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Abstract. We review the recent progress in the understanding of the relaxation of

isolated near-integrable quantum many-body systems. Focusing on prethermalization

and universal dynamics following a quench, we describe the experiments with ultracold

atomic gases that illustrate these phenomena and summarize the essential theoretical

concepts employed to interpret them. Our discussion highlights the key topics that link

the different approaches to this interdisciplinary field, including the generalized Gibbs

ensemble, non-thermal fixed points, critical slowing and universal scaling. Finally,

we point to new experimental challenges demonstrating these fundamental features of

many-body quantum systems out of equilibrium.
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1. Introduction

The relaxation of isolated quantum many-body systems is a fundamental unsolved

problem connecting many different fields of physics. Examples range from the dynamics

of the early universe and quark-gluon plasmas to coherence and transport in condensed

matter physics and quantum information. Consequently relaxation and non-equilibrium

dynamics encompass a wide range of phenomena on vastly different energy, length, and

time scales.

In the last years, rapid progress in the field was triggered by experiments with

ultracold quantum gases [1], which allow probing of the fundamental processes and time

scales of these phenomena [2–22]. These experiments opened up a new path to testing

theoretical concepts, revealing their implications for realistic systems.

In the experiments, an initially prepared, trapped gas is suddenly ‘quenched’ out of

equilibrium. This is typically achieved by a parameter change in the trapping potential

or the interaction properties. Relaxation, i.e., the evolution to a new (quasi-) stationary

state is subsequently probed through temporally and spatially resolved measurements

of suitably selected observables. Central questions that have been studied range from
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the existence of non-thermal steady states and the microscopic dynamics that establish

these states to the emergence of aspects of macroscopic classical statistical mechanics

from the microscopic unitary quantum evolution. A fundamental problem thereby is

how unitary evolution, which conserves the von Neumann entropy S = −Tr[ρ̂ ln ρ̂] of

the full quantum state ρ̂ of an isolated system can lead to relaxation and thermalization

(the approach of a steady state well described by a Gibbs ensemble).

In the establishment of (quasi-)steady states conservation laws play a key role.

Consequently, isolated many-body systems (approximately) described by quantum

integrable models with a large number of conserved quantities are of particular interest.

Ultracold atomic gases are ideally suited to realize and probe such systems. In particular,

they allow studying different mechanisms that break the integrability. This opens the

unique possibility to investigate the intricate relationship between thermalization and

integrability in quantum systems.

Emergence of macroscopic physics: The generalized Gibbs ensemble.— Information

theory provides a particularly powerful approach [23] to studying such steady states.

As pointed out by Jaynes in the 1950s, once one realizes that thermodynamic entropy

and information entropy are the same concept, one may take entropy as the starting

point and consider statistical mechanics as a form of statistical inference [24, 25].

From this point of view, the maximum-entropy state takes the central role, being the

least biased estimate possible on given information, or the maximally non-committal

configuration with regard to missing information [24]. The maximum-entropy principle

leads directly to the standard thermodynamical ensembles, which are constrained only

by quantities like energy or particle number [26]. However, as highlighted by the

work of Rigol and collaborators [27], it has recently become clear that the late-time

behavior of isolated integrable quantum many-body systems is fundamentally different

from that of non-integrable ones [28–32]. Further conservation laws constrain the

dynamics of integrable systems and thus, appropriately generalized Gibbs ensembles

(GGE) are expected on the grounds of the maximum-entropy argument [24, 25]. These

GGEs were indeed observed in experiment, in the relaxation of a 1D quantum gas

[9]. When deriving statistical ensembles from the microscopic physical properties

one usually has to complement the basic equations of motion with further physical

assumptions, in particular ergodicity. Jaynes’ statistical, information-based approach

is, however, independent of such assumptions [24] and, hence, it is applicable not only

to the special subclass of equilibrium states but also to dynamical evolution processes

[25, 27, 28, 33, 34]. The questions arising in the above context have been quickly taken

up by experimenters [22], as will be discussed in detail in Sect. 3.

Microscopic relaxation processes: Prethermalization.— Given the new types of

stationary states discussed above, it is also important to better understand the relevant

microscopic processes leading to these states. However, a general framework for the

relaxation dynamics of isolated quantum many-body systems quenched far out of

equilibrium largely remains an open problem.
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Figure 1. Schematics of prethermalization [35, 36] (left panel, adapted from [37])

and a non-thermal fixed point [38] (NTFP, right panel, adapted from [39]), based

on the ideas of a renormalization group flow. The left panel depicts possible time

evolutions in a two-dimensional projection or sub-manifold of the space of many-body

states. The arbitrarily chosen axes represent running ‘coupling’ parameters. These

are related, e.g., to the various Lagrange parameters of a generalized Gibbs ensemble

(GGE, cf. Sects. 2.1.2 and 3.3.4), of which all but the Gibbs-ensemble parameters

vanish in the thermal state (green ‘thermal fixed point’). Hence, the space of such

trajectories is in general not restricted to the two dimensions chosen in the sketch.

A near-integrable system quickly approaches a prethermalized state (red line), which,

owing to conservation laws, retains memory of the initial conditions and then slowly

drifts to the thermal fixed point. Depending on the particular choice of initial condition

(e.g. quench), different, non-universal early-time evolutions (blue trajectories) occur

before the system starts to show universal behavior. In contrast, in non-integrable

systems, direct thermalization on a single time scale as in kinetic damping is the

generic pathway. The red drift line can be regarded as a partial fixed point which is

approached quickly from generic initial conditions and where the system experiences

critical slowing down. Along the red line, correlation functions C(p, t) can show scaling

behavior in space and time, e.g., C(p, t) = tαf(tβp), with a universal scaling function

f (cf. also Fig. 3). In the case of prethermalization to a GGE in a (near-)integrable

system, one expects α = β = 0 (' 0) such that the system gets (almost) stuck when

reaching the red line. Instead of ending at the stable thermal fixed point, the red line

could also lead to a partially stable NTFP. In this case, the blue ‘direct thermalization’

lines are replaced by trajectories leading away from the NTFP, e.g., towards a different

final thermal fixed point (see also sketch in the right panel). In this situation, more

general scaling with α, β 6= 0 is expected on the red line, where the algebraic time

evolution nonetheless means slowing down of the evolution (cf. arrows in right panel).

The key question is which types of non-trivial ‘pathways’ such systems can, in

general, take under the influence of conservation laws. In particular for integrable and

near-integrable quantum systems, one expects special relaxation characteristics. It is

then especially interesting to find those degrees of freedom which need to be taken into

account when performing a maximum-entropy analysis of the relaxed states. Generically,

relaxation within a simple kinetic framework is expected to be described by exponential

laws in time, with a rate defining the time scale. In contrast, (near-) integrable systems
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relax in a way that is characterized by at least two time scales. This is due to a

distinction between fast and slow processes, such that ‘prethermalization’ [35, 36] occurs

as a prelude to asymptotic relaxation to a thermal or any other type of equilibrium state.

As will be discussed in more detail in Sect. 2, prethermalization, in most cases

studied so far, has been associated with a fast relaxation to a metastable state in

which much of the phase coherence of the initial state is lost. Often, and in particular

for the experiments described in Sect. 3.3, this process can be traced back to mean-

field dephasing of weakly interacting quasi-particles. In the prethermalized state, bulk

quantities such as the total kinetic energy can already be close to their final equilibrium

values while other observables are not. The latter include, e.g., quasi-particle occupation

numbers fixed by initial conditions, giving rise to the description of the prethermalized

state in terms of a GGE. For the special case of integrable systems for which it is possible

to identify a description in terms of a free field theory, the dephasing of these fields leads

directly to a final steady state. This steady state is the limit of the prethermalized state

for vanishing quasiparticle interactions.

Universal (scaling) dynamics and non-thermal fixed points.— Prethermalization

has first been proposed on the basis of ideas of a renormalization-group flow [35, 36,

40, 41], see Fig. 1 for an illustration. In the wider context of relaxation dynamics,

‘prethermalization’ means the approach of any (partially) universal intermediate state

which is still out of equilibrium with respect to asymptotically long time evolution.

The state being universal means that it can be described mathematically in terms of a

limited set of parameters and/or functions which only depend on a corresponding set of

symmetries obeyed in the dynamical evolution of the state. These characteristics are,

however, independent of the particular physical realization and of the specific initial

configuration resulting from the quench. If the state is only partially universal the

dynamics is dominated by the universal characteristics while non-universal properties

remain depending, e.g., on the particular initial state (also the final thermal state being

partially universal in this respect).

As an example, during the prethermalization stage, measurable correlations could

be well reproduced by assuming the system to be described by a GGE containing a

limited set of conserved operators. These operators are directly related to intrinsic

symmetry properties of the system’s Hamiltonian, while, in contrast, the values of the

Lagrange multipliers pertaining to the conserved quantities are non-universal as they

depend on values of these quantities in the initial state.

Another example is prethermalization to an algebraically-slowly evolving state. For

instance, phase-ordering kinetics arising after a quench across a symmetry-breaking

phase transition could be described in terms of universal distribution functions showing

self-similar coarsening evolution in space and time [42]. The same is true for wave-

turbulent kinetics where the self-similar evolution appears in the form of cascading

transport of e.g. energy between different scales [43], similar to classical fluid turbulence.

Besides slowing-down, the property common to these evolutions is scaling behavior,

with evolution time as scaling parameter. This scaling is reminiscent of equilibrium
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criticality at a continuous phase transition [44–46]: the time evolving system on average

rescales in space with a power of the time parameter, which looks like zooming in or out

the field of view of a microscope in real time. Such scaling and slowing are, to a certain

extent, analogues of the universality in equilibrium critical phenomena in nonequilibrium

systems [42, 47–50]. Recent progress has been made in the context of non-thermal fixed

points [38, 51, 52], see Sect. 2.3 below. The possibility of categorising systems into

generalized ‘universality classes’ associated with possible new critical exponents is a

fascinating prospect and the subject of current research.

In the following we discuss in more detail the recent developments in the conceptual

and experimental studies of prethermalization, GGEs, and universal dynamics in

(near-) integrable quantum-gas systems. In Sect. 2 we extend our summary of the

theoretical status, discussing in particular the connection between prethermalization and

universal dynamics. Experiments on relaxation dynamics in near-integrable systems,

prethermalization and GGEs are the subject of Sect. 3. We close with an outlook on

developments under way.

2. Prethermalization, non-thermal fixed points and universal dynamics

We start by reviewing the theoretical basis for discussing relaxation of quantum systems

described by (near-)integrable models. Important concepts are the GGE resulting

from a pure statistical approach, as well as, on the microscopic dynamical level,

prethermalization, the approach of non-thermal fixed points, and universal (scaling)

dynamics. See also other contributions to this volume [53–60] for more detailed

discussions of the theoretical background.

2.1. Statistical description of the stationary state

2.1.1. (Near-)integrable quantum systems Integrability and its consequences have been

crucial for understanding the process that inhibit or allow thermalization in classical

mechanics. In one of the first numerical experiments, Fermi, Pasta, and Ulam studied

the evolution of a chain of harmonic oscillators with non-linear couplings thereby

observing quasi-periodic instead of ergodic behavior. This surprising result can be

ascribed to the integrability of the model, which allows for quasi-periodic motion instead

of thermalization [61]. Integrability of classical model systems results from the existence

of a full set of conserved quantities, which restrict the evolving system to a toroidal

sub-region of the total phase space. The above findings have ultimately led to the

development of chaos theory, which became the basis for the understanding of classical

thermalization [62].

In quantum systems the meaning of integrability is less clear [63]. Different

definitions that have been used include the existence of a complete set of algebraically

independent mutually commuting conserved operators [64] (with the flaw that it is,

according to the spectral theorem, fulfilled by any hermitian Hamiltonian as one could
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simply take the projectors on the energy eigenstates [63]). Other definitions are

based on the equivalence of the system to a set of independent harmonic oscillators,

on the occurrence of non-diffractive scattering processes [65], or on the existence of

a Bethe-Ansatz or otherwise known exact solution [66, 67]. The latter criterion of

‘integrability’ does not necessarily have intrinsic validity but, nevertheless, usually

implies the properties required by integrable systems. Examples of quantum integrable

models under these criteria are the Lieb-Liniger model of N point-interacting bosons on

a line [68, 69], the one-dimensional Hubbard model [70], and variants of the Heisenberg

model [66]. Note, however, that the above criteria are not one-to-one identical implying,

e.g., that non-integrable models can nonetheless be analytically solvable [71]. As will

be discussed below, in the context of prethermalization, it is the number of spatially

(quasi-)local conserved charges which appears to matter.

The question whether and how quantum systems thermalize has regained much

impetus through ultracold atomic gases described by (near-)integrable mathematical

models. A first explicit demonstration of a strongly interacting one-dimensional Bose

gas not showing any thermalization over a period corresponding to many collision times

was delivered in the experiment by Kinoshita et al. [2]. Their system is in principle

described by the integrable Lieb-Liniger (LL) model [68, 69]. In the specific experimental

environment, it is, however, expected to become weakly non-integrable due to the

presence of the transverse degrees of freedom and the additional longitudinal harmonic

trapping potential. Details of this experiment are discussed in Sect. 3. Previous studies

had demonstrated the applicability of a description in terms of the hard-core or Tonks-

Girardeau limit [72] of the LL model [73, 74]. In this limit, the model maps to a system of

non-interacting spin-less fermions, which is analytically solvable and due to the absence

of scattering does not thermalize. These experiments sparked a new research direction,

asking whether the time evolution under the constraint of conserved quantities could at

all lead to a thermalized final state [27–29].

2.1.2. The generalized Gibbs ensemble Despite following a strictly unitary evolution,

generic isolated, non-integrable quantum systems are now expected to exhibit

thermalization in accordance with classical experience. If only the total energy is

conserved, one observes chaotic behavior and thermalization, i.e., local observables

relax to a canonical or Gibbs ensemble with an effective temperature [27–32, 75–93]. A

common picture thereby is that a finite region of a system is thermalized by interaction

with the rest acting as a bath. The question, however, why a non-integrable quantum

system, in contrast to integrable ones, can be successfully described by such a small

number of conserved quantities is a still a matter of intense research.

Despite the lack of a unique definition of integrability, it is now generally accepted

that in the quantum case, as in the classical, additional conserved quantities may

slow down if not even inhibit thermalization. However, even in the absence of strict

thermalization, relaxation and the emergence of thermal-like properties are still possible.

Reviving the statistical arguments by Jaynes [24, 25], Rigol et al. demonstrated, for the
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exactly solvable case of hard-core bosons on a lattice, that relaxation to an equilibrium

state occurs. This equilibrium state carries more memory of the initial conditions

than simply energy and particle number [27–29]. They conjectured that the presence

of non-trivial conserved quantities puts constraints on the available phase space of a

system, which also strongly affect the dynamics: Consider an initial state |Ψ(0)〉 of a

translationally invariant system described by an integrable model with Hamiltonian

Ĥ. Then, stationary n-point correlation functions of local operators Ôa(x) in the

thermodynamic limit are given by a generalized Gibbs ensemble (GGE),

lim
t→∞
〈Ψ(t)|

n∏
a=1

Ôa(xa)|Ψ(t)〉 = Tr

[
ρ̂GGE

n∏
a=1

Ôa(xa)
]
, (1)

with |Ψ(t)〉 = exp(−iĤt/~)|Ψ(0)〉 and

ρ̂GGE =
1

Z
exp

(
−
∑
m

λm Îm
)
. (2)

Here Îm denotes a full set of conserved quantities, Z = Tr exp(−∑m λmÎm) is the

partition function and m is a positive integer. A separate Lagrange multiplier λm
is associated with each of the conserved quantities. These numbers are obtained by

maximisation of the von Neumann entropy S = −Tr[ρ̂GGE ln ρ̂GGE], under the condition

that the expectation values of the conserved quantities are fixed to their initial values

in the thermodynamic limit,

Tr[ Îmρ̂GGE ] = 〈Îm〉(t = 0). (3)

The emergence of such a maximum-entropy state is not in contradiction to a unitary

evolution according to quantum mechanics [25]. It rather reflects that the true quantum

state is indistinguishable from the maximum-entropy ensemble with respect to a set of

observables [30]. It was pointed out in [94, 95] that for the GGE conjecture to hold it

is essential to restrict the observables to finite subsystems. Hence, the GGE describes

the long-time limit of sufficiently local observables.

The GGE is a direct generalization of the well-known thermodynamical ensembles.

In cases where only the total energy and the particle number are conserved, it reduces

to the grand-canonical ensemble, where temperature (λ1 = β = 1/kBT ) and chemical

potential (λ2 = −βµ) play the role of the respective Lagrange multipliers [26]. We

emphasize that in the cases described here, in most of the basic examples, there is

only one species of undistinguishable particles such that there is no natural number

conservation arising from intrinsic particle properties. The conserved quantities can,

e.g., measure functions of the fractions of particles in different collective motional

states (e.g. quasiparticle momentum modes). More generally, they can also be given by

correlations of higher order in some fundamental field describing the system’s properties.

A question not yet fully resolved is precisely which conserved quantities Îm need

to be included in the definition of the GGE. The current belief is that they should be

constructed out of local or quasi-local conserved operators [53, 57], i.e. Îm =
∑

j im(j),
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where the sum runs over, e.g., the sites of a lattice, and im(j) acts non-trivially only

around the site j if the charge is local, while it has exponential tails if it is quasi-local.

Consider the case of a free theory, in which Fock mode operators âp, â
†
p diagonalize

the Hamiltonian, Ĥ =
∑

p ωpâ
†
pâp, with mode frequencies ωp. Conserved quantities may

then be written in the additive form Îm =
∑

p f
(m)
p â†pâp with a set of scalar functions

f
(m)
p . (Note that in free models, the above local charges are linearly related to the mode

occupation operators â†pâp such that either of them can be used to define the GGE, with

Eq. (3) applying to the densities.) While total energy and particle number are obtained

with fp = ωp and fp = 1, respectively, further conserved quantities of the free theory

are, e.g., simply the occupation numbers themselves, f
(m)
p = δpm. In this case, time

evolution is identical to dephasing, leading to stationary values of operators on finite

subsystems.

In the case of interacting theories, however, the question of relevant conserved

quantities is not yet fully settled [96]. The question which are the relevant conserved

quantities has been discussed intensely [97–102], in particular the question whether

or not quasi-local conserved operators are required in the construction of GGEs

[53, 57, 103–105].

The GGE is now believed to be the final state of relaxation for generic quantum

integrable systems [27, 30–34, 53–57, 60, 87, 93–95, 97–133]. These studies focused

on many different models and theories, including the Luttinger model [55, 106–

108], hard-core bosons in one dimension [27, 29, 109–112], conformal field theories

[54, 87, 93], the infinite-dimensional Falicov-Kimball model [113], the Lieb-Liniger model

[56, 98, 102, 114–120], the quantum Ising chain in a transverse field [57, 87, 103, 108, 121–

125], and Heisenberg spin chains [53, 95, 97, 99–102, 104, 108, 126–128]. We note that

within the conditions set by integrability, various effective ‘temperatures’ have been

proposed on the basis of static [86, 87, 134, 135] and dynamic [136, 137] properties.

These definitions, however, in general depend on the details of the initial conditions.

We note that ergodicity may also be broken due to many-body localization [138–

140]. Hence, generalising the concept and taking into account the influence of the

external potential, the GGE has also been suggested as a description for such many-

body localized states [58, 140].

As will be discussed in detail in Sect. 3, dynamics, relaxation and prethermalization

of near-integrable quantum systems have been studied extensively in experiment [2, 4,

5, 8, 9, 17, 141, 142]. These experiments immediately lead to the important question

what happened if certain quantities were only approximately conserved. It has been

conjectured that in this case an isolated system will first relax to a metastable state

described by a GGE [143–158]. In the context of near-integrable systems, this behavior

has been related to prethermalization (cf. Sect. 2.2 below; it can also be regarded as

an alternative definition of prethermalization). Eventual thermalization happens, in

contrast, on a much longer time scale [159]. It thereby remains unclear in which way

and how far integrability has to be perturbed to allow for actual thermalization [157].
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Figure 2. Prethermalization. (a) Time evolution of Fermion occupation number

n(f)(t; p) in a low-energy quark-meson model, for three different momentum modes as

a function of time. The evolution is shown for two different initial conditions with the

same energy density. (b) The ratio of pressure p over energy density w as a function

of time. The inset shows the early stages for two different couplings and demonstrates

that the prethermalization time is independent of the interaction details. Adapted from

[36]. Note the logarithmic scale for times t ≥ 30m−1. (c) Time evolving momentum

(p) spectrum of a uniform dilute 1D Bose gas after an interaction quench heating

the gas, shown for the lowest 32 modes. A fast short-time kinetic prethermalization

period is followed by a long quasi-stationary drift to the final equilibrium distribution.

(d) Momentum and time dependent temperature variable Θ(t; p) obtained by fitting

the distribution (c) to n(t; p) = [exp{(~ω(p) − µ)/kBΘ(t; p)} − 1]−1, at different

times tν , with chemical potential µ ensuring ω(p) to be gapless. As long as Θ(t; p)

strongly depends on p, a generalized Gibbs ensemble applies. Only at very large times,

Θ represents the temperature of the sample. Note that the chosen approximation

introduced an integrability breaking effect. The inset shows the energy contributions

becoming stationary after prethermalization. Adapted from [85].

This question is of strong conceptual interest, in particular as the related problem has

been very well studied in classical mechanics. In that case, the famous Kolmogorov-

Arnold-Moser (KAM) theorem quantifies the effect of a weak non-integrability on the

dynamics [30]. No corresponding theorem is known in the quantum case [154].

2.2. Prethermalization

The statistical maximum-entropy approach does not answer the fundamental question,

how the respective many-body states are actually reached given a certain microscopic
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model. As discussed in the previous section, near-integrable models, which show a wide

separation of relaxation time scales, are now understood to approach a prethermalized

quasi-stationary state at relatively short times, long before final thermalization.

‘Prethermalization’ has become a collective term used for a number of at first sight

apparently different relaxation phenomena. All these phenomena have in common that

they appear in the transient behavior of quantum systems relaxing from a far-from-

equilibrium initial state. The emerging intermediate state is determined by a number of

conservation laws, which are relevant for the observable used and within the resolution

limit of the experiment, and are usually more than total energy and particle number.

The term ‘prethermalization’ was originally coined by Berges, Borsányi, and

Wetterich [35, 36], see also [40, 41, 78] for other precursor work. Besides the fundamental

point of view these studies originated in the context of early-universe dynamics,

relativistic heavy-ion collision experiments as well as the then upcoming quantum gas

experiments.

In cosmology, it is not fully resolved how particles are formed during the reheating

after inflation. In heavy-ion-collision physics, there remain discrepancies in the

understanding of how a quark-gluon plasma forms out of the colliding nuclei and how the

experimentally observed short equilibration times of the dense matter produced in the

collision can be explained. In view of this problem, in [36], a very rapid establishment

of an equation of state (pressure over energy density) was proposed to occur long before

thermal, chemical equilibration sets in. This was found to be due to bulk quantities such

as the mean kinetic and potential energy equilibrating to their final thermal values much

faster than, e.g., the single-particle distribution functions assume the late-time Bose-

Einstein or Fermi-Dirac form. Dephasing of initially coherently superimposed energy

eigenmodes was identified as the reason of this ‘prethermalization’. Three relevant time

scales were identified to characterise the generic relaxation of a quantum system from a

far-from-equilibrium initial state:

(I) Kinetic prethermalization sets in very rapidly as a consequence of the loss of

phase information, i.e., of coherence between modes with different eigenfrequencies,

see Figs. 2a, c. This dephasing is independent of the non-linear interactions between

quasiparticles. Defining a kinetic temperature in terms of the total mean kinetic energy,

it is found that this temperature can take on its near-thermal value already after kinetic

prethermalization, see inset of Fig. 2d. As the total energy is conserved, this is also true

for the potential energy stored in the interactions between particles (Figs. 2b, d).

(II) Loss of details of the initial conditions occurs on a somewhat larger time scale,

which, however, can still be much smaller than the final equilibration time. During

this period, different initial conditions lead to transient states which show similar

correlations, provided conserved quantities such as energy and particle number are the

same. This applies, e.g., to mode occupation numbers of quantum gases, cf. Fig. 2a.

These need to be redistributed, which takes longer than dephasing, but not yet the long

time needed to assume their final thermal values.
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The loss of memory generally depends on the interaction strength in a non-

universal manner. Despite the apparent relaxation, the system can be far from having

reached the final equilibrium state. If number conservation is absent and the dispersion

ω(p) is known, one may define momentum-dependent mode ‘temperatures’ Θ(t; p).

This is done by fitting the transient correlations such as the time-dependent single-

particle momentum distribution to their expected final canonical form. For example,

n(t; p) = {exp[(~ω(p)− µ)/kBΘ(t; p)]− 1}−1 for an ideal Bose system, see [35, 36] and

Fig. 2d, also for parameter definitions. Then, a momentum dependence of Θ(t; p) signals

that final thermalization has not been reached yet. Such a non-thermal distribution is

equivalent to the system being described by a GGE.

(III) Thermalization or long-time equilibration leading eventually to detailed

balance [26, 160, 161]. This requires a suitable collisional redistribution within the

particle spectra and can take much longer than the first two steps. It can also be

partially or completely inhibited in integrable quantum systems due to the large number

of conserved quantities, and only allowed through weak integrability breaking effects.

If the system consists of more than one species of particles, chemical equilibration can

define another time scale in the overall process [36, 162]. In the example shown in

Fig. 2c, stages II and III coincide.

As compared to the near-integrable systems discussed in Sect. 2.1.1, prethermaliza-

tion in the above high-energy-physics examples seemingly does not rely on integrability

of the underlying model. However, the same principles apply there. The near-integrable

dynamics is given by the early-time mean-field dephasing evolution of the interacting

quantum fields, cf. also [143–158]. The fast time scale of dephasing is set by the slowest

in the spectrum, i.e., by the inverse rest mass. As long as dephasing dominates the

weak non-linear interactions between quasiparticles, or, e.g., the thermalizing processes

have not yet reached resonant amplification [36], the dynamics is nearly Gaussian and

thus nearly integrable. This implies that the occupation number of any relevant field

mode which is set to its value by the initial quench is an approximately conserved quan-

tity. Note that in more than one spatial dimension, isotropization may play another

important role within the early evolution starting from anisotropic initial conditions

[163].

Studies of the non-linear Schrödinger model of one-dimensional dilute Bose and

Fermi gases by means of non-perturbative functional-integral techniques have shown a

similar separation of time scales [83, 85, 164]. They clearly showed kinetic pretherma-

lization as an early-time dephasing period. After this dephasing, the total kinetic

and potential energies were found to be of approximately equal size and close to their

final values. This behavior is reminiscent of the virial theorem for harmonic-oscillator

type potentials and thus provides an additional signature that the system during the

prethermalization stage essentially represents a series of decoupled harmonic oscillators.

First experimental studies of prethermalization were performed by Gring et al. [5],

see also [6, 8, 9, 22, 141, 142], splitting a one-dimensional condensate into two copies and

measuring differences in the subsequent dynamics of the two halves. Details of these
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experiments are discussed in Sect. 3. In Ref. [165, 166], the dephasing kinetics of the

system realized in the Vienna experiment [5] were analysed by use of the Tomonaga-

Luttinger description of the phase dynamics, demonstrating that the dephasing in this

case leads to a thermal-like state. In [142], the prethermalization evolution of noise

and correlation was modelled as an Ornstein-Uhlenbeck and thus Gaussian stochastic

process.

As reviewed already in the previous section, this work sparked a lot of new

theoretical activity. This gave rise, in particular, to a number of more detailed studies

on the relaxation of integrable systems [27, 30–34, 53–57, 60, 87, 93–133] and in

particular on the effect of weak to strong integrability breaking effects [143–157]. The

picture emerging from these studies is that a near-integrable system first relaxes to a

‘prethermalization plateau’, i.e., to a metastable state described by a GGE defined by

the initial state where it resides the longer the closer it is to integrability.

We note that during prethermalization, correlations are established locally,

spreading through the system in a light-cone-like fashion. This was put forward for

conformal field theories [86, 87], see also the article by Calabrese and Cardy in this

volume [54]. It was shown that two-point and higher-order correlation functions of local

observables, whose arguments lie in a finite region of size l, become stationary at a

time on the order of t ∼ l/2c when the region fully falls into the light cone with apex

centered at t = 0. This ‘horizon effect’ reflects the fundamental Lieb-Robinson bound

[167] prescribing that information can spread only at a finite group velocity c. The effect

was studied numerically [168, 169] and in experiment [7, 15].

In a different context, prethermalization has been potentially realized in dynamics

where magnetisation domains and defects are being created following a quench in

a low-dimensional spinor Bose-Einstein condensate [10–12, 170, 171]. This type of

prethermalization [172] will be further discussed in the context of non-thermal fixed

points and universal dynamics in Sects. 2.3 and 3.5.

2.3. Non-thermal fixed points and universal dynamics

The observation and description of prethermalization and GGEs leads to the question

to what extent these phenomena are universal. It can be argued that they can be

described within the more general framework of non-thermal critical states arising within

a renormalization-group approach to time evolution, see Fig. 1 for an illustration.

These ideas draw from the concept of universal critical scaling of correlation

functions in equilibrium, which has been very successful in classifying and characterising

matter near continuous phase transitions [44–47]. Within the renormalization-group

approach one basically looks at a physical system through a microscope and compares

the pictures seen at different resolutions with each other, i.e., at different magnifications

of the lens. When looking for critical scaling, one takes the correlations in, e.g., the

spatial patterns seen at a particular resolution and continuously changes the magnifica-

tion of the lens, watching how the correlations change. Near the phase transition,
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correlations ‘look’ the same no matter which resolution they are observed with.

The reason for this observation is that the correlations are in fact self-similar under

changes of the microscope resolution. Shifting the resolution, set by a scale parameter s,

to different spatial scales causes the correlation function C(x; s) to be rescaled according

to C(x; s) = sζf(x/s). Hence, whatever the resolution s is, the correlations can be

written solely in terms of the universal exponent ζ and the universal scaling function f .

If the above ’renormalization-group flow’ of correlations under a change of the scale

parameter s does not change C by any means, the scaling function f must have reached

a pure power-law behavior f(x) ∼ xζ as is seen from the above scaling relation. This

situation is called a fixed point of the flow.

These ideas have been extended to the time evolution from some non-equilibrium

initial state, where the time t takes the role of the scaling parameter s. Thereby,

increasing time t can mean both, reducing the microscope resolution (resolving

increasingly larger spatial scales) or increasing it. A non-thermal fixed point is a

fixed point as defined above, in a time-evolution scenario where t takes the role of

s. Functional renormalisation-group approaches for describing this real-time scaling

evolution were presented in [173–175].

In realistic physical situations, a fixed point is reached only approximately such

that C(x; s) = sζf(x/s) holds but f is not a pure power-law, i.e., it retains information

of scales such as a correlation length ξ. Near a non-thermal fixed point, one has

C(x, t) = tαf(t−βx), with two universal exponents α and β. Hence, the correlation

length would change as a power of time, ξ(t) ∼ tβ. The time evolution taking power-law

characteristics is equivalent to critical slowing down.

Berges, Rothkopf, and Schmidt proposed that in the reheating of the post-

inflationary universe non-thermal fixed points could arise, which excessively delayed

thermalization [38, 174]. They manifest themselves in the above universal scaling

behavior in time [176], see also [51, 52] for more recent reviews.

The theory of non-thermal fixed points extends the concepts of equilibrium and

diffusive near-equilibrium renormalization-group theory (see [47] for a seminal review)

to the real-time evolution of far-from-equilibrium systems. Critical scaling phenomena in

space and time are strongly reminiscent of turbulence in classical fluids [43, 177] as well

as superfluids [178, 179]. For example, according to the seminal theory of Kolmogorov,

eddies created in a fluid break down into successively smaller eddies until they become

of the size set by dissipation of kinetic energy into heat. This energy cascade to smaller

and smaller scales builds up a non-equilibrium steady state.

The concept of non-thermal fixed points also naturally includes relaxation dynamics

which exhibits coarsening and phase-ordering kinetics [42] following the creation of

defects and nonlinear patterns, e.g., in a quench across a phase transition. In the

following, this is illustrated by an example of a non-thermal fixed point approached

after a quench in an ultracold Bose system. The example shows in particular that

there are more general prethermalization phenomena expected beyond the realm of

near-integrable quantum systems in one spatial dimension.
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Figure 3. Self-similar scaling in time and space close to a non-thermal fixed point.

The sketch indicates the evolution of the single-particle radial number distribution

n(k, t) as function of momentum k of a Bose gas for two different times t (solid

lines). Sketch after Ref. [176]. Starting from the extreme initial distribution n(k, t0)

(dashed line) produced, e.g., by a strong cooling quench, a bidirectional redistribution

of particles in momentum space (arrows) occurs. This builds up a quasicondensate

in the infrared while refilling the thermal tail at large momenta. The particle

transports towards zero as well as large momenta is characterized by self-similar

scaling evolution in space and time, n(k, t) = (t/t0)αn([t/t0]βk, t0), with characteristic

scaling exponents α, β, in general different for the two directions. The infrared

transport (blue arrow) conserves particle number quasi-locally in momentum space

while energy is conserved in the redistribution of short-wavelength fluctuations (red

arrow). Note the double-logarithmic scale. In a 3D dilute Bose gas with density ρ,

particle mass m, and s-wave scattering length a, the condition for an initial state

which allows approaching the non-thermal fixed point is (~Q)2/2m ' |µ| ' gρ. Here,

g = 4π~2a/m, i.e. Q ' kξ = (8π~2aρ)1/2 is on the order of the inverse healing length.

Hence, if no significant zero-mode occupation n(k = 0, t0) is present, the respective

occupation number at Q is on the order of the inverse of the diluteness parameter,

n(Q, t0) ∼ (ρa3)−1/2.

Consider the dynamics following a strong cooling quench in an ultracold Bose

gas, leading ultimately to the formation of a Bose condensate, see Fig. 3 as well as

[39, 176, 180, 181]. Qualitatively this proceeds as follows. In a closed system, a cooling

quench, removing particles with the highest energies, quite generically leads to a non-

equilibrated particle distribution n(k, t) (dashed line in Fig. 3). This distribution, below

some energy scale ε0, exceeds the thermal equilibrium occupation number determined

by the mean energy per mode [182–185]. Energy and momentum conservation then

imply a bi-directional redistribution of particles: while a few particles are scattered to

high-momentum modes and carry away a large fraction of the excess energy associated

with this over-occupation, the majority of the particles is scattered to lower momenta

[39, 176, 180]. The redistribution is indicated by the arrows in Fig. 3.

Semiclassical simulations of the Gross-Pitaevskii model in three dimensions showed

that this behavior is associated with the creation, dilution, coarsening and relaxation of a
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complex vortex tangle [39, 52, 186, 187], corroborating the phenomenological arguments

of Ref. [188]. Specifically, the shift of the infrared part of n(k, t) to larger spatial scales

(i.e. smaller momenta) reflects the decay in the number of defects [189–192] and thus

the increase in mean inter-vortex distances. This diluting ensemble of vortices can be

considered as a type of superfluid (quantum) turbulence.

The resulting inverse transport is described by characteristic non-thermal scaling

functions, separately in the low- and high-energy regions, as sketched in Fig. 3. These

shift self-similarly as time proceeds (note the double-log scale). For the momentum-

space occupation number the scaling relations in time and space translate to n(k, t) =

(t/t0)αn([t/t0]βk, t0), with universal exponents α and β. For a dilute Bose gas in d = 3

dimensions, possible scaling exponents have recently been numerically determined to be

α = 1.66(12), β = 0.55(3), in agreement with the analytically predicted values, α = βd,

β = 1/(2− η), when assuming η ' 0 [176].

The transport of particles towards the infrared sketched in Fig. 3 eventually leads

to the formation of a Bose condensate. In the presence of the rather stable turbulent

tangle of vortices, this condensation proceeds, however, in critically slowed manner,

meaning that the condensate mode builds up with a smaller power-law exponent than

would be the case without vortices present, as discussed in [176, 189].

The above scenario of slowed relaxation in the presence of defects represents an

example of phase-ordering kinetics near a non-thermal fixed point. Phase-ordering

kinetics in general describes the growth of order through domain coarsening when a

system is quenched from a disordered into a broken-symmetry phase [42]. Thereby, a

central role is taken by the dynamical exponent z = 1/β. Different such exponents, not

contained in the classes considered usually [42] are found at later times of the vortex-

dilution process [189], indicating that the concept of non-thermal fixed points can lead

beyond usual phase-ordering kinetics.

Non-thermal fixed points [38, 174] were discussed in various contexts, including

strong wave turbulence in low-energy Bose gases [193], in relativistic scalar models

[194, 195], as well as abelian [196] and non-abelian gauge theory [197] They were

furthermore related to classical Burgers turbulence [175]. Early proposals of non-thermal

fixed points can be found in [40, 41].

Besides vortices in 3D gases, other types of (quasi-) topological and non-topological

but strongly non-linear excitations can play a role in the manifestation of the scaling. For

example, solitons can form ensembles of nonlinear quasiparticles in a one-dimensional

system [198]. In two spatial dimensions, Onsager-type [199] ensembles of logarithmically

interacting vortices and antivortices determine the behavior near the non-thermal fixed

point [189]. The latter type of systems has recently been explored extensively in

experiment [200–202] and theory [203–213] investigating the role of quantum vortices

in 2D dynamics and studying connections with aspects of two-dimensional classical

turbulence. Further examples of non-thermal fixed point scaling have been discussed

for pseudo-spin and spinor gases [214–217], holographic superfluids [218], and gauge

systems [196, 219]. The latter indicate that such excitations may also be present in the
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case of turbulent prethermalization in a gluon plasma produced in heavy-ion collisions

[197, 220–223].

The above non-linear excitations indicate that near non-thermal fixed points, it

will be of interest to study the special role of the spectral properties encoded in the

spectral or response function of the system. Note that out of equilibrium, the spectral

and statistical correlations are in general no longer related by a fluctuation-dissipation

relation [224]. Hence, response functions can be studied in view of prethermalization

and thermalization [134–137, 164, 225] and should give important insight also concerning

non-thermal fixed points [38, 174, 193], coarsening dynamics [226, 227] after quenches

near criticality [228].

Turning back to 1D near-integrable quantum systems: Prethermalization in such

systems, meaning the approach of a state well described by a GGE, represents a special

case of a Gaussian non-thermal fixed point [35, 40, 41]. This means that the effective

interaction coupling of the prethermalized modes almost vanishes and the evolution

essentially becomes that of a non-interacting system, usually describable as nearly free

quasiparticle modes. Note that the conserved quantities are encoded in the non-universal

scales of this partially universal state. For any of these scales, the respective α and β

are close to zero such that there is no further time evolution of the scale. When the

system finally thermalizes, it departs from the fixed point, and the time evolution can

become non-universal and non-scaling.

Dynamics near non-thermal fixed points goes beyond the mere dephasing of the

fundamental quasiparticle modes as discussed in the previous sections. Non-thermal

fixed points address a wider spectrum of prethermalization phenomena: Broadly

speaking, in the cases where non-linear excitations are involved, the degrees of freedom

which become independent and decorrelate in the prethermalization stage, first have

to emerge in the early non-linear time evolution, cf. also [226, 227, 230–233] and

Sect. 3.5 in the context of quenches near an equilibrium critical point. As a consequence,

prethermalization may be seen as the concept overarching all these phenomena.

We however also note that wave-turbulent cascades could be captured within the

concept of a GGE, with conserved operators defined through universal scaling functions

[229]. In this case, GGEs have been defined which are applicable for driven stationary

wave-turbulent states and thus do not take into account the self-similar time evolution

governed by the exponents α and β.

Scrutinizing these concepts in experiment and deepening their mathematical

foundations is an exciting task for future research. Non-thermal fixed points so far have

not been identified in experiment. However, theoretical work suggests that they may

have played an important role in a number of situations where the approach of a thermal

state has seemingly been suppressed, e.g., in the spinor-gas experiments discussed in

Sect. 3.5.
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3. Experiments: Relaxation dynamics in near-integrable systems

The experimental study of relaxation dynamics requires well-controlled and truly

isolated quantum systems. In this context, ultracold neutral atoms provide unique

opportunities because of the large set of available experimental methods to isolate,

manipulate and probe these systems [1, 22, 234].

In the following, we will highlight a series of experiments in which bosonic gases

were strongly confined in two spatial dimensions, effectively restricting their motion

to the single remaining dimension. This realizes a system that is very close to the

integrable Lieb-Liniger gas [68, 69, 235]. The systems are not perfectly one-dimensional

because the two tightly confining directions are technically still present and are felt by

the atoms [236, 237]. Controlling the influence of the remaining transverse degrees of

freedom and of the longitudinal trapping potential provides an ideal setting to study

the relaxation in near-integrable quantum systems.

We note that this restricts our discussion to a particular aspect of the large number

of non-equilibrium phenomena that can and have recently been explored using cold

atoms. For a broader overview of the rapid experimental progress in this field we refer

the reader to more general reviews [1, 22, 30–32, 63, 238].

3.1. Realizing a near-integrable system with a one-dimensional (1D) Bose gas

The experimental realization of a one-dimensional (1D) Bose gas follows the standard

procedure used for the production of Bose-Einstein condensates, employing laser cooling,

trapping, and evaporative cooling [234]. In typical experiments, the cold quantum

degenerate gas of atoms is harmonically confined in all three spatial dimensions. To

create a situation where the gas is effectively 1D, a very strong anisotropy needs to

be realized in a way that the transverse confinement dominates all other energy scales.

In the following, we assume the transverse confinement to be cylindrically symmetric

and characterized by a trapping energy ~ω⊥. The size of the transverse ground state is

l0 =
√
~/mω⊥, where m denotes the atomic mass. To realize a one-dimensional system,

the temperature T and the interaction-determined chemical potential µ have to fulfill

the conditions kBT < ~ω⊥ and µ < ~ω⊥ [237, 239]. This is equivalent to stating that

the lowest transverse excited states in the trap have a negligible occupation, i.e., that

the trapped quantum gas is transversely in the ground state. It is interesting to note

that, for a weakly interacting Bose gas, the essential criterion to achieve, µ < ~ω⊥,

is in fact independent of the transverse confinement scale ω⊥. It is fulfilled whenever

2asn1D < 1, where as is the atomic s-wave scattering length and n1D is the linear density.

For example, in typical experiments with 87Rb (as = 5.3 nm), this requires n1D < 100

atoms/µm.

Such strongly anisotropic geometries can be realized using either magnetic

microtraps on atom chips [240, 241], or optical dipole traps [242], or with optical lattices

[243]. The first two allow implementations of single 1D systems, the latter realize many,

nearly identical 1D systems in parallel.



Prethermalization and universal dynamics in near-integrable quantum systems 19

time

z(
µ
m
)

a b

Figure 4. Quantum Newton’s cradle realized with a 1D Bose gas [2]. (a) Long-lived

oscillations in momentum space demonstrate the absence of thermalization in this

near-integrable system. A period of τ = 13 ms is shown. (b) Examples of expanded

momentum distributions for γ = 4 and three different evolution times t = τ = 34 ms

(green curve), t = 15τ (blue), t = 30τ (red), which clearly reveal a non-thermal nature.

Figure adapted from Ref. [2].

In a 1D system, all transverse degrees of freedom are effectively frozen out and

excitations can only propagate along the longitudinal, weakly confining direction. For

bosons, this leads to markedly different behavior than in three-dimensional (3D) Bose-

Einstein condensates. In a 3D BEC, only the lowest momentum mode is macroscopically

occupied as the gas is cooled to lower and lower temperatures [234]. In a 1D confinement,

the scaling of the density of states ρ(E) ∝
√
E leads to a large occupation of many

momentum modes. This is the origin of strong density and phase fluctuations, which

prevent the creation of long-range order [244, 245] and lead to a more complex set of

possible equilibrium quantum states [239]. The key parameters determining the state

of the system are the temperature T and the interaction parameter γ = mg1D/~2n1D

where g1D = 2~2as/ml0 is the 1D interaction strength. For typical temperatures T

reached in experiments and γ � 1 the system is a strongly interacting gas of hard-core

bosons (Tonks-Girardeau regime) [73, 74, 246, 247]. For γ � 1 the gas is a weakly

interacting quasi-condensate where density fluctuations are suppressed but the many

occupied momentum modes lead to strong phase fluctuations.

3.2. A quantum Newton’s cradle

The first result visualizing how integrability influences the relaxation in such a system

was the experiment by Kinoshita et al. [2]. Atoms were trapped in an optical lattice

providing strong confinement in two transverse directions, realizing a 2D array of 1D

Bose gases. Changing the strength of the radial confinement allowed for a tuning of

γ all the way from weak to strong interactions [74]. By applying an optical phase

grating [248], a superposition of two longitudinal momentum states with opposite sign

was imposed on the trapped gas. Given these initial conditions, the atoms started

to oscillate in the trap, much like a Newton’s cradle. These oscillations were directly

imaged, and revealed a persistent non-thermal distribution.
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Examples of the main observations reported in [2] are shown in Fig. 4. The

images provide striking evidence of the momentum distribution remaining non-thermal

even after thousands of atom-atom collisions for all realized interaction strengths.

Remarkably, when creating the same initial state in a 3D gas without the optical lattice,

the system relaxed back to a thermal momentum distribution within a few collisions.

The experiment thus confirmed that integrable or near-integrable 1D systems need

extremely long timescales to thermalize, while the same system thermalizes immediately

when the dynamical constraints are released. In principle, the near-integrability should

also lead to a very slow thermalization in the constraint case, in analogy with the concept

of long-time equilibration introduced in Sect. 2.2. This could shed light on the fate of the

KAM theorem in quantum mechanics (cf. Sect. 2.1.1). However, technical imperfections

of the experiment that become relevant on long time scales have, so far, prevented any

clear observation of this behavior [158, 249–251].

3.3. Relaxation and prethermalisation of a pair of 1D Bose gases

The intricate microscopic dynamics that result from the interplay of relaxation,

thermalization and integrability were observed in a series of experiments in Vienna [5–

7, 9, 252]. In these experiments, a 1D Bose gas was created using a single magnetic

microtrap on an atom chip [240, 241, 253].

Note that experiments with single systems allow for measurements that are

conceptually different from the ones performed with ensembles of 1D systems in an

optical lattice. In the latter, individual 1D gases slightly differ, e.g., in atom number,

and because they are all realized and probed in parallel only ensemble averages are

accessible. Due to the central-limit theorem one obtains Gaussian distributions. In

contrast, only single systems allow exploring the full probability distribution functions

of a quantum observable [141, 254] (for theoretical descriptions see [165, 166, 255, 256]).

Moreover, correlation functions and cumulants which are of higher order than mean

values and variances become accessible [257]. These methods give significantly deeper

insight into the underlying quantum states and can thus provide comprehensive details

about the many-body dynamics and the resulting relaxed states.

3.3.1. Transverse splitting of a single 1D gas The atom chip microtrap used in the

experiments enabled a precise dynamical control over the trap. In this way, the initial

harmonic transverse confinement could be transformed into a fully tunable double-well

potential by applying strong radio-frequency (RF) dressing of the magnetic sub-states

of the atoms [258, 259]. This split the gas into two almost identical halves, realizing

a quench and creating a non-equilibrium state characterized by the quantum noise

introduced by the splitting.

This situation is best illustrated by analyzing a splitting process that is performed

fast compared to the longitudinal dynamics so that tsplit < ξh/c = ~/µ. Here, ξh = ~/mc
is the healing length, and c =

√
µ/m is the speed of sound. In this limit, no correlations
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Figure 5. Outline of the Vienna experiments described in [5, 8, 9, 22, 142]. (a,b)

A phase fluctuating 1D quasi-condensate is coherently split, creating two 1D gases

with almost identical phase profiles ϕL(z) and ϕR(z) (represented by the solid black

lines). The gases are then allowed to evolve in the double-well potential for some

time tevol, which leads to strong fluctuations in the local phase difference ∆ϕ(z) and

a decrease of the phase correlation length λϕ. The question the experiment aims at

answering is whether and how this dynamical state reaches the thermal equilibrium

state of two independent quasi-condensates. In these, the phase difference between the

1D gases fluctuates strongly, and the correlation length λthermal is determined by their

temperature and density. (c) The phase difference ∆ϕ(z) between the two 1D gases

is probed through time-of-flight matter-wave interference of the two gases. The local

relative phase is directly transformed to a local phase shift of the interference pattern.

This relative phase shift or the contrast C(L) of the axially integrated interference

pattern can then be used as a direct measure of the strength of the relative phase

fluctuations. Figure adapted from Ref. [5].

can build up along the axial direction, and the splitting happens independently at

each point in the gas. The process can be intuitively pictured as a local beam splitter

where each atom is independently put into the left or right half of the new system

with probabilities pL and pR = 1 − pL, respectively. The corresponding probability

distribution for the local number of particles N on either side is therefore binomial.

These splitting fluctuations cause a locally fluctuating interaction energy and hence set

the system out of equilibrium.

The outline of the experimental scheme is shown in Fig. 5. After the splitting

quench the system was let to evolve for a variable time. Subsequently, all trapping

potentials were switched off, and the gases rapidly expanded transversally. This reduced

the internal interaction energy to zero on a timescale ∼ 1/ω⊥ such that the gas

expanded mostly ballistically. This stopped the many-body evolution and froze the

state. The matter waves of the two 1D gases in the double-well trap overlapped and

formed a matter-wave interference pattern that could be measured by standard imaging
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Figure 6. Relaxation behavior after splitting a single 1D quantum gas into two as

revealed by the square of the interference contrast integrated over the central 110µm

of the 1D interference pattern. The graph shows the time evolving mean squared

contrast 〈C2〉, integrated over the full length of the 1D system. A decreasing 〈C2〉
reveals the growing fluctuations in the interference pattern as it gets more ‘wiggly’.

Initially, the contrast decays quickly due to dephasing of the approximate eigenmodes

of the near-integrable Hamiltonian. This dephasing spreads through the system in a

light-cone-like fashion [7], cf. Fig. 8. The system then relaxes towards a quasi-steady,

prethermal state [5] which is characterized by a generalised Gibbs ensemble (GGE) [9].

The fast initial relaxation reflects the build-up of a prethermal coherence-length scale,

which can be related to the fast approach of the red line on one of the blue trajectories

in Fig. 1. On longer timescales, the system shows further relaxation, and it is a

key future challenge to separate and distinguish any further relaxation from processes

caused by outside influences like heating due to trap instability or atom loss. Figure

adapted from Ref. [5].

techniques [260]. Because of the fast reduction of the interaction energy, interactions

during expansion could be neglected and the position of the fringes after time of flight

approximately reflected the difference ∆ϕ(z) = ϕL(z) − ϕR(z) between the phases of

the two 1D gases. The phase fluctuations can be characterized by means of the phase

correlation function,

C(z, z′) ∼ 〈Ψ1(z)Ψ†2(z)Ψ†1(z′)Ψ2(z′)〉 ∼ 〈ei∆ϕ(z,t)−i∆ϕ(z′,t)〉. (4)

Here, Ψ1 and Ψ2 denote bosonic field operators describing the two halves of the

system [7, 9]. This function provides a measure for the correlations of the phase between

two different points z and z′ along the length of the system. It contains only the

experimentally measured relative phases ∆ϕ(z) and ∆ϕ(z′), and could thus be directly

calculated from the data. Besides this local phase ∆ϕ(z) extracted from the relative

shift of the interference pattern, a second important observable in the experiments was

the mean squared contrast 〈C2〉 of the interference patterns, integrated over a specific

length scale [165, 166, 255, 256].

Repeating the experiment many times with identical initial conditions allowed

studying the fluctuation dynamics of this relative phase and its relation to thermal
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Figure 7. (a) Dependence of the effective prethermalization temperature Teff on the

linear atom density ρ, and (b) independence of Teff of the temperature T of the system

before splitting, corrected for the scaling of Teff with density. The (black) solid line

corresponds to the theoretical prediction kBTeff = gn1D/2. Figure adapted from [5].

states. The observed dynamics as seen through the mean squared contrast 〈C2〉 of the

interference pattern is summarized in Fig. 6 (where the contrast C is not to be confused

with the correlation function C). As the splitting was performed rapidly, the two halves

of the system were fully coherent immediately after the splitting. The relative phase

field was close to zero along the whole length of the system, resulting in straight fringes

and thus in a large integrated mean squared contrast. Over time, the dynamics led

to a randomization of the relative phase ∆ϕ(z), to ‘wiggly ’ interference patterns and a

decrease of the mean square contrast 〈C2〉.

3.3.2. Prethermalization of the relative fluctuations in a split 1D gas After a

sufficiently long evolution time of the pair of 1D Bose gases after the splitting, a steady

state was observed. This state was found to be characterized by thermal full distribution

functions of 〈C2〉 and exponentially decaying correlations, very much like the thermal

equilibrium state for a quasi 1D Bose gas [5, 6]. However, a much lower temperature

was measured than the temperature of the initial gas before the splitting. Moreover,

the longitudinal coherence length was also significantly larger than the expected thermal

decay length. The relative degrees of freedom of the system were thus looking thermal,

but with an effective temperature Teff that was significantly lower than the initial

temperature Tin.

Concomitant theoretical studies [165, 166] revealed the observed extremely low

temperature to be a result of the particular quench that was performed. Splitting the

system creates new degrees of freedom the canonical coordinates of which are given by

the local phase difference and the relative atom number between the two systems. While

the individual halves of the system still fluctuate strongly with the initial temperature

Tin, only a very small amount of energy is introduced into the relative degrees of freedom

via the quantum shot noise of the splitting process. The fast quench, in particular,

leads to equipartition of this energy εsplit = gn1D/2 over the modes of the new relative

degrees of freedom. Dephasing then establishes the thermal-like state with temperature

Teff = εsplit/kB = gn1D/2kB. The theoretical model thus predicts that the effective

temperature should be independent of the initial temperature, and exhibit a linear
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Figure 8. Temporal spreading of the prethermalized fraction. (a) Experimental phase

correlation functions C(z̄, t) (filled circles) compared to theoretical calculations (solid

lines), as a function of the relative distance z̄ = z − z′ between two longitudinal

positions. The evolution time t increases from top to bottom. The final (green) line

is the theoretical prediction for the relaxed, fully prethermalized state. At each time

t, correlation functions follow this prediction up to a crossover distance z̄c(t) beyond

which the system remembers the initial long-range phase coherence. (b) Position of

the crossover distance z̄c as a function of t, revealing the light-cone-like emergence

of the thermal correlations of the prethermalized state. The slope of the solid line

corresponds to twice the phonon velocity of the system. Figure adapted from Ref. [7].

scaling with the 1D density. This behavior was indeed observed in the measurements

and is shown in Fig. 7. It represents precisely the kinetic prethermalization [35, 36] that

is discussed in Sect. 2.2.

Note that in the experiments, the quench introduced white-noise fluctuations into

the relative degrees of freedom. This leads, within good approximation, to a GGE with

only one Lagrange multiplier corresponding to the inverse of the effective temperature,

βeff = (kBTeff)−1. This GGE thus takes the form of a genuine Gibbs ensemble, with

εsplit ' ωknk(0) ' const., independent of wave number k, where nk(0) is the mode

occupation number right after the quench.

3.3.3. Light-cone-like spreading of phase decoherence An important question is how

the above prethermalized quasi-steady state is established after the quench. In the

experiments, the two-point phase correlation function C(z, z′) (see Fig. 8) allowed for a

detailed study of these dynamics [7, 8, 142]. Directly after the splitting the correlations

were close to C(z, z′) ≡ 1, which reflected the full coherence of the relative phase. For

any given evolution time t after the splitting, C(z, z′) revealed that the system had

already established the prethermalized correlations up to a distance z − z′ = 2 c t, with

the speed of sound c. At larger separations of z and z′, the system still retained the

initial long-range order imposed by the quench.

This demonstrates how the thermal correlations of the prethermalized state were

established locally and then spread through the system in a light-cone-like fashion.

Hence, the phononic excitations of the system could be interpreted as information

carriers that propagate correlations through the system. This reflects the basic Lieb-
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Figure 9. Observation of a generalized Gibbs ensemble (GGE). (a) Two-point

phase correlations visualizing the emergence of the GGE. The correlation functions

show a characteristic maximum on the diagonal and a decay of correlations

away from the diagonal (cf. Fig. 8). Additional correlations on the anti-

diagonal are the result of the enhanced occupation of even (with respect to

the longitudinal trap) quasiparticle modes, in good agreement with a theoretical

model assuming multiple conserved quantities. (b) Examples of cuts through

experimental 4-, 6-, and 10-point correlation functions. The GGE describes well

also phase correlations up to 10th order. From left to right, we plot the cuts

C(z1, 10, z2, 10), C(z1,−12, z2, 14), C(z1, 10, 10, z2,−20, 10), C(z1,−8, 8, z2,−24,−20),

C(z1, 4, 10, z2,−8, z2,−22,−18, 10,−4) and C(z1,−22,−8, z2,−22,−26,−22, z2,−26,

−24). All coordinates are given in µm and were chosen as representative cases for our

high-dimensional data. Adapted from Ref. [9].

Robinson bound limiting the spreading of information to a finite group velocity, as

originally introduced for lattice spin models [167] and studied both numerically [168, 169]

and experimentally [15]. The limits observed here extend these ideas to continuous

models, as previously put forward for quenches in conformal field theories [86, 87].

3.3.4. Observation of a generalized Gibbs ensemble The experimentally observed

prethermalized state can be described by a single effective temperature Teff . Although

this state was observed in a system that is very well described by an integrable model,

this state is practically indistinguishable from a thermal state. As mentioned above, the

key to this surprising result lies in the particular quench protocol that was employed.
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Figure 10. The generalized Gibbs ensemble (GGE) observed in [9]. Shown are the

mean occupation numbers nm (in units of εm/µ) of the quasiparticle modes with index

m that define the GGE shown in Fig. 9. The distribution reveals that the occupation

of the lowest even (odd) modes are increased (decreased) as compared to the quantum

noise occupation found in a single-temperature prethermalized state observed after

an instantaneous quench (dashed line). Modes with occupation number below this

‘quantum-noise’ line are number squeezed. Figure adapted from Ref. [9].

According to this protocol, all conserved quasiparticle modes of the relative degrees of

freedom were prepared with the same energy εsplit ' kBTeff .

In a subsequent experiment, Langen et al. [9] modified this quench protocol by

changing the speed with which the double well was established during the splitting

process. They observed a relaxed state, which showed enhanced correlations outside the

light cone, strikingly visible as a cross in the non-translation-invariant phase correlations

C(z, z′) reproduced in Fig. 9a. A detailed analysis showed that, in fact, not less than ten

Lagrange multipliers, describing the occupation of the ten lowest-energy quasiparticle

modes of the relative degrees of freedom, were necessary for a precise description of the

observed correlations (Fig. 10). It is interesting to note that a series of these modes,

especially n = 1 and 3 and, to a lesser extent, n > 5, had occupations that were

significantly below the quantum-noise limit of a fast quench. This could be due to the

fact that the employed quench created a non-trivial many-body quantum state with

number-squeezed excitations. Studying these will be part of future research.

Theoretically, the GGE has been predicted to be applicable to describe local

correlation functions of prethermalized states defined in a finite-size region, see the

discussion in Sect. 2.1.2. Moreover, since the GGE represents the optimum ensemble on

the basis of available information, deviations of relaxed states from the GGE description

are generally expected to become manifest first in higher-order correlation functions.

Basic phase correlation functions up to 10th order have been measured [9], and arbitrarily

chosen two-dimensional cuts through these are shown in Fig. 9b. Similarly to the two-

point correlation functions, they were found to be in very good agreement with the

theoretical model. As demonstrated in [9], the specifically varying mode occupations and

thus Lagrange multipliers are necessary to correctly describe the measured correlations,
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in particular at high orders. The GGE experiment thus gave a first glimpse on techniques

for measuring high-order correlations, which have been developed further thereafter

[257] and become useful and likely necessary for detecting complex non-local properties

of dynamically evolving near-integrable quantum systems. We point out that higher-

order (connected) correlations, i.e., cumulants, are generically expected to become

important in systematic studies of many-body properties including generalized Gibbs

characteristics, anomalous scaling and universality.

3.3.5. Long-time evolution and revivals An outstanding question concerns the further

evolution after the establishment of the prethermalized state described by a GGE.

Will the system further relax and eventually reach thermal equilibrium? The slow

decay of the mean squared contrast 〈C2〉 over long limes seen in Fig. 6 hints at such a

further relaxation. It has been predicted that higher-order scattering processes [249–

251] will induce this relaxation, and numerical calculations [261] gave further evidence.

Experimentally, this is a very difficult problem, because the smallest heating due to,

e.g., a shaking of the trap can mimic the respective processes. Further experimental

investigations are currently under way.

An interesting further aspect concerns the effect of the finite size of the studied

system, in particular the possibility of coherent revivals at finite times. For quenches in

conformal field theories, partial as well as full revivals were predicted to occur at integer

multiples of the system size divided by twice the speed of sound, and relations to the

formation of black holes existing through the AdS-CFT correspondence were pointed

out [93, 132]. A detailed study of the light-cone-like propagation of excitations and

the build-up of a dephased, prethermalized state after the initial splitting quench gave

concrete predictions that revivals should be observable in box-like potentials, but are

suppressed by the harmonic confinement of the current experiments [8]. Both of these

problems will be at the center of future developments and experiments.

3.4. Implications from prethermalization for the preparation of a 1D Bose gas

The relaxation to a prethermalized instead of a thermal state also has important

implications for the preparation of the initial pre-quench gas in such experiments. The

standard technique to prepare these gases at ultracold temperatures is evaporative

cooling, which relies on the selective removal of the most energetic particles from a

trapped gas and the subsequent rethermalization of the gas to a lower temperature

through elastic collisions. For efficient cooling this cycle is being repeated continuously,

increasing the phase-space density of a gas at the cost of reducing the total number of

atoms. However, in a pure 1D setting, two-body collisions do not lead to a redistribution

of energy and momentum and thus, intuitively, such systems should not be cooled

through particle dissipation.

In principle, the known conditions that break integrability in these systems could

be an explanation for the observed cooling efficiency deep into the 1D regime. For



Prethermalization and universal dynamics in near-integrable quantum systems 28

Figure 11. Using prethermalization for the preparation of a 1D Bose gas. Shown is

the universal scaling relation between temperature and atom number observed in the

dissipative cooling of a near-integrable 1D Bose gas. Figure adapted from Ref. [262].

example, for realistic confinement strengths, the 1D condition and thus the integrability

of the system can be broken in collisions where there is enough energy available

to access transverse excited states. However, these thermalizing two-body collisions

are suppressed by at least a factor of exp(−2~ω⊥/kBT ) in a non-degenerate bosonic

gas [249]. Consequently, these collisions freeze out as soon as the gas enters the 1D

regime. Other higher-order processes that can lead to thermalization are three-body

collisions [249, 251] or phonon-phonon scattering [250, 261]. However, their expected

thermalization time scales are much larger than the cooling time in typical experiments.

As in the case of prethermalization the key to understanding the cooling process of

the gas is dephasing. In an experiment by Rauer et al. [262], the outcoupling process

was revealed to be nearly homogenous and independent of the mode energy. While this

would, as discussed above, not lead to cooling, a significant decrease in temperature

down to kBT ∼ 0.1 ~ω⊥ was observed. In particular, all correlation functions remained

close to their thermal form for all times despite the constant removal of atoms.

The dynamics resulting from such a homogeneous particle dissipation can be

intuitively understood within a Luttinger-liquid picture, describing the low-energy

dynamics of the underlying Lieb-Lininger model [263]. Each of the phonon modes in

this model contributes to the fluctuations in the gas through a density and a phase

quadrature, in analogy to the position and momentum quadratures of a harmonic

oscillator. The free evolution of such a mode k with energy ~ωk can be visualized as a

rotation of the corresponding Wigner function with the frequency ωk. In this picture, a

sudden homogeneous outcoupling of atoms leads to a decrease in average density with

the density fluctuations around this average being scaled down correspondingly. This

instantaneous density reduction therefore extracts energy from the density quadrature

of the phonon modes while leaving the phase quadrature unchanged. The system

reacts to this reduction by dephasing, redistributing the remaining energy between the
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quadratures. This behavior is very similar to the one observed during prethermalization.

Both the experiment and a simple theoretical analysis established a universal scaling

relation between temperature and particle number which is shown in Fig. 11.

3.5. Prethermalization after quenches to or across a critical point

The experiments discussed in the previous subsection employed an entirely 1D cooling

process that suppressed excitations of the gas. The opposite case of a strong cooling

quench into a single 1D trap can also be realized and is expected to show similarities to

quenches to or across a critical point. In a different context, quenches across a critical

point were realized in the experiments of the Stamper-Kurn [10, 11, 170, 171], Sengstock

[12], and Oberthaler [13, 14] groups with spinor gases, see [238] for a recent review.

Quenches leading to solitary excitations, studying Kibble-Zurek-type physics [181, 264–

267], were performed in experiment by Lamporesi, Ferrari, et al. [16], Schneider, Bloch

and collaborators [18], the Dalibard group [19, 20], and the Hadzibabic group [21]. All

of these contributed towards studying dynamical critical scaling and universality.

Employing semiclassical Truncated-Wigner-type simulations, Barnett et al. [172]

analyzed the spinor gas quench experiments [10, 11, 170, 171], showing that the system

did not thermalize at appreciable time scales but rather reached a quasi-steady regime

that evolved anomalously slowly in time. The long-time evolution after the short-

time instabilities and growth of magnetization [268–276] was characterized by a quasi-

steady state with exponentially decaying spatial correlations. The time scale for Landau

damping was estimated to be beyond the reach of the experiment. It was concluded

that the system did not thermalize at appreciable time scales but rather reached a

quasi-steady regime that evolves anomalously slowly in time and which they called

prethermalized.

A slow long-time residual growth of the spin domains created in the quenches

across the ferromagnetic phase transition was reported in [171] and conjectured to signal

coarsening dynamics. Coarsening as self-similar rescaling in time and space has been

discussed for many different systems within the theory of phase-ordering kinetics [42],

including spinor condensates [217, 268, 277, 278]. These analyses typically assume

dissipative dynamics, with, in some cases, additional ‘reversible’ (non-dissipative)

coupling between the modes [278].

In the experiments of Nicklas et al. [13, 14], performing quenches to either side of a

quantum critical point in a quasi 1D pseudo-spin 1/2 gas, scaling has been revealed of

both, characteristic time and spatial scales with respect to the parametric distance of the

final Hamiltonian to criticality, see Fig. 12. Theoretical studies of these experiments, like

of similar quench protocols in transverse-field Ising chains [121–123], indicated that the

intermediate-time critical scaling properties of correlation lengths can be understood

in terms of a GGE for a prethermalized state [279]. For previous discussions of

prethermalization and/or the approach of a GGE in quenches near criticality see also

[226, 227, 230–233] for isolated systems, or [280] for open systems. Starting with a
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Figure 12. Spatial and temporal scaling of the spin-spin correlations measured in a

quasi 1D pseudo-spin 1/2 gas [14] after a quench close to a quantum critical point.

The quench is performed by suddenly changing the Rabi coupling Ω between the two

components of the gas from a large value to one close to the critical value Ωc where

a transition from a paramagnetic to a ferromagnetic phase is triggered. (a) Spatial

correlations after quenches to different relative proximities ε = Ω/Ωc − 1 from the

critical point (color-coded), on the ferromagnetic (left panels) and paramagnetic sides

side (right) at the times indicated in the graphs. Top row: The correlation functions,

under a rescaling y → yεν of the distance dependence with mean-field exponent

ν = 1/2, fall on a universal curve. Bottom row: ε-dependence of the characteristic

length scales deduced from the correlation functions. The straight lines reveal values

for the critical exponent ν on either side of the transition. (b) Temporal scaling of

the spin-spin correlations. After the quench to the miscible side of the transition, the

correlation length ξ, measuring the exponential decay seen in the top right panel in

(a), for any ε ≥ 0, shows first a linear rise and later settles in an oscillatory manner

to a finite saturated value, see [14] for more details. The characteristic time τ for

different ε is obtained as the intersection point of the linear fits to the initial rise of

ξ(t) (grey symbols for ε = 0.1) and to the behaviour after ξ deviates from this rise.

The procedure of determining the intersection is exemplarily shown in the upper panel

for ε = 0.23. In the lower panel we compare the extracted τ(ε) to a mean-field scaling

with νz = 1/2 (dashed line) and to the Bogoliubov prediction τ ∼ 1/∆, with gap

∆(ε) = Ωc

√
ε(ε+ 1), also applicable at larger ε & 1 (solid line).

ground state far away from the critical point, the quench close to criticality maps this

state onto new, nearly number-conserved quasiparticle degrees of freedom. The resulting

occupation numbers of these quasiparticles define the Lagrange parameters of the GGE.

It is nevertheless found that, the closer the quench of the pseudo-spin gas is tuned to the

critical point, the better the correlations are described by a single effective temperature

parameter [279]. See [54, 86, 87] for earlier studies in conformal field theories.

In the light of fast experimental progress, the verification of non-thermal fixed points

as well as universal scaling dynamics as a more general kind of prethermalization in near-

integrable quantum systems is at the horizon. This will include demonstrations of the

universal coarsening of defects, strong non-linear excitations and turbulent dynamics.
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3.6. Impact of integrability on transport dynamics

Integrability does not only affect the thermalization of cold atomic systems, but also has

important effects on their transport dynamics. This was observed in an experiment by

Ronzheimer et al. [17] in which the expansion of initially localized atoms in homogeneous

1D and 2D optical lattices was studied. 39K atoms were prepared in the combined

potential of a 3D optical lattice and an additional harmonic confinement. Tunable inter-

actions allowed the realization of both the hard-core boson limit and bosons with finite

interactions. The harmonic confinement was then decreased in one or two directions so

that the atoms could expand in a 1D or 2D optical lattice potential. It was observed

that the fastest ballistic expansion of hard-core bosons proceeds in all integrable limits of

the system, where the many constants of motion inhibit diffusive scattering. Deviations

from these limits significantly suppressed the expansion and led to signatures of diffusive

dynamics. Interestingly, for finite interactions, deviations from the ballistic expansion

of hard-core bosons only occurred because the gas was subject to an interaction quench,

implying the higher energies the weaker the interactions are [281].

4. Conclusions and outlook

Advances in preparing and controlling low-dimensional ultracold gases have lead to

an enormous, renewed interest in integrable and near-integrable model systems as

prototypes for studying dynamics, relaxation, and thermalization in quantum physics.

Insight from experiments has lead to rapid progress in linking the microscopic quantum

dynamics of atoms and molecules with the macroscopic properties of matter providing

a unique connection between quantum many-body physics and statistical physics. In

particular they provide a unique window onto the emergence of (classical) statistical

ensembles in the evolution of isolated many-body quantum systems and thus the

transition from quantum physics at the micro-scale to our classical world.

The experimental progress in this field continues at a remarkable speed and will

allow new insights into previously unattainable phenomena. Examples include the

ability to control the interaction strength [282], to observe and control quantum many-

body systems locally at the single-atom level [283–287], the use of optimal control

schemes to manipulate their (global) external degrees of freedom [288–291]. Moreover,

the extension to gases with fermionic statistics [292], gauge fields [293], spin-orbit

coupling [294] or long-range interactions [295–297] should bear many new interesting

aspects.

With these capabilites, ultracold atomic gases offer themselves as a ‘quantum

simulator’ for universal dynamics of systems which are difficult to access directly [298].

Beyond the immediate implications for simple low-energy degenerate quantum gases,

phenomena such as topological configurations in solids, in soft matter, the dynamics

of the quark-gluon plasma created in heavy-ion collisions, dynamics of the big bang

[299, 300], or the reheating of the post-inflationary universe come into sight.
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For the near future, we therefore expect a plethora of novel experimental and

theoretical insights that will have profound implications for our understanding of the

emergence of thermal and classical properties in isolated quantum many-body systems.

This will lead to a truly universal framework for non-equilibrium dynamics, the study

of which is an ongoing endeavor.
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74.

[285] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch and S. Kuhr,

Nature 467 (2010) 68, [1006.3799].

http://dx.doi.org/10.1103/PhysRevA.83.023618
http://dx.doi.org/10.1103/PhysRevA.83.023618
http://dx.doi.org/10.1103/PhysRevLett.116.030402
http://dx.doi.org/10.1103/PhysRevA.93.033634
http://dx.doi.org/10.1103/PhysRevA.93.033634
http://dx.doi.org/10.1103/PhysRevLett.78.2519
http://dx.doi.org/10.1103/PhysRevLett.104.160404
http://dx.doi.org/10.1103/PhysRevLett.98.160404
http://dx.doi.org/10.1103/PhysRevA.75.013621
http://dx.doi.org/10.1103/PhysRevA.76.043613
http://dx.doi.org/10.1103/PhysRevLett.99.130402
http://dx.doi.org/10.1103/PhysRevLett.99.120407
http://dx.doi.org/10.1103/PhysRevLett.99.120407
http://dx.doi.org/10.1103/PhysRevLett.100.180404
http://dx.doi.org/10.1103/PhysRevLett.100.180404
http://dx.doi.org/10.1103/PhysRevA.78.033609
http://dx.doi.org/10.1103/PhysRevA.78.033609
http://dx.doi.org/10.1103/PhysRevLett.103.195302
http://dx.doi.org/10.1103/PhysRevA.80.023622
http://dx.doi.org/10.1103/PhysRevA.80.023622
http://dx.doi.org/10.1103/PhysRevB.76.104519
http://dx.doi.org/10.1103/PhysRevLett.113.220401
http://dx.doi.org/10.1103/PhysRevA.90.033606
http://dx.doi.org/10.1103/PhysRevA.90.033606
http://dx.doi.org/10.1038/nature09378
http://arxiv.org/abs/1006.3799


REFERENCES 44

[286] F. Serwane, G. Zürn, T. Lompe, T. B. Ottenstein, A. N. Wenz and S. Jochim,

Science 332 (2011) 336, [1101.2124].

[287] E. Kaminishi, T. Mori, T. N. Ikeda and M. Ueda, Nature Phys. 11 (2014) 1050,

[1410.5576].
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