For the two shallower
trapping configurations (blue tones), we prepare a nearly pure condensate
with NC/N ≈ 0.95 and the condensate fraction is only minimally reduced
to NC/N ≈ 0.86-0.9 within 15 s. Meanwhile, the condensate fraction is
substantially reduced in the same time window for tighter confinements
(orange, red). We estimate the evolution of the temperature (b), where
we take into account that the critical temperature Tc (dashed lines) is
reduced dynamically due to atom loss. We conclude that heating of
the BEC density is minimal for the two shallower trap settings with
∆T . 5 nK/15 s, but considerably larger for the tighter ones.

For the sake of completeness, we also estimate the temperature evolution from the
condensate fractions using Eq.(2.27) and plot the results in Fig.5.4(b). We take into
account that the critical temperature is larger for the tighter trapping configurations
and also dynamically reduced due to atom loss (dashed lines). We observe that the
two shallower trapping settings exhibit only minimal heating around Ṫ ≤ 4 nK/15s,
while the two tighter ones substantially heat with 32nK/15s (f⊥ = 220 Hz) and
53nK/15s (f⊥ = 260 Hz).

The negligible heating for shallower trapping configurations is probably due residual
evaporation of hot atoms during evolution. This is plausible, since the estimated
trapping depths V ≈ h×{56, 62}kHz are close to the minimal one Vmin = h×50 kHz
required vertically confine the atoms [Str16]. This is further supported by the
larger atom loss rates shown in Fig.A.4 in the appendix. For the tighter trapping
settings f⊥ ≈ {220, 260}Hz, the experimental heating rates estimated within the
first 5 s of evolution are around Ṫ ≈ {3.6, 6.3}nK

s
. While these values are larger

than the heating rates associated to incoherent scattering of trap photons Ṫ =
{1.9, 2.5}nK

s
, the orders of magnitude coincide indicating that this is most likely

the foremost heating mechanism. Additional heating might arise due to scattering
of photons from the vertical trap beam or due to spatial and temporal power
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fluctuations corresponding lasers. However, we can not exclude that our fitting
routine systematically underestimates the condensate fraction.

5.4. Impact of Heating on the Long-Time Spin
Dynamics

Once we have examined the heating in our system and observed a dependence on
the trapping configuration, we can return to the spin dynamics and examine whether
the long-term decoherence is correlated to the heating rate in our system.
We use exactly the same dataset as in the previous section with N(0) ≈ 12000

atoms and 〈F⊥(0)〉 ≈ 1. The detuning q is adjusted to a small value q ≈ 2π×0.5 Hz in
order to ensure maximally large transverse spin life-times. This roughly corresponds
to mean field ratios in the range q/|λ1| ≈ 0.15 - 0.25 depending on the particular
trapping configuration.

We examine the evolution of the mean and standard deviation (error bars) of the
transverse spin within tevo ≤ 15s in Fig.5.5(a). We concentrate first on the evolution
of the mean transverse spin 〈F⊥〉 and observe a clear qualitative trend. For the
shallower trapping configurations a significant transverse magnetization survives
even after 15 s of evolution with 〈F⊥(15 s)〉 ≈ 0.56 for f⊥ = 150 Hz, whereas in the
case of tighter confinement we observe rather small values around 〈F⊥(15 s)〉 ≈ 0.11
for f⊥ = 260 Hz. The latter is compatible with zero average transverse spin since
applying the Fx-Fy readout to a polar state yields 〈F⊥〉 ≈ 0.10± 0.02.

While the initial fluctuations are comparably small for all settings σF⊥(0) ≈ 0.02,
they clearly differ at later times. For the settings exhibiting minimal heating with
f⊥ = {150, 170}Hz, the fluctuations steadily increase with tevo and reach rather large
late-time values around σF⊥(15s) ≈ 0.17 for f⊥ = 150Hz. On the contrary, for the
settings displaying larger heating with f⊥ = {220, 260}Hz the standard deviation
peaks within the first 5 s of evolution and is significantly reduced afterwards to values
around σF⊥(15s) ≈ 0.04− 0.08.

Due to this qualitative difference, we take a closer look at the late-time fluctuations
and plot the average transverse spin after 15 s (circles) together with the individual
realizations (squares) for the corresponding trapping frequencies in Fig.5.5(b). For
the setting with the largest heating rate f⊥ = 260 Hz the individual realizations
explore only a small range of transverse spins F⊥ ∈ {0, 0.22}. As not only the
mean transverse spin but also the single realization values nearly vanish, this further
stresses that the system undergoes late-time decoherence. If we reduce the trapping
frequencies to f⊥ = {150, 170}Hz and mitigate thereby the heating, the spread of
individual realizations is considerably larger. We conclude, that the decoherence
is significantly reduced at comparable timescales as single realizations explore also
large spin length values up to F⊥ ≤ 0.9 for f⊥ = 150 Hz. The large spread originates
most likely from the dephasing of the spin dynamics due to the combined influence
of quantum and experimental fluctuations. This will be studied both theoretically
and experimentally in the next chapter.
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(a) (b)tevo=15s

Figure 5.5.: Evolution of transverse spin for different trapping configura-
tions. We prepare initial states with N ≈ 12000 atoms and 〈F⊥(0)〉 = 1.
We average over ∼ 50 realizations and plot the evolution of 〈F⊥〉 with the
corresponding standard deviations (error bars) for settings with different
transverse trapping frequencies f⊥ (a). We observe a faster decay of
〈F⊥〉 for the tighter trapping settings. The fluctuations are initially
comparably small but clearly differ at later times: For the shallower
confinements (light blue and blue), they steadily increase, while for the
remaining cases (red and orange bars) they are maximized within ≤ 5 s
and decrease afterwards. Additionally, we plot 〈F⊥〉 (circles) together
with the individual realizations (squares) after 15 s. The tightest trap-
ping configuration exhibits only small fluctuations around 〈F⊥〉 ≈ 0.11,
indicating that the system loses coherence. By contrast, for shallower
settings the spread is considerable and individual realization reach large
values up to F⊥ ≤ 0.9. Hence, the system retains long-term coherence
for these configurations which also exhibit minimal heating.
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Summary and Conclusions

We observe a long-time decay of the average transverse magnetization indicating the
progressive loss of coherences in our system. Afterwards, we examine the impact of
the detuning q on this process and observe the following behavior:

• The life-time of the transverse spin is maximized within the q-regime exhibiting
spin-changing collisions and is on the order of TLT ≈ 14 s for q

2π
≈ 0.5 Hz and

λ1
2π
≈ −3 Hz. The transverse trapping frequency is here f⊥ = 220 Hz.

• The life-time is substantially reduced for both larger and smaller q values,
indicating that the decoherence is accelerated in the system.

Small q values on the order |q| < 2|λ1| give rise to spin-changing collisions which
favor mean field ground states with finite transverse magnetization. Hence, it
seems plausible that spin-mixing also coherently builds up transverse magnetization
during the evolution and partially counteracts the processes driving the decoherence.
Additionally, we systematically study how heating of cloud the density impacts
the late-time evolution of the transverse spin. For this purpose, we adjust the
waveguide trap power and thereby the transverse trapping frequency f⊥. We assess
the heating for different configurations using bimodal fits to estimate the evolution
of the condensate fraction:

• Shallower trapping settings f⊥ = {150, 170}Hz exhibit only minimal heating
as the extracted condensate fractions minimally change in a time scale of 15 s
NC
N

= 0.95→ 0.86-0.9, most likely due to residual evaporation during evolution.

• By contrast, tighter trapping configurations with f⊥ = {220, 260}Hz display
substantially larger heating within the same time window as NC

N
= {0.95, 0.9} →

{0.53, 0.09}. The higher heating rates primarily originate from larger sponta-
neous scattering rates of trap photons.

These two types of settings exhibit a disparate late-time spin dynamics:

• For configurations with larger heating, the average transverse spin significantly
decays within 15 s and the fluctuations of individual realizations are small,
indicating the progressive loss of coherences in the system.

• By contrast, for settings with minimal heating a significant mean transverse
magnetization survives even after 15 s of evolution. Together with the larger
spread of individual realizations, this behavior indicates that the system retains
long-time coherence.

In conclusion, we observe a correlation between the late-time internal spin dynamics
and the temperature of motional degrees of freedom as the observed heating affects
the density profiles. Moreover, we also realize that we should not restrict ourselves
to the evaluation of expectation values but also examine fluctuations, individual
realizations and the underlying distributions in order to appropriately characterize
state of the system at late times. Having this in mind, we can proceed to the last
chapter.
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6. Long-Time Spin-1 States
In this final chapter, we want to further characterize late-time spin dynamics and
the underlying spin-1 states for settings displaying different heating rates, in order to
disentangle the role of finite temperature effects. We concentrate again on evolution
times up to tevo ∼ 10 s which are large in comparison to the timescales associated
with the internal spin dynamics |q| and |λ1| ∼ 2π×2 Hz. Within these long evolution
times, we lose ∼ 30% of the atoms and the condensate significantly heats depending
on the specific trapping configuration.

Throughout this section we examine a complementary observable, the normalized
population ρ0 in the central mode |1, 0〉. We extract this quantity at shot-noise limit
[Mue13] by means of state selective absorption imaging. This observable is suitable
to characterize late-time spin states since the extraction of ρ0 is not affected by
long-term B-field fluctuations as in the case of the Fx-Fy readout.
We start this chapter by discussing potential mechanisms influencing the spin

dynamics at these timescales. In this context, we emphasize the role of dephasing
relying on Truncated Wigner simulations and discuss also a qualitatively distinct
dissipative relaxation of the spin dynamics. Afterwards, we turn to experimental
settings exhibiting minimal and substantially larger heating and study the associated
spin dynamics. We examine first the oscillations of the mean central mode population
and the characterize the observed damping. Later, we focus on longer timescales
around ∼ 10 s, investigate also the evolution of fluctuations and observe contrasting
long-term behaviors for both settings. In order to further assess the relevant processes
affecting the dynamics, we investigate the impact of different initial conditions on
the late-time fluctuations and the underlying distribution functions.

6.1. Relevant Processes and Long-Time Scenarios

Before presenting experimental results, we want to elucidate potential processes
influencing the spin dynamics and determining the long-time behavior of the system.
First, we discuss the dephasing of the internal dynamics due to quantum and experi-
mental fluctuations relying on our Truncated Wigner simulations. In this context, we
introduce a procedure to additionally incorporate experimental q fluctuations on our
simulations. Moreover, we also qualitatively consider a disparate long-time dissipative
relaxation in the presence of decoherence. We identify distinctive signatures of these
two scenarios related to the late-time fluctuations of ρ0.

Dephasing

In accordance to the Truncated Wigner simulations (TW) presented in chapter 4, we
expect the spin dynamics to experience dephasing because of the intrinsic quantum
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(a) (b)

Figure 6.1.: Dephasing: Impact of initial oscillations on long-time fluctua-
tions (sketch). In accordance to our TW simulations, we expect the
late-time states to fully spread along the associated trajectories (orange
lines) on the spin-nematic sphere (a) due to the influence of dephasing.
Projecting the associated state into the 2ρ0−1 axis (b) results in double-
peaked distributions. We expect the width of these histograms (late-time
fluctuations) to increase with the amplitude of the initial oscillations.
We identify this as a distinctive signature of dephasing.

fluctuations: The fluctuating spin-1 state spreads and eventually fully delocalizes
along the corresponding mean field trajectory in the spin-nematic sphere due to
the underlying non-linear equations of motion as we see in Fig.4.1. For typical
experimental parameters, this results in damped oscillations of the mean central
mode population 〈ρ0〉 in a timescale on the order of ∼ 15 s (see Fig.4.1).

In such a dephasing dominated scenario, we expect also distinctive signatures for
late-time fluctuations and the underlying ρ0 distributions. The expected behavior is
schematically represented in the spin-nematic sphere for two representative trajecto-
ries n Fig.6.1(a): As the state spreads along the corresponding trajectories (orange
lines), we expect ρ0 fluctuations to increase and eventually saturate. By measuring
ρ0, we project these delocalized states into the vertical axis of the sphere obtaining
characteristic double-peaked histograms in (b). This particular shape arises from the
fact that ρ0 is more likely to be measured close to extremal values as the population
dynamics is decelerated nearby. In particular, we expect also that the spread of the
late-time distributions increases with the size of the phase space region sampled by
the initial dynamics or equivalently with the amplitude of the short-time oscillations,
as schematically represented in Fig.6.1 for two initial conditions.
As previously mentioned, we expect the spin dynamics to exhibit significant de-

phasing only after ∼ 15 s, if the evolution is subjected solely to quantum fluctuations.
However, we observe a significant damping of the oscillations within few seconds of
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ρ0
st

Figure 6.2.: Expected late-time fluctuations for dephasing and dissipative
relaxation of the spin dynamics (schematic representation). In
both scenarios, we expect that average values of observables like 〈ρ0〉
(blue line) oscillate and damp to a stationary value ρst0 . Nevertheless, we
expect distinctive signatures when probing the late-time fluctuations:
In the case of a dissipative relaxation (orange error bar) we expect the
individual realizations to minimally fluctuate around ρst0 independently
of the particular initial condition. By contrast, in the case of dephasing
(light blue error bar) we expect the fluctuations to be larger and directly
depend on the amplitude of the initial oscillations.

evolution even for minimal heating as later shown in Fig.6.3(a). Since this setting
retains long-term coherence, we attribute the accelerated damping to additional
fluctuations of experimental parameters. Throughout this chapter, we explicitly
incorporate fluctuations of the detuning q to our simulations: For each run of the
simulation, we sample additional Gaussian noise δq from a normal distribution with
standard deviation ∆q and solve the equations of motion for a different detuning value
q + δq. We expect them to primarily originate from the power stabilized microwave
dressing with ∆q ≈ 2π × 0.2 Hz [Kun18b]. The fluctuations associated with the
estimated B-field stability are an order of magnitude smaller ∆qB ≈ 2π × 0.01 Hz
and therefore negligible.

Dissipative Relaxation

In the previous chapter, we observed a steady decay of the transverse spin for settings
exhibiting larger heating of the BEC density. This indicates the progressive loss
of coherences in the system. In such a scenario, we expect additional processes
to impact the spin dynamics. An exact theoretical treatment requires to consider
the interactions between a growing thermal fraction and the condensate atoms
occupying each one of the magnetic sub-levels [End11]. Here, we provide only a
phenomenological picture for the expected behavior.
The progressive loss of coherences in the system obliterates the phase relation

between the central and side modes. As quantities such as the spinor phase θs
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become ‘ill defined’, coherent spin-mixing can not further take place in the system.
Thus, we expect individual realizations of ρ0 to display a dissipative relaxation and
approach a stationary value ρst0 . As individual realizations relax, the oscillations of
the mean 〈ρ0〉 automatically damp and converge towards ρst0 . Hence, we can not
properly distinguish this process from dephasing solely by examining the late-time
evolution of 〈ρ0〉.
Nevertheless, we expect late-time fluctuations of ρ0 to behave distinctly in the

presence of decoherence: Since in this case individual realizations are expected to
relax, we expect late-time fluctuations to be reduced in comparison to an unimpaired
dephasing scenario and not to appreciably depend on the particular choice for the
initial condition ρ0(0). As schematically depicted in Fig.6.2, we expect the late-time
fluctuations (orange) to be significantly smaller than in the case of dephasing (light
blue error bar) and not directly depend on the amplitude of the initial oscillations.

6.2. Examining ρ0 Dynamics

We characterize the late-time behavior by experimentally studying the evolution
of the average and the fluctuations of ρ0. In this context, we also compare the
experimental observations with Truncated Wigner simulations in order to assess a
potential dephasing scenario.

Specifically, we concentrate on studying the dynamics for settings with transverse
trapping frequencies f⊥ = 170 Hz and f⊥ = 220 Hz, since they exhibit significantly
different heating rates as observed in Fig.5.4. Moreover, the atom-loss rates and
cloud densities are closer than for the remaining settings examined in the previous
chapter. We label them as setting A and setting B respectively and summarize the
relevant experimental parameters in Tab.6.1. The temperature related values are
retrieved from Fig.5.4 and the mean field parameters q and λ1 are estimated by
minimizing the deviation between experimental and theoretical ρ0 oscillations. More
details concerning this estimation are provided in Fig.A.6 in the appendix. The larger
spin-spin interactions λ1 for f⊥ = 220 Hz are attributed to the larger peak density
n(0) of the BEC for comparable atom numbers N due to the tighter confinement.

Features Setting A Setting B
‘minimal heating’ ‘substantial heating’

Transverse trapping frequency f⊥ [Hz] 170 220
(q, λ1)/2π [Hz] (0.92,−1.91) (1.5,−2.45)

Fixpoint population ρFP0 0.62 0.65
Initial atom number 12000 12000
Life-time in trap [s] 35.6± 0.5 45.2± 0.6

Heating rate [nK/15 s] 4 32
Initial temperature [nK] 45.5 57.5

Table 6.1.: Experimental settings used for investigating the impact of heat-
ing on the spin dynamics.
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(a) (b)

Figure 6.3.: Mean ρ0 oscillations for setting A, B and TW simulations. We
prepare initial states with ρ0(0) ≈ 0.5 and plot the evolution of 〈ρ0〉
within tevo ≤ 3 s for setting A (a) and B (b). We average over 4 realiza-
tions and the error bars are the SEM. We observe observe oscillations
for both settings with a slower damping for setting A. This setting also
displays larger fluctuations after tevo > 2 s. Additionally, we plot the
oscillations obtained from TW simulation (blue lines) incorporating shot-
to-shot q fluctuations around ∆q

2π
= 0.11 Hz. They reasonably reproduce

the experimental oscillations and timescale of the damping.

6.2.1. Damping of Population Oscillations

We prepare initial conditions with ρ0(0) ≈ 0.5, average over ∼ 4 realizations and
plot the mean central mode population 〈ρ0〉 within tevo ≤ 3 s for setting A and B in
Fig.6.3(a) and (b) respectively. For setting A, the mean central mode population
oscillates with moderate amplitude ∼ 0.12 and frequency ∼ 3.5 Hz. Moreover, the
oscillations appreciably damp within the examined timescale and exhibit increasing
fluctuations after 2 s. This is evidenced by the larger error bars and the increasing
amount of outliers. Meanwhile, for setting B the average central mode population
oscillates with slightly larger frequency ∼ 4.2 Hz and amplitude ∼ 0.15. This is
attributed to the larger q and |λ1| values and to the system being initialized further
away from the fixpoint (see Tab.6.1). Moreover, the oscillations seem to damp faster
than for setting A and exhibit smaller fluctuations after tevo > 2 s. The smaller
fluctuations at these intermediate timescales already suggest that this setting might
be affected by additional dissipative processes.

At least for setting A the observed damping of 〈ρ0〉 is expected to primarily arise
from dephasing, since in this case the system was observed to retain long-term
coherence in the previous chapter (see Fig.5.5). In order to provide a theoretical
reference, we carry out Truncated Wigner simulations with additional experimental
noise ∆q as described in section 6.1. We use the parameters listed in Tab.6.1,
S = 2500 samples1 and adjust the fluctuations to ∆q = 2π × 0.11 Hz in order

1Due to the enhanced fluctuations, we require larger sample sets to ensure numerical stability.
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to appropriately capture the experimental damping time for setting A. The order
of magnitude of the incorporated q fluctuations coincides with the independent
estimation ∆q = 2π × 0.2 Hz in [Kun18b]. The simulated ρ0 oscillations (blue lines)
are also plotted in Fig.6.3 and reasonably reproduce the experimental oscillations
and damping times for both settings. In particular, we observe also a faster damping
for the simulations for setting B. In this case, the system is initialized further away
from the fixpoint and the individual mean field parameters q and |λ1| are larger
(see Tab.6.1). This in turn results in more pronounced anharmonicieties and overall
faster oscillations of the individual samples, which together accelerate the dephasing
in the system. Additional measurements for q and λ1 values closer to the ones for
setting A are required in order to investigate if decoherence accelerates the damping
time for setting B.

6.2.2. Long-Time Evolution

Evolution of Fluctuations of ρ0

In this section, we want to shift our focus to larger evolution times on the order of
∼ 10 s. After studying the evolution of 〈ρ0〉 oscillations in Fig.6.3, we expect them
to be to be fully suppressed within these longer timescales. Hence, the analysis of
expectation values is not sufficient to characterize the late-time evolution of the
system. Therefore, we focus on examining the evolution of ρ0 fluctuations for settings
with minimal and substantially larger heating. Additionally, we compare again the
results to Truncated Wigner simulations in order to determine whether dephasing
appreciably affects the dynamics.
As before, we prepare initial states with ρ0(0)≈0.5 and 〈F⊥(0)〉=1 and plot the

evolution of the variance σ2 for setting A (a) and B (b) in Fig.6.4. Its statistical
uncertainty is estimated using a jackknife resampling method [Mil74]. The fluc-
tuations of the initial condition coincide for both settings and are on the order
σ2 ∼ 1/N , whereas they clearly differ at later times. For setting A the variance
increases significantly faster and is larger by an order of magnitude than for setting
B already after 4 s of evolution. Moreover, the fluctuations exhibit different trends
at later times. For setting B the fluctuations slowly increase up to 12 s but remain
nearly an order of magnitude smaller, while they moderately decrease for setting A.

Additionally, we carry out TW simulations with S = 2500 samples and experimental
noise ∆q

2π
= 0.11 Hz and plot the corresponding evolution of the variance σ2 also in

Fig.6.4 (blue curves). The initial fluctuations are small and compatible with both
experimental settings. At later times, the variances rapidly increase and saturates
around tevo ≤ 5 s. This saturation and the observed short-time variance oscillations in
the simulations can be understood relying on the spin-nematic sphere: The individual
samples spread along the corresponding mean field trajectories while oscillating at
different frequencies due to the non-linear equations of motion. Hence, σ2 oscillates
approximately twice faster than 〈ρ0〉 and exhibits local minima when the mean is
extremal. This is also visible in the spin-nematic spheres discussed in Fig.4.1(c) in
chapter 4. Moreover, the variance saturates after the individual samples fully dephase
and delocalize on phase space. The residual late-time oscillations are attributed
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(a)

(b)

Figure 6.4.: Evolution of ρ0 variance for setting A, B and corresponding
TW simulations. We prepare initial states with ρ0(0) ≈ 0.5 and plot
the variance evolution in a semi logarithmic scale suitable for comparing
orders of magnitude. The error bars are obtained using a resampling
method on the ∼ 150 realizations per point [Mil74]. For setting A (a)
the variance peaks within tevo ≤ 4 s and is slightly reduced afterwards.
On the contrary, for setting B (b) it slowly increases within tevo ≤ 12 s
but remains approximately one order of magnitude smaller. We also
plot the variance evolution obtained from Truncated Wigner simulations
(blue lines) incorporating shot-to-shot q fluctuations with ∆q

2π
= 0.11 Hz.

Due to the accelerated dephasing induced by these fluctuations, the
variances saturate already after ≤ 5 s of evolution. The corresponding
stationary value is comparable to setting A especially for tevo ≤ 8 s, but
an order of magnitude larger than the late-time results for setting B.
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(a) (b)

Figure 6.5.: Late-Time evolution of 〈ρ0〉 for setting A, B and corresponding
TW simulations (blue lines). We prepare initial states with ρ0(0) ≈
0.5 and plot the evolution of the mean central mode population 〈ρ0〉
within tevo = 12 s. The error bars reflect the standard deviation as
previously discussed in Fig.6.4. For setting A (a), 〈ρ0〉 drifts towards
values larger than the corresponding TW simulation (blue lines), which
can be partially accounted by the shift of the fixpoint position due to
atom loss. By contrast, setting B (b) displays a late-time drift in the
opposite direction contradicting a single-mode dephasing scenario.

numerical artifacts as the amplitude is smaller and the frequency fluctuates in time.
For setting A, the stationary variance obtained from these simulations is around

σ2 ≈ 0.01 and comparable to the late-time fluctuations especially for tevo ≤ 8 s.
For later times, the experimental variance slightly decreases below the simulation
results which is attributed to dissipative processes such as minimal heating and
atom loss. Additional experimental points for 0 < tevo < 4 s are required in order to
assess the short-time agreement. By contrast, for setting B the late-time variances
are consistently an order of magnitude smaller than the saturated simulation value
σ2 ≈ 0.016. It is important to emphasize, that reducing the q fluctuations in an
attempt to better capture the timescale of the σ2 increase would result in 〈ρ0〉
oscillations damping substantially slower. This would contradict the experimental
observations in Fig.6.3(b). Moreover, since the q fluctuations primarily originate
from the microwave dressing we expect them to be equal for setting A and B.

Evolution of 〈ρ0〉

For the sake of completeness, we plot also the corresponding late-time evolution of
the average central mode population 〈ρ0〉 for both setting A (a) and B (b) together
with the corresponding Truncated Wigner simulations (blue lines) in Fig.6.5. The
error bars correspond to the standard deviation and directly capture the previously
discussed fluctuations.
For setting A, we observe that 〈ρ0〉 constantly drifts towards larger values reach-
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ing ρexp0 ≈ 0.7 for the largest examined evolution time tevo = 12 s. This value is
significantly larger than the stationary value predicted by the simulations (blue
line) which is around ρst0 ≈ 0.62. The observed difference can be partially ac-
counted by assuming the mean field phase space to be dynamically modified by
atom loss. As previously discussed, spin-spin interactions scale as λ1 ∝ N2/5

with atom number N [Ger13]. Using the life-time listed in Tab.6.1, we estimate
λ1 ≈ λ1(0)(exp(−12/35.6))2/5 ≈ 2π × 1.65 Hz. We use this value to compute the
associated change of the fixpoint position ρFP0 ≈ 0.62→ 0.65 following Eq.(5.1). This
value is closer to ρexp0 , but still differs significantly.

For setting B, the mean central mode population 〈ρ0〉 exhibits an opposite late-time
trend and drifts towards smaller values reaching ρexp0 ≈ 0.62 for tevo = 12 s. This
value is in turn significantly smaller than stationary expectation ρst0 ≈ 0.66 estimated
from the corresponding simulation (blue line). In direct contrast to setting A, the
direction of the drift can not be accounted by atom loss since the associated reduction
of the spin-spin interactions would shift the fixpoint towards larger values. This is
an additional indication that in this case the late-time evolution can not be captured
within the theoretical framework of the simulation.

It is important to emphasize, that we can not expect the TW simulations to capture
all features of the spin dynamics at late times. These simulations rely on the validity
of the single-mode approximation, namely that all atoms share the same spatial
wave function and that the coupling between spin and motional degrees of freedom
is suppressed. This assumption is particularly fragile for setting B, since in this
case an important thermal fraction around ∼ 35% develops after 10 s of evolution as
shown in Fig.5.4. For spin-1 systems, the thermal atoms in the individual magnetic
sub-levels have been observed to lose coherence and relax towards equipartition
ρ0 = ρ±1 = 1

3
in comparable timescales [Erh04]. This might partially account for the

observed population drift towards smaller values in Fig.6.5(b), but requires further
investigation.
In conclusion, we observe a qualitatively distinct late-time evolution for settings

with minimal (A) and considerably larger heating (B), especially while examining
the fluctuations. For setting A the trend and order of magnitude of the fluctuations
agree with TW simulations, indicating that the long-term behavior arises from
dephasing of the internal spin dynamics. By contrast, the fluctuations for setting B
are significantly smaller suggesting that the late-time dynamics might be affected
by an additional relaxation process. We investigate this disparate behavior in more
detail in the next section by examining the impact of different initial conditions.

6.3. Exploring Different Initial Conditions

Here, we want to study the impact of different initial conditions on the late-time spin
dynamics in order to identify the relevant processes leading to the observed behavior.
In a dephasing dominated scenario, we expect the long-term fluctuations to increase
with the amplitude of the initial ρ0 oscillations as sketched in Fig.6.1. By contrast,
we expect the fluctuations to be smaller and not correlated with the amplitude of the
initial oscillations if the system is substantially impacted by decoherence (see Fig.6.2).
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6. Long-Time Spin-1 States

In order to assess these potential late-time scenarios, we examine the long-term ρ0

distributions for different initial conditions.

6.3.1. Setting with Minimal Heating

We focus first on setting A and prepare initial conditions with ρ0(0) ≈ {0.9, 0.63, 0.5}.
These are obtained after φRF = {0.12, 0.2, 0.25}π RF-rotations during the preparation
sequence. We plot the initial ρ0 oscillations within tevo ≤ 1 s in Fig.6.6(a) and fit a
damped sine of the form ρ0(t) = A sin(2πft) exp(−t/T ) + b (red lines). We estimate
thereby significantly different oscillation amplitudes A for these initial conditions. In
the case of ρ0(0) = 0.63 the oscillations are suppressed since the system is initialized
close to the fixpoint ρFP0 ≈ 0.62 of the mean field dynamics.

In order to investigate the late-time behavior, we additionally record large samples
of ∼ 150 runs per setting after tevo = 12 s of evolution and generate normalized
ρ0-histograms for the different initial conditions in Fig.6.6(b). We observe a clear corre-
lation, namely that the late-time variances σ2 ≈ {1.3× 10−2, 5.3× 10−4, 7.3× 10−3}
increase with the initial oscillation amplitudes A ≈ {0.28, 0.02, 0.16}. Moreover, the
ρ0-distribution is qualitatively different if the system is prepared close to the fixpoint:
In this case the histogram exhibits only a narrow single peak, in contrast to the
double-peaked shapes for the remaining initial conditions.

Comparison To Simulations

We compare these findings to the histograms obtained from Truncated Wigner
simulations after 12 s of evolution which are displayed in Fig.6.6(c). As before, we
incorporate ∆q = 2π × 0.11 Hz fluctuations in order to ensure saturated variances
after 12 s. The overall behavior is compatible to the experimental observations: We
observe higher fluctuations for the settings with larger initial oscillations. Moreover,
we can also qualitatively reproduce the single and double-peaked histograms for
initial conditions prepared close and further away from the fixpoint. The single-
peaked histograms in (b2, c2) are probably due to additional Gaussian noise of
the fixpoint position because of q fluctuations, which ‘blur’ narrow double-peak
features. This is plausible, since the error propagated variance of the fixpoint
position σ2

FP ≈ (0.25∆q/|λ1|)2 ≈ 2× 10−4 is in the same order of magnitude as the
observed late-time variances in Fig.6.6(b2,c2). Asymmetric features in the theoretical
histograms are also attributed to q fluctuations as these effectively modify the phase
space and result in a spread along different mean field trajectories.
We observe qualitative agreement between the experimental observations for the

setting with minimal heating and the simulations for different initial conditions. This
is a clear indication that in this case the long-time spin state is significantly affected
by dephasing of the internal dynamics. However, the widths of the experimental
histograms are systematically smaller and the mean values are consistently larger than
the theoretical results indicating that the simulations do not capture the full extent
of the dynamics. Additional dissipative processes such as atom-loss and minimal
heating can induce decoherence and potentially reduce the late-time fluctuations.
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f=9.4±0.1Hz, T=0.1±0.1Hz
A=0.02±0.01

f=2.8±0.1Hz, T=5.4±0.1Hz
A=0.28±0.03

f=3.5±0.1Hz, T=2.5±0.2Hz
A=0.16±0.01

(a1) (a2) (a3)

(b1) (b2) (b3)

Setting A

(c1) (c2) (c3)

TW Simulation

Figure 6.6.: Initial ρ0-oscillations, long-time distributions for setting A and
TW simulations for different initial conditions. We plot the
experimental ρ0-oscillations (a) for initial conditions with 〈ρ0(0)〉 =
{0.91, 0.63, 0.5} (blue points). We average over ∼ 3 realizations and the
error bars are the SEM. The amplitude A, frequency f and damping
time T of the oscillations are estimated using damped sinusoidal fits (red
curves). We plot normalized ρ0-histograms after 12 s (b) for the corre-
sponding initial conditions (∼ 150 realizations). The late-time variance
σ2 increases with the initial oscillation amplitude. Moreover, we observe
a narrow single-peaked histogram close to the fixpoint (b2) and broader
double-peaked distributions for the remaining cases. Additionally, we
plot the corresponding histograms obtained from TW simulations (c)
using 2500 samples and ∆q

2π
= 0.11 Hz. As for the experimental results,

σ2 increases with the initial oscillation amplitude. While the fluctua-
tions are larger, these histograms capture the overall shape and initial
condition dependence of the experimental results.
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6. Long-Time Spin-1 States

6.3.2. Impact of Heating

We turn now to setting B which exhibits a larger heating rate and examine also
the short-time ρ0 oscillations for comparable initial conditions with 〈ρ0(0)〉 ≈
{0.9, 0.63, 0.5} in Fig.6.7(a). As before, we estimate the frequency f , 1/e damping
time T and amplitude A ≈ {0.20, 0.03, 0.25} of the initial oscillations using damped
sinusoidal fits (red lines). The different amplitudes and higher frequencies in com-
parison to setting A are attributed to the larger values for the q and λ1 listed in
Tab.6.1. Additional measurements at comparable mean field parameters are required
to assess, whether the tendentially faster damping of the oscillations in comparison
to setting A can be attributed to the influence of decoherence.
We examine also the late-time behavior after 12 s of evolution and plot the

corresponding ρ0 histograms in Fig.6.7(b), which are also extracted from ∼ 150
experimental realizations. In direct contrast to the corresponding TW simulations
in Fig.6.7(c), the experimental variances σ2 are appreciably smaller and not appar-
ently correlated with the amplitudes of the initial oscillations. Additionally, the
experimental histograms consistently exhibit only a single narrow peak centered
around ρst0 ≈ 0.61 for all examined initial conditions ρ0(0) in contrast to the broader
double-peaked histograms for setting A. This points to a late-time evolution which
to some extent ‘loses memory’ of the initial configuration and is independent of the
particular choice ρ0(0).

Combining these observations with the decay of the transverse spin at compa-
rable evolution times (see section 5.4), we find indications that the long-time spin
dynamics is significantly affected by heating of the motional degrees of freedom. In
direct to settings with minimal heating, dephasing does not seem to be the primary
factor determining long-term spin dynamics. On the contrary, the late-time behavior
seems to be dominated by a dissipative relaxation towards a quasi-steady state char-
acterized by the progressive loss of phase coherence as F⊥ → 0 and by populations
relaxing towards a single value ρst0 (t) independently of the choice of initial conditions
ρ0(t)→ ρst0 (t). The latter is evidenced by the small fluctuations around this value
for the examined initial conditions.

The long-time state ρst0 (t) is labeled as ‘quasi-steady’, since in Fig.6.5(b) we observe
a slow drift of the mean central mode population on the order of d

dt
〈ρ0〉 ≈ −0.006 1

s
.

Additional measurements at even larger timescales are required to assess whether
the average central mode population eventually converges towards a stationary value.
This might prove difficult, as we lose a significant fraction of atoms at these large
evolution times. Moreover, it is also important to further experimentally assess
whether the particular choice of mean field parameters q and λ1 affects the observed
relaxation.
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f=4.1±0.1Hz, T=1.5±0.5Hz
A=0.20±0.03

(a1)
f=4.7±0.1Hz, T=2.2±1.5Hz

A=0.03±0.01

(a2)
f=3.6±0.1Hz, T=0.8±0.3Hz

A=0.25±0.05

(a3)

(b1) (b2) (b3)

(c1) (c2) (c3)

Setting B

TW Simulation

Figure 6.7.: Initial ρ0 oscillations, long-time fluctuations for setting B and
TW simulations for different initial conditions. We plot the
short-time ρ0-oscillations (a) for initial conditions with 〈ρ0(0)〉 =
{0.9, 0.63, 0.5} (blue points). We average over ∼ 3 realizations and
the error bars are the SEM. We employ damped sinusoidal fits (red lines)
and extract the frequency f , damping time T and amplitude of the
oscillations A. The corresponding normalized ρ0-histograms after 12 s
are constructed from ∼ 150 realizations and plotted in (b). We also plot
the histograms obtained from TW simulations (c) with ∆q

2π
= 0.11 Hz. In

direct contrast to the simulations and to setting A, there is no apparent
correlation between the experimental variances σ2 after 12 s and the ini-
tial oscillation amplitudes A. Moreover, we observe narrow single-peaked
histograms centered around ρ0 ≈ 0.61 for all examined initial conditions.
This indicates that the late-time dynamics is not primarily determined
by dephasing, but rather by a dissipative relaxation.
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6. Long-Time Spin-1 States

Conclusions

In this final chapter, we examine the evolution of the central mode population
ρ0 in order to further characterize the nature of long-time spin states. Even for
settings with minimal heating, 〈ρ0〉 oscillations damp within ∼ 5 s. This accelerated
dephasing is attributed to additional fluctuations of experimental parameters such
as q. Moreover, we observe distinct trends for the fluctuations for configurations
exhibiting minimal (setting A) and substantially larger heating (setting B).

• For setting A the fluctuations of ρ0 significantly increase and peak within the
first 4 s of evolution. The timescale and order of magnitude of the fluctuations
are compatible with Truncated Wigner (TW) simulations. The incorporated q
fluctuations induce significantly faster dephasing of the spin dynamics within
∼ 5 s in comparison to ∼ 15 s expected solely from quantum fluctuations.

• Meanwhile, the fluctuations for setting B are initially compatible but increase
significantly slower within the 12 s examined time window. They remain
approximately an order of magnitude smaller than for setting A and for the
corresponding TW simulation even after 12 s of evolution.

We take a closer look at this disparate behavior and study the dynamics for
different initial conditions ρ0(0). In a dephasing dominated scenario, we expect that
initial conditions with larger oscillation amplitudes also exhibit higher late-time
fluctuations. This is captured within our TW simulations, which predict broad
double-peaked histograms. We assess this by examining different initial conditions:

• For setting A we observe indeed increasingly broader double-peaked ρ0 his-
tograms after 12 s for initial conditions displaying oscillations with larger
amplitudes. While smaller in magnitude, the trend of the fluctuations and
overall shape of the distributions is compatible with the simulation results.

• On the contrary, for setting B we observe no apparent correlation between the
amplitude of the initial oscillations and the width of the late-time distributions.
Moreover, we consistently obtain single-peaked ρ0 histograms centered around
the same average value for all examined initial conditions.

If we collect the findings of the last two chapters, we can conclude that heating of
the cloud density seems to appreciably affect the evolution and overall behavior of
long-time spin states: For the setting with minimal heating, a significant transverse
spin F⊥ survives at late times signalizing that the system retains long-term coherence.
Moreover, the large late-time ρ0 fluctuations and qualitative agreement with the
simulations for different initial conditions indicates that the corresponding spin
states primarily arise from dephasing of the internal spin dynamics. The accelerated
dephasing is attributed to experimental q fluctuations. By contrast, for the setting
exhibiting larger heating we observe narrow late-time ρ0 distributions centered around
the same value ρst0 (t) for different initial conditions and a constant decay of F⊥. This
points to a long-time evolution governed by decoherence and a qualitatively distinct
dissipative relaxation of population dynamics towards (F⊥(t), ρ0(t))→ (0, ρst0 (t)).
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7. Conclusion and Outlook

During the course of this master thesis, we develop new probing techniques and use
them to examine the internal spin dynamics within the F=1 ground state hyperfine
manifold of our 87Rb Bose-Einstein condensate. Specifically, we focus on studying
and understanding the long-time evolution of this spin-1 system.
We present and characterize a newly developed readout scheme which allows us

to extract two orthogonal directions (Fx, Fy) of the transverse spin F⊥ in a single
experimental run employing our state selective absorption imaging setup. This
technique relies on mapping one of the spin directions into population differences in
magnetic sub-levels, using the F=2 manifold as a storage platform for the relevant
populations and measuring the remaining direction in F=1 accordingly. As a first
application, we employ this scheme to probe the short-time spin dynamics in our
system. We concentrate on evolution times tevo ≤ 1 s which are comparable with the
internal timescale associated with spin-mixing |λ1| ∼ 2π× 2 Hz. We observe coherent
oscillations of the mean transverse magnetization driven by spin-changing collisions,
which are captured by the mean field predictions for different initial conditions.

Afterwards, we concentrate on studying the long-time dynamics for evolution times
up to . 15 s. For the typical trapping configurations with (ω⊥, ω||) ≈ 2π×(220, 46)Hz,
we observe a decaying transverse spin indicating long-term decoherence. Moreover,
we observe that the life-time of the transverse spin is maximized in a q-regime
exhibiting spin-mixing. This is plausible, since spin-changing collisions build up
coherences and might partially counteract the processes driving the decoherence.
Additionally, we examine the impact of heating of the motional degrees of freedom
on the spin dynamics, which we experimentally control by adjusting the power of
the waveguide trap. Indeed, we find settings with minimal and substantially larger
heating rates for shallower and tighter confinement. We attribute this mainly to
residual evaporation in the former and to larger scattering rates of trap photons in
the latter case. Moreover, we observe a clear connection between heating and the
long-term spin dynamics: For settings with larger heating, the average transverse
magnetization clearly decays and the fluctuations are suppressed. On the contrary, for
settings with minimal heating a significant spin survives even after 15 s of evolution
accompanied by a large spread of individual realizations. This indicates that the
system retains long-term coherence.

Finally, we probe the long-time dynamics of the central mode population ρ0 in order
to further assess the impact of finite temperature effects. For settings with minimal
heating, the late-time fluctuations are nearly an order of magnitude larger. Moreover,
we prepare different initial conditions and examine the ρ0-distributions after 12 s
of evolution. For the setting with minimal heating we observe distinctive broad
double-peaked histograms if the system is initialized away from the fixpoint. We
can capture their overall shape and the initial condition dependence with Truncated
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Wigner simulations incorporating additional q fluctuations. This is a clear indication
that the long-time spin state primarily arises from the predicted dephasing of the
internal dynamics. By contrast, the setting with larger heating exhibits narrower
single-peaked distributions centered around the same value for all examined initial
conditions. Together with the observed F⊥ decay, this indicates a disparate late-time
state governed by decoherence and a dissipative relaxation of population dynamics.

Outlook

On the theory side, one relevant open question is to determine the actual micro-
scopic mechanism driving the observed late-time decoherence for settings with larger
heating. In this scenario, the single-mode approximation is manifestly violated since
a significant thermal component develops within ∼ 10 s which in turn can interact
with the condensate. There have been theoretical efforts in this direction for spin-1
systems [End11] which model the evolution of coupled thermal and condensate fields
relying on kinetic gas theory. The associated collisional terms enable spin-mixing
involving both thermal and condensate atoms. Moreover, for thermal spin-1 gases
the populations within individual magnetic sub-levels are expected to dissipatively
relax towards equipartition near q ≈ 0[End09, Erh04]. It seems feasible, that as
the cloud heats and the thermal fraction increases it might constitute an effective
bath which rapidly losses coherences and drives an analogous process within the
condensate via spin-changing collisions. Such a mechanism would resemble the spin
locking between thermal and condensate atoms observed for spin-1

2
systems [McG03].

Additionally, it is important to develop diagnostic tools and measurement schemes
to further characterize late-time spin states in our system. In the context of the
Eigenstate Thermalization Hypothesis [Kho15], it is relevant to assess if our spin-1
system can experience thermal relaxation under its own dynamics and to examine
whether the late-time behavior for settings with appreciable heating is compatible
with a thermal spin state. We have taken first steps in this direction by performing
small controlled spinor phase rotations after long periods of evolution and monitoring
the subsequent dynamics. This linear response measurement can be complemented
by an analysis of fluctuations and used in principle to probe the (non-)thermal nature
of the system relying on the fluctuation-dissipation theorem.

On a more experimental level, it is essential to diversify our preparation and probing
techniques. In this context, a direct extension Fx-Fy readout scheme presented in
this thesis allows to simultaneously measure all spin directions Fx, Fy, Fz in a single
experimental run [Kun18a]. This extended scheme relies on using the larger F = 2
manifold also as a storage platform for the atomic populations required to access
Fz. It constitutes a powerful tool to experimentally investigate non-equilibrium
spin dynamics following parametric quenches, especially for elongated quasi-1D
BECs confined in the waveguide trap. In particular, we can employ this scheme
to study scaling dynamics of different spin-1 observables for quenches of an initial
polar state into phases exhibiting spin-mixing following the observations in [Prü18].
Building on the results presented here, a first step could be to operate with trapping
configurations exhibiting minimal heating and to investigate whether the observed
long-term survival of coherences facilitates scaling dynamics at even larger timescales.
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A. Supplementary Analysis

A.1. Exemplary RF-Rabis in F=1 and F=2

As discussed in the main text, we prepare balanced superpositions of the form
|1,−1〉+ |2,−2〉 and address them with the linearly polarized radio frequency fields
originating from two nearly orthogonal coils. We tune the relative phase between
these fields φc and examine the Rabi oscillations of the magnetization along the
quantization axis 〈F̂z〉 for atoms in F=1 and F=2. Here, we present the results for
representative relative phases φc = 0.69π (Fig.A.1) and φc = −0.44π (Fig.A.2) which
suppress the Rabi oscillations in F=2 and F=1 respectively.

(a)

(b)

Figure A.1.: Radio frequency Rabis in F=1 (a) and F=2 (b) for φc = 0.69π.
We measure the Rabi oscillations of 〈F̂z〉 (blue points) after averaging
over ∼ 10 realizations. For this particular choice of φc, the oscillations
in F = 2 are significantly suppressed which is reflected in the smaller
values for the amplitude and the Rabi frequency ΩRF. Fitting sinusoidal
functions (red lines), we obtain ΩRF,fit

2π
≈ {29, 2.2}kHz for F = {1, 2}.
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(a)

(b)

Figure A.2.: Radio frequency Rabis in F=1 (a) and F=2 (b) for φc =
−0.44π. We measure the Rabi oscillations of 〈F̂z〉 (blue points) after
averaging over ∼ 10 realizations. For this particular value of the relative
phase, the oscillations in F = 1 are appreciably suppressed which is
reflected in the smaller values for the Rabi frequency ΩRF. Fitting
a sinusoidal function (red lines), we obtain ΩRF,fit

2π
≈ {0.5, 29}kHz for

F = {1, 2}.
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A.2. Spin-Mixing Spectroscopy

A.2. Spin-Mixing Spectroscopy

Here, we present the results of an exemplary spin-mixing spectroscopy for N(0) ≈
19000 atoms and (ω⊥, ω||) = 2π × (220, 46)Hz in order to determine the q-regime
exhibiting spin-changing collisions. We prepare an initial polar state, tune q by
adjusting the MW dressing and monitor the side mode population after tevo = 4 s
of evolution. In Fig.A.3 we plot the normalized side mode population ρ1 + ρ−1 for
different detuning values q. We observe non-negligible side mode populations for
−4 Hz . q

2π
. 6 Hz signalizing spin-mixing.

Additionally, we plot absorption images of the individual magnetic sub-levels
for representative q values in the insets. They are recorded after texp = 10 ms of
expansion in the waveguide trap and a subsequent Stern-Gerlach separation. Spin-
mixing is also directly visible in the individual realizations as finite atomic population
in |1,±1〉. For the q regime examined here we observe homogeneous single-peaked
density profiles up to noise speckles. Hence, spin-mixing for this particular choice of
parameters does not seem to excite higher trapping modes supporting the validity of
the single-mode approximation.

1

0

-1

mF

Figure A.3.: Spin-mixing spectroscopy (N(0) ≈ 19000 atoms). We average
over ∼ 3 realizations and plot the normalized mean side mode population
ρ1+ρ−1 vs. q after 4 s of evolution from an initial polar state. We observe
non-negligible side mode populations for −4 Hz . q

2π
. 6 Hz signalizing

spin changing collisions. Moreover, the larger errors in the rising flank
of the spectroscopy around −2 Hz are attributed to larger fluctuations
of the spin-changing collisions rate. We plot absorption images for
representative q values in the insets. The color scale corresponds to
the number of atoms per pixel of (0.42 µm)2. We observe single-peaked
profiles in the individual magnetic sub-levels for the examined q regime,
supporting the single-mode approximation.
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A. Supplementary Analysis

A.3. Atom Loss for Different Trapping
Configurations

In this section, we examine the atom loss rate for the different trapping configurations
employed during the heating analysis in section 5.3.2. We prepare states with
N ≈ 12000 atoms and monitor the atom loss for settings with transverse trapping
frequencies f⊥ = {260, 220, 170, 150}Hz. We plot the results in Fig.A.4. The 1/e
life-time of the condensate is estimated using exponential fits of the form N =
N0 exp(−t/TLT) (red lines). The fit goodness is not optimal as only four data points
are used to estimate two fit parameter.
We observe a clear trend: The life-time of the condensate is largest for the

tightest trapping setting (TLT ≈ 50 s). This is plausible, since we expect residual
evaporation during evolution for the two shallower trapping configurations (see main
text). Moreover, a significant thermal fraction develops within 15 s for the two tighter
trapping settings effectively reducing the average density n of the atomic cloud and
thereby also the rate of three-body collisions (∝ n2).

f⊥=260 Hz(a) (b)

(d)(c)

f⊥=220 Hz

f⊥=170 Hz f⊥=150 Hz

Figure A.4.: Atom loss for different trapping configurations with f⊥ =
{260, 220, 270, 150}Hz in (a)-(d). We examine the atom loss for
states with N ≈ 12000 atoms and estimate the 1/e life-time of the con-
densate using exponential fits (red lines). For comparable atom numbers,
the life-time is significantly larger for the tighter trapping configura-
tions (a,b) which also exhibit substantially larger heating rates. This
observation supports our working hypothesis that the BEC experiences
residual evaporation in the shallower trapping settings (c,d).
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A.4. Statistical Uncertainty of Heating Analysis

Here, we take a closer look at the statistical uncertainty of condensate fraction
estimation using the bimodal fits in Eq.(5.4). We record S=396 realizations with
N=12000 atoms and moderate thermal fractions (NC

N
≈ 0.73). We average together

within subsets of size s and construct mean density profiles before fitting NC
N
. After-

wards, we compute the standard deviation σCF(s) of NC
N

within the different subsets
and plot them in Fig.A.5 in a double logarithmic scale (blue data points). The
error of σCF is obtained using a resampling method [Mil74]. The standard deviation
decreases as σCF ∝ 1√

s
(red guideline to the eye). This is plausible, since averaging

over increasingly more realizations suppresses noise features of the density profiles
enabling a preciser condensate fraction estimation, as we can see in the profiles in the
insets for s=2 and s=64 . We can reduce the statistical uncertainty below σCF ≈ 0.01
if we average over & 30 realizations before applying the bimodal fits.

We can draw a parallel between our analysis and the Allan deviation σA(τ). For the
latter, white-noise in the frequency regime scales as σA(τ) ∝ 1√

τ
with the integration

time of the signal τ [Bar70] suggesting that the statistical uncertainty in our method
is similar in nature.

Figure A.5.: Statistical uncertainty of condensate fraction analysis. We
record S = 396 realizations. We average the profiles within subsets of
size s < S, fit the condensate fraction using bimodal fits and plot the
standard deviation between the subsets σCF(s) (blue points). We ob-
serve a clear 1/

√
s decay (red guideline) suggesting that the condensate

fraction estimation is limited by uncorrelated white-noise affecting the
fitted profiles. This is visible in insets, where we plot representative
mean profiles (blue curves) averaged over s=2 and 64 realizations and
the corresponding fits (red lines).
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A.5. Comparison of Experimental and Mean Field
Population Oscillations

In this section, we compare the experimentally observed short-time oscillations of
the central mode population ρexp0 (t) with mean field predictions ρMF

0 (t) which we
obtain after numerically solving the equations of motion in Eqs.(2.17). We optimize
the agreement between theory and experiment in order to estimate the detuning q
and the spin-spin interactions λ1: To this end, we initialize ρMF

0 (0) = ρexp0 (0) and
estimate the mean field parameters by minimizing the absolute deviation between
the theoretical and experimental values D(q, λ1) = 〈|ρexp0 (t)− ρMF

0 (t)|(q,λ1)|〉. Here,
〈〉 denotes an average over all experimentally measured times t.

We plot exemplary results in Fig.A.6 for a state with 〈ρ0(0)〉 = 0.48 and N = 12000.
We plot the mean deviation D(q, λ1) in (a) and observe a minimum at (q, λ1) =
2π × (0.92,−1.91)Hz. We also scan a significantly wider range of parameters in
order to ensure that this is indeed a global minimum. The corresponding mean field
oscillations of ρ0 (solid black lines) for these optimal parameters (b) are compatible
with the experimental observations (blue points).

(q,λ1)=2  x(0.92,-1.91)Hz

Experimental  Data

Mean Field Theory(b)(a)

Figure A.6.: Comparison between experimental and mean field ρ0. We solve
the mean field equations of motion numerically for different combina-
tions of q and λ1 and plot the average absolute deviation between the
theoretical and experimental populations D(q, λ1) in (a). The agree-
ment is assumed to be optimal if D(q, λ1) is minimal. We also scan
over a wider parameter range to ensure that the observed minimum
is indeed a global one. Additionally, we plot the theoretical ρ0 oscilla-
tions for the optimal mean field parameters (black line) together with
the experimental results (blue points) in (b) and observe reasonable
agreement.
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