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Abstract

Studying the entanglement amongmany particles is a central topic of current research in quantum
many-body systems and has great importance to the field of quantum metrology. In this context,
the quantum Fisher information (QFI) provides a powerful framework for assessing, classify-
ing and understanding the multipartite entanglement, and its metrological applications. Spinor
Bose-Einstein condensates (BECs) constitute a particularly versatile platform for experimental
investigations in this matter, however, a general and efficient experimental scheme for measuring
the QFI in spinor BECs is still missing. The aim of this Master’s thesis is therefore to bring
these two important concepts together by developing a protocol for the extraction of multipar-
tite entanglement in spin-1 BECs. To this end, we derive an overarching framework relying on
the computation of the QFI from quench dynamics and mean-field Bogoliubov theory. In a first
study, we examine the strong influence of spontaneous symmetry breaking on the many-particle
entanglement in single-mode BECs and compare our analysis to exact numerical calculations.
We expand this study to an one-dimensional system by extending the Bogoliubov formalism to
spin-1 quasi-condensates and deriving bounds for the entanglement of generic many-spin states.
In this way, we compute the finite temperature amount of entanglement in a spin-1 BEC from
dynamic susceptibilities after a weak quench. Our studies reveal the presence of multipartite
entanglement in spin-1 BECs and the growth of correlations in regions close to quantum phase
transitions. This work therefore paths the way towards the detection of multipartite entanglement
in spinor BECs.

Zusammenfassung

Quanten-Vielteilchen-Systeme sind ein wichtiger Gegenstand heutiger Forschung, insbesondere
durch ihren potentiellen Nutzen für Präzisionsmessungen. Die Quanten Fisher Information (QFI)
ist hierbei eine Größe mit welcher die Verschränkung vieler Quanten berechnet, klassifiziert
und besser verstanden werden kann. Experimentell bilden Spinor Bose-Einstein Kondensate
(BECs) ideale Möglichkeiten um Quantenphänome zu untersuchen, derzeit gibt es jedoch noch
kein Messprotokoll, welches die QFI in Spinor BECs bestimmt. Diese Masterarbeit hat daher
zum Ziel ein solches Messprotokoll auf der Grundlage von Bogoliubov Theorie und Quench-
dynamik zu entwickeln. Zunächst untersuchen wir die QFI für ein spin-1 BEC unter Vernach-
lässigung räumlicher Abhängigkeiten. Hierbei liegt ein besonderes Augenmerk auf dem Ein-
fluss spontaner Symmetriebrechung des Grundzustandes. Anschließend wenden wir eine Er-
weiterung der Bogoliubov Theorie für eindimensionelle Quasikondensate an. Diese ermöglicht
uns, die QFI sowohl im Grundzustand als auch bei endlichen Temperaturen mit Hilfe der dy-
namischen Suszeptibilität nach einem Quench in einem ausgedehnten spin-1 BEC zu berechnen.
Nicht zuletzt zeigen wir, wie aus der QFI einer beliebigen Spin-Konfiguration untere Schranken
für ihre Mehrfachverschränkung hergeleitet werden können. Zusammenfassend legen unsere
Ergebnisse nahe, dass Vielteilchenverschränkung insbesondere nahe Quantenphasenübergängen
in spin-1 BECs vorhanden ist und auf Grundlage dieser Arbeit möglicherweise gemessen werden
könnte.
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Motivation

Quanta are the very building blocks of our world. Many of their special and fascinating proper-
ties, however, remain insufficiently explained. At the same time, quantum physics has become a
cornerstone of today’s research and modern industry.

The phenomenon of entanglement among many particles is a topic at the leading edge of sci-
ence and the verge of breaking through into major applications such as quantum computing. In
addition to being intrinsically fascinating, a better understanding of the mingling and tangling
between quantum particles could unravel fundamental questions concerning, for example, the
underlying mechanisms of quantum magnetism and high temperature superconductivity.

In this regard, ultracold quantum gases provide an exceptionally well-developed experimental
platform to investigate quantum many-body systems with a broad range of techniques for trap-
ping, counting, and manipulating particles [1, 2]. Groundbreaking experiments, such as with
spinor Bose-Einstein condensates (BECs), have demonstrated the generation of entangled states
in many-particle systems [3, 4, 5, 2, 6].

In comparison to single-component BECs, spinor condensates exhibit a particularly rich quan-
tum structure, raising new questions about spin dynamics, such as the formation of spin domains
[7]. In these systems, spin exchange interactions among Zeeman sub-levels lead to dynamical
redistribution of the population of modes, thereby driving the growth of quantum correlations
and the creation of entanglement.

Spinor BECs are therefore widely considered to be a good way of investigating many-particle
entanglement. A particularly promising application is quantum-enhanced metrology, constitut-
ing a gradually broadening field of experimental and theoretical efforts with the aim to overcome
classical bounds in precision measurements by exploiting quantum resources such as squeezing
and entanglement. A typical precision experiment estimates the measure of a physical quantity
by means of a phase shift observed in an interferometer [8, 9]. Here, quantum correlations are
the very key component that makes it possible to achieve phase sensitivities beyond the standard
quantum limit. The strong connection between phase estimation and many-particle entanglement
is formalized within the highly useful framework of quantum Fisher information.

The quantum Fisher information classifies metrologically advantageous states by their multi-
partite entanglement content and gives a limit to the ultimate precision achievable in a phase
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estimation protocol [10, 11]. Recent theoretical developments have revealed a close relation to
dynamical susceptibilities of quantum many-body system [12]. This relation not only permits a
natural view on the differences between non-entangled and entangled states, where the latter are
more sensitive towards a transformation of the state. It also provides the possibility of extracting
the quantum Fisher information from well-established linear response protocols. Additionally,
it is capable of classifying multipartite entanglement at finite temperatures and allows one to
identify strongly entangled phase transitions through its universal scaling behavior close to the
critical point.

The overall goal of this thesis is to combine the two exceptionally fascinating and versatile con-
cepts of spinor Bose gases and quantum Fisher information. We particularly focus on the de-
velopment of an overarching framework to extract the quantum Fisher information from quench
dynamics using mean-field Bogoliubov theory. To this end, we also implement an extended
Bogoliubov theory for spin-1 quasi-condensates [13] and relate entanglement bounds to general
density distributions of bosons on a spatial grid. By making extensive use of these concepts,
we calculate correlation functions in the Broken-Axisymmetry (i. e. Easy-plane) phase of a
spin-1 BEC both, in single-mode approximation and in an extended one-dimensional geometry.
The quantum Fisher information is extracted at zero and finite temperature after a weak quench,
thereby witnessing multipartite entanglement and the growth of correlations especially in regions
close to quantum phase transitions.

This thesis therefore constitutes a contribution towards a spin-1 measurement protocol relying
on the extraction of the quantum Fisher information from quench dynamics and mean-field Bo-
goliubov theory. It opens a door to revealing the beauty of entanglement among many particles
which remains to be further explored and is possibly still hidden in its applications.
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Thesis Outline

This thesis comprises some of the major steps towards a protocol for measuring multipartite en-
tanglement in spin-1 Bose-Einstein condensates. While Part I summarizes the underlying con-
cepts of this work, the main studies performed are discussed in Part II.

• Part I starts out with an introduction to themany-body physics of spinor Bose gases (chapter 1),
including convenient approximations and mathematical descriptions [14, 15, 16]. We discuss
the su(3) Lie algebra as an apt representation for a three-level system such as the spin-1 BEC
and introduce coherent spin states [17] andWigner quasi-probability distributions [18] as very
helpful tools to describe ensembles of quantum-mechanical spins. Moreover, we elaborate the
notion of spontaneous symmetry breaking, becoming particularly relevant to the amount of
entanglement in spin-1 BECs.

• Since a full quantummechanical treatment of spinor Bose gases can become exponentially dif-
ficult, further assumptions are required. We therefore introduce mean-field Bogoliubov theory
[19], relying on the description of the characteristic low-energy excitations of a quadratic the-
ory in chapter 2. In the so-called Bogoliubov quasi-particle picture the physical sense is readily
visible and explainable, thereby significantly simplifying calculations.

• The main building block allowing for the investigation of entanglement among many parti-
cles is the quantum Fisher information [8, 11], outlined in chapter 3. As a central quantity
in quantum metrology, it is capable of classifying multipartite entanglement and identifying
strongly entangled phase transitions [1, 12]. In particular, the QFI is related to dynamical
quantities from linear response measurements, which is straightforward to measure, even for
large systems, at finite temperatures and in real time.

• Bridging these three central concepts, spinor Bose-Einstein condensates, Bogoliubov theory
and quantum Fisher information, is our main objective. Therefore Part II starts with the outline
towards reaching this goal and presents the methodology used in this thesis for the extraction
of the quantum Fisher information from dynamical susceptibilities after a weak quench using
mean-field Bogoliubov theory in chapter 4.

• Subject to our first study (chapter 5) is the spin-1 BEC in single-mode approximation (SMA)
and Broken-Axisymmetry (BA) phase at zero temperature, where the QFI can be computed
from the variance of a pure state. By comparing results for the mean-field ground state of a
spin-1 Becwith 12000 particles and the exact ground state [20, 21] for 500 particles, we discuss
the strong influence of spontaneous symmetry breaking on the amount of entanglement in this
system.

• In chapter 6 we introduce spatial degrees of freedom and study the considerably more involved
spin-1 BEC in an one-dimensional setting. An extension of Bogoliubov theory [13] for quasi-
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condensates allows us to again describe the system withing the quasi-particle picture. Another
important ingredient for this study is obtained by the analysis of generic entanglement bounds
for collective spin states. This enables us to compute the QFI at finite temperatures from
dynamic susceptibilities following a weak quench. Using the derived entanglement bounds,
we observe signatures of multipartite entanglement in the system. As a natural consequence
of this finding, we close this work by discussing a possible implementation of our studies for
experimentally extracting the multipartite entanglement content of spin-1 BECs.
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Part I.

Concepts
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1 Many-Body Physics of Spinor Bose Gases

This chapter gives an overview of the basic concepts used within this thesis in order to describe
the many-body physics of spinor Bose gases. First, we review the main characteristics and math-
ematical descriptions of spin-1 Bose-Einstein condensates (BECs). Second, we discuss the un-
derlying su(3)-algebra of spin-1 systems and its implications on the representation of operators.
Moreover, coherent spin states (CSS) and Wigner quasi-probability distributions are introduced
as very helpful tools to describe ensembles of quantum-mechanical spins. The chapter closes
with a review of spontaneous symmetry breaking (SSB), as this notion can significantly influ-
ence the characteristics and, especially, the entanglement content of large quantum systems.

1.1 Spin-1 Bose-Einstein Condensates

Spinor Bose-Einstein Condensates are ideal model systems to study quantummany-body physics.
They feature additional degrees of freedom compared to single component BECs due to the Zee-
man splitting of magnetic sublevels. Engineering their internal states with optical and magnetic
fields offers a wide range of possibilities to study quantum phenomena [15, 22]. First, they exhibit
various phases with different spinor order parameters due to the competition between interatomic
interactions and the coupling to an external field [23, 7]. Second, their dynamics feature a vari-
ety of physical effects, including formation of spin domains, Josephson-like tunneling [24] and
spontaneous symmetry-breaking. Besides, spin-mixing dynamics, generating entanglement via
spin-changing collisions, can be used to createmetrologically favourable states. Quantummetrol-
ogy with spin-1 BECs has therefore received substantial interest and the field is maturing, with
a wealth of well-understood experimental and theoretical methods [1]. Gaussian spin-squeezed
states as well as the enhanced sensitivity of atom interferometers using spinor BECs have been
demonstrated [2, 4] and there is growing interest in investigating the quantum Fisher information
as an entanglement witness for spinor Bose gases [25, 21].

Figure 1.1.: An absorption image after a short time of flight allows one to experimentally map out the
distribution of the hyperfine components of the spinor BEC when applying a magnetic field
Bz . Figure courtesy of Philipp Kunkel and Maximilian Prüfer, SynQS Heidelberg.

The basis for a general mathematical description of spinor Bose gases is the second quantized
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1.1. SPIN-1 BOSE-EINSTEIN CONDENSATES

form of the so-called Gross-Pitaevski equation [26, 27] for multi-component Bose-Einstein con-
densates in a magnetic field (~ = 1) [28]

H =

f∑
m,m′=−f

∫
d3rΨ†m(r)

(
− ∇

2

2M
+ VT (r)− µ− p (fz)mm′ + q (f2

z )mm′

)
Ψm′(r) + Vint .

(1.1)

It comprises the kinetic term (∝ ∇2) for particles with massM , the potential energy of the con-
fining trap VT , the chemical potential µ, and terms proportional to the linear (∝ p) and quadratic
(∝ q) Zeeman shift of the hyperfine spin states. The trapping potential VT (r) and the chem-
ical potential µ are assumed to be the same for all components of the Bose gas. The Zeeman
energy shifts are specified by p = −µBBzgf and q = µ2

BB
2
z/(~2EHFS), where EHFS is the

ground state hyperfine splitting, Bz is the magnetic field in z-direction, gf is the Landé g-factor,
and µB is the Bohr magneton. The spin matrix elements are given by (fz)mm′ = mδmm′ and
hence, (fz)

2
mm′ = m2δmm′ . The interaction energy Vint is added to the Hamiltonian and can be

obtained from the two-body interaction model

Vint =
1

2

∫
d3r

∑
m1,m2,m′1,m

′
2

Ωm1,m2

m′1,m
′
2
ψ̂†m1

(r) ψ̂†m2
(r) ψ̂m′1(r) ψ̂m′2(r) . (1.2)

Assuming a dilute system in the low temperature limit at which the range of the interaction
is negligible compared to the inter-particle spacing, the interaction is described by a pseudo-
interaction

∑
i<j gF δ(ri− rj). Accordingly, the parameters Ωm1,m2

m′1,m
′
2
can be computed using the

projection operator PF for a two-body state with total spin angular momentum1 F and Glebsch-
Gordan coefficients 〈f1,mf1 ; f2,mf2 |F,mF 〉

∑
i<j

gF δ(ri − rj) = δ(ri − rj)
2f∑
F=0

F∑
MF=−F

|F,MF 〉〈F,MF |︸ ︷︷ ︸
PF

(1.3)

and Ωm1,m2

m′1,m
′
2

=

2f∑
F=0

gF 〈f,m1; f,m2|PF |f,m′1; f,m′2〉 . (1.4)

A detailed review on Bose-Einstein condensates can be found in A. Leggett’s book [14]. For
a more involved description of multi-component Spinor Bose-Einstein condensates see also re-
views by Y. Kawaguchi and D. Stamper-Kurn [15, 16].

For the remaining part of this thesis, we focus on a spin-1 system featuring three magnetic sub-
levels. A Stern-Gerlach type experiment reveals the splitting of these sublevels as showcased in
Figure 1.1. According to their hyperfine state, the atom cloud splits up into several clouds which

1The total spin state |F,MF 〉 is expanded in terms of basis vectors |f,mf 〉 ⊗ |f,m′f 〉.
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1.1. SPIN-1 BOSE-EINSTEIN CONDENSATES

can be detected by a time-of-flight measurement (Figure 1.1).

In order to investigate the dynamics of a spin-1 BEC, it is convenient to rewrite the Hamiltonian
(1.1) as a sum of a symmetric, spin-independent part HS , an anti-symmetric, spin-dependent
partHA and the Zeeman energiesHB [15]

HS =
∑

i=0,±1

∫
d3r ψ̂†i

(
− ∇

2

2M
+ VT − µ

)
ψ̂i +

λs
2

∑
i,j=0,±1

∫
d3r ψ̂†i ψ̂

†
j ψ̂i ψ̂j (1.5)

HA =
λa
2

∫
d3r ψ̂†1 ψ̂

†
1 ψ̂1 ψ̂1 + ψ̂†−1 ψ̂

†
−1 ψ̂−1 ψ̂−1 + 2ψ̂†1 ψ̂

†
0 ψ̂1 ψ̂0 + 2ψ̂†−1 ψ̂

†
0 ψ̂−1 ψ̂0

−2ψ̂†1 ψ̂
†
−1 ψ̂1 ψ̂−1 + 2ψ̂†0 ψ̂

†
0 ψ̂1 ψ̂−1 + 2ψ̂†1 ψ̂

†
−1 ψ̂0 ψ̂0︸ ︷︷ ︸

SCC

(1.6)

HB =

∫
d3r p

(
ψ̂†1ψ̂1 − ψ̂†−1ψ̂−1

)
+ q

(
ψ̂†1ψ̂1 + ψ̂†−1ψ̂−1

)
. (1.7)

The symmetric, spin-independent part (1.5) determines the overall spatial and motional wave-
function, whereas the anti-symmetric, spin-dependent portion (1.6) drives so-called spin-mixing
dynamics. The coupling strengths λs and λa are will be further specified later. The dynamics
is sensitive to the distribution of atomic populations among the individual components of the
condensate shown in Figure 1.1 [7, 28]. The interchange of hyperfine states among the mF -
components through spin-changing collisions (SCC) transfers population from one spin state to
another, thereby preserving the overall spin. SCC are incorporated into the Hamiltonian (1.6) by
terms of the form ψ̂†1 ψ̂

†
−1 ψ̂0 ψ̂0 describing, for instance, the process of annihilating to particles

in the central mode (mF = 0) and creating one particle in each side mode (mF = ±1). These s-
wave type collisions are a key component for the emergence of dynamical phenomena involving
the creation of entanglement. They can be, for example, exploited to create metrologically useful
states [1, 29, 30, 4]. Spin changing collisions are therefore of special interest for the investigation
and comprehensive description of multipartite entanglement in spin-1 BECs.

Furthermore, the phase diagram of a spin-1 BEC is determined by symmetries associated with
the magnetic order of the system [15] (Figure 1.2). The mean-field parametrization is given
by the ground state magnetism for specific linear and quadratic Zeeman shifts (p and q, re-
spectively) and spin-spin interaction parameters (we use c1 ∝ λs in the following). The fer-
romagnetic phases I and II are fully polarized with respect to the applied magnetic field B. The
anti-ferromagnetic phase III has a longitudinal magnetization that depends on the linear Zeeman
shift p. Because the rotational symmetry about B is spontaneously broken, phase IV refers to
the Broken-Axisymmetry (BA) phase, marked by the shaded regions in Figure 1.2. The polar
phase V does not possess any polarization. In Figure 1.2, the yellow boundaries indicate second-
order phase boundaries across which the derivative of the ground state energy with respect to the
Zeeman shifts p and q changes continuously. The red lines correspondingly describe first-order
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1.1. SPIN-1 BOSE-EINSTEIN CONDENSATES

Figure 1.2.: The upper pannel shows the mean-field phase diagrams [15] of a spin-1 Bose–Einstein con-
densates with repulsive (c1 > 0) and attractive (c1 < 0) spin-spin interactions. The linear
and quadratic Zeeman shift is parametrized by p and q, respectively. The phase diagram
exhibits various transitions between different magnetically ordered states, further specified
and visualized in the lower pannel. Here, there magnetization is given in terms of Fz which
denotes the spin expectation value in z direction of a uniform system with a fixed number
density n. B gives the direction of the external magnetic field. The complex wave function of
the mean-field ground state is depicted in terms of the spherical harmonics Y m

F (s), according
to Ψ(s) =

∑
m

√
n ζm Y m

F (s), where s is a unit vector in spin spaces and ζm the mean-field
value of the mF = m hyperfine spin state. The order parameters are shown as the surface
plot of |Ψ(s)| with a gray scale representing arg(Ψ(s)). Further details, as for example on
the parametrization ζm of the mean-field ground state, can be found in Table 3 of [15].

21



1.1. SPIN-1 BOSE-EINSTEIN CONDENSATES

quantum phase transition (QPT) with an abrupt change in the order parameter. The other lines
indicate first-order QPTs. In either way, the regions in vicinity of the QPTs offer a fascinating
interplay of effects driven by quantum and thermal fluctuation [31]. In addition to that, these
effects are strongly involved in the creation of entanglement and can lead to a scaling growth of
the quantum Fisher information [12].

In the course of this thesis, we will examine the dynamics of a spin-1 BEC after a weak quench,
which means a sudden change of a characteristic parameter of the system. In experiments, mag-
netic and electric fields allow one to carefully address a broad range of parameters, as demon-
strated in Figure 1.3. For example, spin-changing collisions can be enhanced by tuning the mag-
netic field parameter q which leads to spin excitations (Figure 1.3a). Moreover, acousto-optic
deflectors (AODs) allow for local manipulations of the BEC with the use of radiofrequency (RF)
pulses, thereby creating local spin rotations (Figure 1.3b). Most interestingly, the development
of experimental tools went already so far to make geometries beyond the typical harmonic trap-
ping potential possible. Especially box potentials allow for a reduction of trap effects and a more
straightforward comparison to theoretical studies (Figure 1.3c). Thus, there is a variety of exper-
imental tools already available to examine quantum dynamics in spinor Bose gases.

From the short review above, we summarize that many features of the spin-1 BEC can be at-
tributed to its quantum-mechanical spin. In first place, the phase diagram is determined by
magnetic order parameters. Moreover, spin-changing collisions are involved in the growth of
entanglement. Most interestingly, the spin dynamics as well as spin-spin interactions and spin
rotations can be experimentally manipulated in a well-controlled manner. To this end, it is natural
to describe spinor Bose gases with the language of spin systems. In the following, we introduce
the su(3) group as a particularly apt representation for spin-1 BECs.
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(a) In a Stern-Gerlach type configuration, the atom cloud splits up according to the mF hyperfine spin
states, where mF = 1 refers to the upper, mF = 0 to the central, and mF = −1 to the lower cloud.
Spin excitations can be observed via time-of-flight absoprtion imaging as shown here after 4 seconds
of time evolution under spin-changing collisions.

50µm

(b) The time-of-flight image shows a change of the orientation of the spin from Fz = −1 (lower clouds) to
Fz = +1 (upper cloud). Local spin rotations of this type can be performed by specifically addressing
RF-pulses to the BEC with the help of AODs, thereby locally changing the Rabi-coupling between
differentmF components.

50µm

(c) Using AODs also allows one to cut-off the wings of an elongated atom cloud, such that the system
resembles a box.

Figure 1.3.: Well-developed experimental techniques allow for the specific and local manipulation of a
spin-1 BEC in an elongated trap. The colorbar is proportional to the number of atoms ob-
served via time-of-flight absorption imaging. Red refers to the maximal atom count and blue
to the shot noise limit. Images were captured and kindly provided by Stefan Lannig, SynQS
Heidelberg.
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1.2 The Lie Algebra su(3)

The simplest case of a spin system and one of the most widely used models in quantum physics is
the two-level system, often just referred to as qubit. In general, the state of such a system can be
represented by a complex two-component vector on the Bloch sphere [32, 33]. Transformations
to these states are formalized in the su(2) Lie Algebra which comprises a set of 2× 2 complex
unitary matrices. For a spin-1

2 particle, this matrix decomposition is generated by the Pauli
matrices σ̂, which is the fundamental representation of the su(2) group [34]

L̂ =
~
2
σ̂ . (1.8)

The spin operator L̂ preserves the spin length and satisfies the commutation relation[
L̂i, L̂j

]
= i~

∑
k

εijkL̂k . (1.9)

There are further extensions to this formalism: A system consisting of N qubits is, for example,
described within the su(2N ) algebra.

Three-level quantum systems are the simplest multi-valued systems and the spin-1 BEC is a com-
mon example of a three-level system. In contrast to the two-level system, their set of possible
physical transformations is larger. Hence, more operators are needed to fully describe the spin-1
states. In general, any interaction Hamiltonian coupling a spin-1 system can be constructed by
3× 3 complex unitary matrices. An orthogonal basis of the su(3) algebra is built by the identity
matrix 1 and the following, so-called Gell-Mann operators:

G1 =
1

2


0 1 0

1 0 0

0 0 0

 , G2 =
1

2


0 −i 0

i 0 0

0 0 0

 , G3 =
1

2


1 0 0

0 −1 0

0 0 0



G4 =
1

2


0 0 1

0 0 0

1 0 0

 , G5 =
1

2


0 0 −i
0 0 0

i 0 0

 , G6 =
1

2


0 0 0

0 0 1

0 1 0

 (1.10)

G7 =
1

2


0 0 0

0 0 −i
0 i 0

 , G8 =
1

2
√

3


1 0 0

0 1 0

0 0 −2

 .

This representation can be seen as arising from the Pauli matrices. The matricesG1 -G7 contain
one Pauli matrix each and a third column/row filled up with zeros. {G1, G2, G3}, {G4, G5, G8}
and {G6, G7, G8} form su(2)-subspaces of the su(3) Lie Algebra. Here,G8 is chosen in such a
way that the matrix completes the corresponding subspace. These operators generally describe a
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single spin-1 state. Here, it is important to mention that we seek to study ensembles of interact-
ing spins as described by the Hamiltonian (1.5) - (1.7). Therefore, we first relate the Gell-Mann
matrices to the modes of a spin-1 BEC and, second, introduce the notion of coherent spin states
(CSS) which significantly simplifies the description of collective spins.

The formalism of second quantization can be used in order to rewrite the total spin angular mo-
mentum in terms of the creation â† and annihilation operators â. It is convenient to introduce the
symmetric (ĝ) and anti-symmetric (ĥ) creation and annihilation operators ĝ† = 1√

2
(â†1 + â†−1)

and ĥ† = 1√
2
(â†1 − â

†
−1) and the corresponding Schwinger-representation using the three non-

commuting sets of collective pseudo-spin-1/2 operators Ŝ, Â and Ĵ, which can be straightfor-
wardly related to the Gell-Mann operators [4, 21]

Ŝx =
â†0ĝ + ĝ†â0

2
=
Ĝ1 + Ĝ6√

2
, Ĵx =

â†1â−1 + â†−1â1

2
= Ĝ4 ,

Ŝy =
â†0ĝ − ĝ†â0

2i
=
−Ĝ2 + Ĝ7√

2
, Ĵy =

â†1â−1 − â†−1â1

2i
= −Ĝ5 ,

(1.11)

Ŝz =
â†0â0 − ĝ†ĝ

2
=
−3Ĝ3 − 2Ĝ4 +

√
3Ĝ8

4
, Ĵz =

â†1â1 − â†−1â−1

2
=
Ĝ3 +

√
3Ĝ8

2
.

The operator Ŝ describes the two-level system composed by (â0, ĝ). Â corresponds to (â0, ĥ)

and is constructed in an analogous way. Both, Ŝ and Â describe the annihilation of a particle in
the central-mode (mF = 0) and the creation of a particle in the side mode (mF = ±1) and vice
versa. They are therefore closely related to the process of spin-changing collisions. In contrary,
Ĵ generates rotations in the (â1, â−1) subspace. Most notably, Ĵz accounts for the imbalance
between the side modes and, thus, the magnetization of the system.

We explicitly note the relation between the operator Ŝx, most relevant throughout discussions
in this thesis, and the operator F̂x, typically found in literature

Ŝx =
1

2
√

2

(
â†0â1 + â†0â−1 + â†1â0 + â†−1â0

)
=

1

2
F̂x. (1.12)

The choice of Ŝx instead of F̂x is rationalized by aiming to compute the quantum Fisher infor-
mation from an interferometric type of measurement without having to account for additional
correction factors when using the corresponding su(3) representation from the outset (see also
section 3.2, equation (3.7)).
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1.3 Coherent Spin States and Wigner Function

In general, many body spin states of N particles, as considered in this thesis, can become ex-
ceedingly complicated. Here, the notion of coherent spin states (CSS) [17] is very useful in order
to describe collective spin state and their properties. The simplest useful state for metrology is
the non-entangled coherent spin state [35] satisfying

Ŝ |θ, ϕ〉 = Ŝx sin(θ) cos(ϕ) + Ŝy sin(θ) sin(ϕ) + Ŝz cos(θ) (1.13)

We use the Wigner functionW (θ, ϕ) [18] to visualize these quantum states as a function of the
angles θ and ϕ on the Bloch sphere [32, 33]. For a j-spin system it is given by

W (θ, ϕ) =

2j∑
k=0

k∑
q=−k

ρkqYkq(θ, ϕ) , (1.14)

where the entries of the density operator ρkq determine the contribution of the spherical harmon-
ics Ykq. A detailed mathematical description of ρkq in terms of spherical transformations and
Clebsch-Gordan coefficients is given by R. Schmied [36]. TheWigner function constitutes a gen-
eralization of classical probability distributions with the central objective to represent quantum
states and their properties. In contrast to its classical analogues, it is called a quasi-probability
distribution because of its possible negativity.

To make this more clear and gain an intuitive understanding of the consequences of this quasi-
probability distribution, we briefly discuss the example of a classical and superimposed state as
shown in Figure 1.4. Figure 1.4a illustrates the intrinsic quantum spin noise of a coherent spin
state equally distributed between quadratures

〈∆Ŝ2
y〉 = 〈∆Ŝ2

z 〉 =
1

2
|〈Ŝx〉| =

S

2
. (1.15)

We observe that the Wigner function of this spin state shows no negativity [37]. In contrast,
the representation of a superimposed state (Figure 1.4b) demonstrates that the negativity of the
Wigner distribution can be associated with interference of quantum states. Fringes along the
equator exhibit negative regions in theWigner representation. The emerging interference pattern
already hints that rotations along the Ŝx-axis becomemore distinguishable when compared to the
non-superimposed coherent state (Figure 1.4a). This so-called phase sensitivity is an interesting
aspect of metrological enhancement using spin-states, becoming quite important in the course of
this work.

1.4 Spontaneous Symmetry Breaking

Another highly useful concept in the context of many-body spin systems is spontaneous symme-
try breaking (SBB), describing the emergence of a non-unique equilibrium state of a quantum
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(a) (b)

Figure 1.4.: Wigner function of a coherent spin state (left) and a superimposed on the Bloch sphere
(N = 14). The negativity of the quasi-probability distributions accounts for the quantum
mechanical character, especially interference. We observe, that the coherent spin state along
the Ŝx axis shows no negativity, whereas the Wigner function of the superimposed states
attains positive as well as negative values. To be precise, the superimposed state considered
here is a N00N state along the Ŝx axis, discussed in greater detail in section 5.2.

system in the thermodynamic limit [38]. The general idea states that as the size of a quantum sys-
tem grows, superpositions of the system as a whole become unstable against small perturbations.
In the limit of large particle numbers and low temperatures, even infinitesimal small perturba-
tions such as thermal or quantum fluctuation suffice to force the system into a state which does
not conform to the symmetry of the Hamiltonian anymore. As outlined in greater detail below,
SBB can then be explained from two non-commuting limits: In a macroscopic system without
perturbations the underlying symmetry of the Hamiltonian should not be broken. However, if
the system grows in the presence of an infinitesimal perturbation, it will be able to evolve into a
symmetry broken state [39].

One way to formalize a mathematical description [40] of this process is by using the effective
action2 Γ [φ], which generalizes the concept of classical action to quantum states

e−Γ[φ] =

∫
Dϕ e−S[ϕ]+

∫
X j[φ]·(ϕ−φ) . (1.16)

It comprises the microscopic action S [ϕ] and the source term j [φ] by means of all possible field
configurations ϕ with expectation value φ, i.e. φ = 〈ϕ 〉. A non-vanishing source (j [φ] 6= 0)
typically leads to explicit symmetry breaking by terms in the effective action which are non-
invariant under symmetry transformations. Setting the external source to zero (j [φ] = 0), we
see that any symmetry of the microscopic action will be shared by the effective action. Nev-
ertheless, the ground state of the theory may have a non-zero expectation value according to

2Technically speaking, the effective action is the generating functional of one-particle irreducible (1PI) correlation
functions [40, 41].
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φ0 := 〈ϕ〉j→0 6= 0. Spontaneous symmetry breaking refers to the case, where this expectation
value transforms non-trivially under rotations.

We elucidate this on the most prominent example of this phenomenon, namely ferromagnetism
[42]. At high temperatures the electron spins inside a ferromagnet are uncorrelated. By low-
ering the temperature, the spins get aligned which gives rise to a phase transition characterized
by a finite magnetization in a particular direction. This effect appears, for instance, within the
framework of the transverse field Ising model with ferromagnetic interactions (Jij > 0)

Ĥ = −
∑
〈i,j〉

Jij ŝiŝj +
∑
i

hiŝi , (1.17)

where ŝi is a binary Ising variable on site i of a lattice. The first term represents short ranged
interactions making it energetically favorable for spins to align parallel with one another. The
magnetic field hi in the second term can be regarded as a source of magnetization at site i. The
amount of magnetic order is given by the magnetizationM(h,N, T ) = 〈

∑N
i ŝi〉, which is also

the order parameter of the phase transition from an ordered to a disordered state.

The classical Ising model has two ground states for ferromagnetic interactions: One with all
spins pointing up, the other with all spins pointing down. The quantum Ising model, however,
has a single ground state ˆ|Ψ〉 = 1√

2
(|↑〉 − |↓〉) , which is a superposition of up and down. Set-

ting the external field parameter hi to zero, the Hamiltonian becomes invariant under a spin flip:
ŝi → −ŝi. Each configuration with a certain number of spins has a corresponding configuration
with all spins reversed and they should cancel when summing over all configurations. So, we
expect 〈

∑N
i ŝi〉 = 0. This reasoning, however, can only be applied to finite systems. If we first

enlarge the system to infinite volume and then remove the field, we have

lim
h→0

lim
N→∞

M(h,N, T )

6= 0 symmetry broken state

0 symmetry un-broken state.
(1.18)

Interchanging these limits always yields vanishing magnetization.

Another argument can be found in the structure of the eigenstates. The first excited state of
the quantum Ising model corresponds to the triplet ˆ|Ψ〉 = 1√

2
(|↑〉+ |↓〉). As N →∞, it can be

shown that the energy gap between the ground state and first excited states decays like exp(−N).
Any quantum or thermal fluctuation will therefore lead to a collapse of the state into a configura-
tion where all spins are either pointing up or down. That is why the quantum Ising model shows
phases of non-vanishing spontaneous magnetization in the infinite volume limit, most promi-
nently in the exact solution of the two-dimensional Ising model by L. Onsager ([43]). T. Koma
and H. Tasaki (1994) [44] prove analogous results for a broader class of lattice models which
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display degenerate ground states in the thermodynamic limit.

In the course of this thesis, SBB becomes particularly relevant to the discussion of highly entan-
gled many-particle states. The latter often correspond to inherently fragile superposition states
which might experiences SBB. For this reason, a clear distinction between symmetry broken and
symmetry unbroken states is necessary in order to properly estimate the amount of entanglement
in spin-1 BECs as we will see in chapter 5.

29



2 Bogoliubov Theory

A full quantum mechanical treatment of spinor Bose gases in extended systems is exponentially
difficult. Here, Bogoliubov theory is a versatile tool that enables one to describe the characteristic
low-energy excitations of quantummany-body systems. It is usually employed to diagonalize the
quadratic form of a Hamiltonian by means of so-called Bogoliubov transformations of the state.
The obtained quasi-particle modes can be employed to calculate operator eigenvalues, which are
directly connected to observables of the initial basis states. Furthermore, assessing the energy
spectrum allows for the description of finite-temperature effects as presented in this chapter. In
order to evaluate correlation functions using Bogoliubov theory, we additionally discuss the use
of Wick’s theorem for Gaussian states.

2.1 Diagonalization of Quadratic Bosonic Hamiltonians

First, we focus on the most general case of a Bogoliubov transformation for quadratic, bosonic
Hamiltonians as, for instance, outlined by J. van Hemmen [45]. Consider a system described by
a quadratic Hamiltonian of the form

H =
(
α̂† α̂

)(A B
C D

)(
α̂

α̂†

)
= â†M â . (2.1)

Here,M is a quadratic 2N ×2N matrix and, correspondingly,A,B, C,D areN ×N matrices1.
The entries of the operator â† = (α̂†, α̂) refer to bosonic annihilation and creation operators

â =

(
α̂

α̂†

)
=



α̂1

...
α̂N

α̂†1
...
α̂†N


, â† =

(
α̂† α̂

)
=
(
α̂†1 . . . α̂†N α̂1 . . . α̂N

)
, (2.2)

satisfying bosonic commutation relations

[α̂i, α̂
†
j ] = α̂iα̂

†
j − α̂

†
jα̂i = δij , [α̂i, α̂j ] = [α̂†i , α̂

†
j ] = 0 . (2.3)

1We use the following notation in this thesis: A† denotes the hermitian conjugate, A the complex conjugate and
AT the transpose of the matrix A
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This leads to the commutation relation for the compound operator â

[
âµ, â

†
ν

]
= Iµν with I =

(
1 0

0 −1

)
. (2.4)

H being hermitian implies together with the commutation relations (2.4) that the matrixM takes
the form

M =

(
A B
B A

)
. (2.5)

The problem of diagonalizing the Hamiltonian H amounts to finding a new basis b,b† with a
linear transformation T such that the Hamiltonian can be expressed by a diagonal 2N × 2N

matrix D as follows

H = b† T †MT︸ ︷︷ ︸
D

b = b†D b . (2.6)

The transformed basis states b̂ and b̂†, in which the problem (2.6) becomes diagonal, describe
the energetically low-lying excitations of the system. They are called quasi-particle modes and
resemble the structure of the initial modes â and â†

b̂ =

 β̂

β̂
†

 =



β̂1
...̂
βN
β̂†1
...
β̂†N

 . (2.7)

The canonical transformation T comprises the N ×N matrices U and V

T =

(
U V
V U

)
(2.8)

and relates the quasi-particle modes to the initial modes via â = T b̂. Because of the underlying
commutation relations, the diagonalization of bosonic Hamiltonians further requires that T is a
pseudo-unitary transformation in the sense that I = T IT † = T †IT with I from (2.4). By
inverting this expression one finds that there exists an inverse transformation

T −1 =

(
U† −V†

−V† U†

)
, (2.9)
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such that the components of the quasi-particle state b̂ become a linear combination of the initial
ones by b̂ = T −1 â. Because of their structure

β̂ = U†α̂− V†α̂† , β̂
†

= U†α̂† − V†α̂ , (2.10)

the quasi-particle excitations are often referred to as a particle- and hole-like excitation. More-
over, they fulfill bosonic commutation relations[

β̂i, β̂
†
j

]
= δij and

[
β̂i, β̂j

]
=
[
β̂†i , β̂

†
j

]
= 0 . (2.11)

Finding the correct transformation T of the state, such that the Hamiltonian becomes diagonal
in the quasi-particle modes, amounts for solving the eigenvalue equations [45]

IMx = ωx . (2.12)

The Bogoliubov transformation T can then be constructed from the eigenvectors x according to
T = {x1, . . .xn,J x1, . . . ,J xn}, where the operator J is defined as J ( a

b ) =
(
b
a

)
. As a con-

sequence, the spectrum of the BogoliubovHamiltonian is given byD = diag (ω1, . . . , ωn, ω1, . . . , ωn)

such that the final, diagonalized form of the Hamiltonian becomes

H = b̂†D b̂ =
N∑
i=1

~ωi
{
β̂†i β̂i + β̂iβ̂

†
i

}
∼=

N∑
i=1

2~ωiβ̂†i β̂i (2.13)

up to an additive constant.

To conclude, a diagonal Bogoliubov Hamiltonian can be obtained by a corresponding trans-
formation of the state. Physically this implies that the problem becomes diagonal in the basis of
quasi-particle modes, describing the characteristic and energetically low-lying excitations of the
system. Therefore, computing observables of the transformed state becomes significantly easier
[46].

2.2 Examples

Before discussing the calculation of observables from Bogoliubov theory in greater detail, we
consolidate our understanding by two simple examples.

2.2.1 Bosonic, Interacting Hamiltonian

As a first, pedagogical example, we discuss the simplest case of a single bosonic mode Hamilto-
nian with interactions2

(Ekin − µ) â†â+ Eint â
†â† â â , (2.14)

2The Hamiltonian (2.14) can be also seen as the equivalent to an anharmonic oscialltor.
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where â and â† are bosonic annihilation and creation operators. All relevant parameters are
assumed to be real-valued for simplicity. The model is parameterized by the kinetic energy Ekin
associated with the total number of atoms and the interaction energyEint associated with pairing
and collision processes. The chemical potential µ fixes the particle number. In the following
mean-field approximation (see also subsection 5.3.1), we treat the operators as uncorrelated in
the sense that 〈â�â◦〉 = 〈â�〉〈â◦〉, where � and ◦ denote whether the hermitian conjugate is
applied to the operator â. The semi-classical expansion

â ∼= 〈â〉+ α̂ = ζ + α̂ (2.15)

decomposes the fields into its real-valued expectation value3 〈â〉 = ζ and fluctuations α̂. It
follows from direct computation that the fluctuations fulfill bosonic commutation relations as
well. The mean-field decomposition brings the Hamiltonian (2.14) into quadratic form when
considering only terms up to second order in fluctuations

H ∼= (Ekin − µ) ζ2 + Eint ζ
4

+
[
(Ekin − µ) ζ + Eint ζ

3
]

(α̂† + α̂)

+ (Ekin − µ) α̂†α̂+ Eint ζ
2
(
α̂†α̂† + α̂α̂† + α̂†α̂+ α̂α̂

)
+O(α̂3) .

(2.16)

The constant term E0 = Ekin − µζ2 + Eint ζ
4 gives the ground state energy. Minimizing E0

with respect to the parameter ζ implies ζ2 = (µ−Ekin)
2Eint

= N0. This equation gives the relation
between the chemical potential µ and the total number of particlesN0. Inherent to the expansion
around the mean-field solution ζ, minimizing the ground state energy, the linear term in (2.16)
vanishes. Hence, the Hamiltonian (2.16) attains a quadratic form

H = E0 +
(
α̂† α̂

)(Ekin−µ
2 + Eint ζ

2 Eint ζ
2

Eint ζ
2 Ekin−µ

2 + Eint ζ
2

)
︸ ︷︷ ︸

M

(
α̂

α̂†

)
(2.17)

It is characterized by the matrixM =
(
A B
B A

)
with entries A = Ekin−µ

2 + Eint ζ
2 and B =

Eint ζ
2. In order to apply Bogoliubov theory for bosonic systems as described above, we compute

the eigenvalue equation

IMx = ω x with IM =

(
A B

−B −A

)
. (2.18)

This gives the eigenenergies ω = ±
√
A2 −B2. The positive-definiteness of the Hamiltonian

is required in order to assure stable dynamics [46] in bosonic systems, i.e. ω > 0. The diago-
nalization problem D = TMT and the bosonic commutation relations I = T IT † imply the

3In general, if ζ ∈ C, the phase may play an important role, see also subsection 5.3.1.
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following constraint (
ω 0

0 ω

)
=

(
U V

V U

)(
A B

B A

)(
U V

V U

)
. (2.19)

Solving this set of equations yields the entries of the transformation matrix T =
(
U V
V U

)
V = −

√
1

2

(
±B
ω
− 1

)
and U =

√
1

2

(
±B
ω

+ 1

)
. (2.20)

Accordingly, the quasi-particle modes β̂ and β̂† read:

β̂ =

√
1

2

(
±B
ω

+ 1

)
α̂+

√
1

2

(
±B
ω
− 1

)
α̂† ,

β̂† =

√
1

2

(
±B
ω

+ 1

)
α̂† +

√
1

2

(
±B
ω
− 1

)
α̂ .

(2.21)

As one can see, equation (2.21) shows that the quasi-particle modes can be expressed as a linear
combination of the initial modes. In the limit of Bw → 1 the particle- and hole-like excitations
resemble the annihilation and creation operators, α̂ and α̂†, respectively.

2.2.2 SMA Hamiltonian of Spin-1 BEC in Polar Phase

As a second example, we discuss the single-mode approximation (SMA) Hamiltonian (see also
chapter 5) of the spin-1 Bose-Einstein condensate in the Polar phase

H '
[
λ
(
N − 1

2

)
+ q
] (
â†1â1 + â†−1â−1

)
+ λN

(
â†1â
†
−1 + â1â−1

)
. (2.22)

In order to arrive at this Hamiltonian, we apply similar approximations as those guiding us from
(2.14) to (2.17). Here, q denotes the magnetic field parameter, N the particle number and λ the
interaction constant. Up to an additive constant and defining c(q,N) = λ

(
N − 1

2

)
+ q , A± =

c(q,N)±Eλq
2 and B = λN

2 , the Hamiltonian can be rewritten in matrix form

H '
(
â†1 â−1 â†−1 â1

)

A+ B 0 0

B A− 0 0

0 0 A+ B

0 0 B A−




â1

â†−1

â−1

â†1

 . (2.23)
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The upper left and lower right sub-matrix
(
A+ B
B A−

)
can be diagonalized in analogy to the above

example. We find the following expressions

U =

√
c(q,N) + Eλq

2Eλq
, V = −

√
c(q,N)− Eλq

2Eλq
, (2.24)

where Eλq =
√

(λ2 − q)(
λ
2 − q − 2λN) is the ground state energy. The new quasi-particle

operators read

β̂1 = Uâ1 + V â†−1 , β̂−1 = Uâ−1 + V â†1 (2.25)

and the Hamiltonian becomes

H =
(
β̂†1 β̂−1 β̂†−1 β̂1

)

Eλq 0 0 0

0 0 0 0

0 0 Eλq 0

0 0 0 0




β̂1

β̂†−1

β̂−1

β̂†1

 = Eλq

(
β̂†1β̂1 + β̂†−1β̂−1

)
.

(2.26)

Equation (2.26) demonstrates once again that the Hamiltonian becomes diagonal after the correct
transformation of the state. Thus, the main conclusion that can be drawn from the introduction
on Bogoliubov theory and the two examples is that Bogoliubov transformations considerably
simplify calculations within a quadratic theory. Often -and also in the course of this thesis-,
further approximations are needed in order to arrive at a quadratic Hamiltonian in the first place.
On this level, the Bogoliubov descriptions is equivalent to the initial basis, though the physical
sense is readily visible and explainable in the quasi-particle picture. We will exploit this in order
to calculate the quantum Fisher information of a spin-1 BEC, first, in single mode approximation
(chapter 5) and second, in the extended system (chapter 6).

2.3 Wick’s Theorem for Gaussian Fields

In order to fully reap the potential of Bogoliubov theory, we examine the consequence of Wick’s
theorem [47] to the computation of observables. The most general formulation of this theorem
can be found in Appendix A.1. Within a quadratic theory,Wick’s theorem is a particularly helpful
tool to deal with real-valued operators having a joint Gaussian distribution with zero means, such
as the (vacuum) expectation value of particle annihilation and creation operators. We denote the
Gaussian bosonic operators by â and find that Wick’s theorem gives an identity for the N -point
correlation function with N being an even number

〈â1â2 . . . âN 〉 = 〈âi1 âi2〉 . . . 〈âiN−1 âiN 〉 , (2.27)
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Hence, the expectation value of the product of an even number N of creation and annihilation
operators can be expressed as a sum of contracted normally ordered4 terms. The N - point cor-
relation function can thus be calculated from first order correlation function5. In particular, the
second order correlation function for bosonic operators becomes

〈â1â2â3â4〉 = 〈â1â2〉〈â3â4〉+ 〈â1â3〉〈â2â4〉+ 〈â1â4〉〈â2â3〉 . (2.28)

This is a practical rule for calculating the variance (∆Ô)2 = 〈Ô2〉 − 〈Ô〉2 of a bosonic operator
of the form Ô =

∑
i,j âiâj which will be used later to calculate the quantum Fisher information

for spin-1 BECs.

4For the definition of normal ordering see Appendix A.1.
5In this thesis, the term first order correlation function refers to the two-point correlator g1(x1, x2) =
〈Ô(x1) Ô(x2)〉 and, correspondingly, second order correlation function refers to the four-point correlator
g2(x1, x2, x3, x4) = 〈Ô(x1) Ô(x2) Ô(x3) Ô(x4)〉.
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3 Quantum Fisher Information

The classical Fisher information is a fundamental quantity in estimation theory [48, 9]. Corre-
spondingly, its quantum analogue, the quantum Fisher information (QFI), is a central quantity
in quantum metrology [8, 11, 1]. The QFI is closely related to well-established experimental
protocols such as quantum interferometry [10] and dynamical susceptibilities measures [12] of
quantum many-body systems. The QFI is also capable of classifying multipartite entanglement,
both at zero and finite temperature. Furthermore, it allows to identify strongly entangled phase
transitions through its universal scaling behavior [12, 49] when approaching the critical point.
Before outlining mathematical formulations of the quantum Fisher information, we introduce the
notion of multipartite entanglement.

3.1 Multipartite Entanglement

The classification of multipartite entanglement is closely related to the definition of k-producible
states [50, 11]: A pure state |Ψ〉 of a quantum system with N particles is called k-producible if
we can write

|Ψ〉 = |Ψ1〉 ⊗ |Ψ2〉 ⊗ · · · ⊗ |Ψk〉 , (3.1)

where the |Ψi〉 are states of maximally k particles. The state contains genuine k-particle entan-
glement if it is k-producible but not (k − 1)-producible. Therefore, a k-partite entangled state
can be written as a product state

|Ψk−ent〉 = ⊗Ml=1 |Ψl〉 (3.2)

with the normalization condition
∑M

l=1Nl = N . Here, at least one state |Ψl〉 ofNl = k particles
does not factorize and is therefore k-partite entangled. k-producibility can be readily extended
to mixed states ρ =

∑
i pi |Ψi〉 〈Ψi|. Such a state is called k-producible if it can be written as a

mixture of (kl ≤ k)-producible pure states [11], that is,

ρk−prod =
∑
l

pl |Ψk−prod〉 〈Ψk−prod| . (3.3)

3.2 Classical and Quantum Phase Estimation

Precision measurements are often based on the detection of a weak signal which distinguishes
different states of the system [8]. The most general example is the estimation of a phase shift
ϑ using classical interferometry. The task of finding the best possible estimation of ϑ can be
formalized as a classical optimization of the estimator ϑ from measurements x, distributed ac-
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cording to some probability density function f(x;ϑ). The ultimate precision achievable in a
single measurement is then given by the Cramér-Rao lower bound [48]

(∆ϑ)2 ≥ 1

F
, (3.4)

which states that the inverse of the classical Fisher informationF is a lower bound on the variance
of any unbiased estimator of ϑ, with

F = −
〈
∂2 log(f(x;ϑ)

∂ϑ2

〉
. (3.5)

An unbiased estimator is given when the mean value coincides with the true value of the phase
shift, i.e. 〈ϑ〉 = ϑ̃. Usually, the Cramér-Rao lower bound is sufficiently reached in the approxi-
mation of a large number of measurements when ϑ approaches ϑ̃. Intuitively, we can understand
(3.4) from the fact that the true parameter ϑ̃ maximizes the value of the log-likelihood function

∂ log(f(x; ϑ̃)

∂ϑ
= 0 . (3.6)

Since the classical Fisher information (3.5) is defined as the second derivative of the log-likelihood
function, it is a measure for how variable the maximum likelihood estimation is, given the pa-
rameter ϑ.

The notion of parameter estimation can be generalized to quantum states. The transformation
of a probe state

ρ′ = e−iϑÔρ eiϑÔ (3.7)

is characterized by the hermitian operator Ô with difference 1 between the maximal and minimal
eigenvalues of Ô. In a typical atom interferometry experiment, the unknown phase imprint ϑ is
determined from measuring ρ′. The quantum Cramér-Rao bound then gives the limit to the
precision with which the phase shift ϑ can be estimated as a function of the quantum Fisher
information FQ and number of measurementsM

(∆ϑ)2 > (MFQ)−1 . (3.8)

For pure states ρ = |Ψ〉 〈Ψ|, the QFI takes the simple form

FQ = 4
(
〈Ψ| Ô2 |Ψ〉 − 〈Ψ| Ô |Ψ〉2

)
. (3.9)
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For mixed states, such as a thermal ensemble ρ =
∑

λ pλ |λ〉 〈λ| with energy eigenbasis |λ〉 and
occupation probabilities pλ = exp(−βEλ) /Z, the QFI can be obtained from

FQ = 2
∑
λ,λ′

(pλ − pλ′)2

pλ + pλ′
〈λ|Ô|λ′〉2 , (3.10)

where only terms with pλ + pλ′ > 0 are taken into account. This formulation is considerably
more complicated and, in general, requires full tomography of the state.

In quantum metrology problems with linear interferometers, which is the most relevant type of
metrology considering large particle ensembles, the operator Ô is a linear observable generating
the interferometric transformation u Ĝ. The interferometric direction is defined by u and the
collective transformation Ĝ =

∑N
i ĝ(i) is constituted from the generators g(i) of the underlying

su(N)-algebra of the N -particle system.

Considering the case of a spin-1/2 systems, the operator Ô can be described by a collective
angular momentum component defined as

Ô =
∑
l

n̂lσ̂l , (3.11)

where σ̂l = (σ̂xl , σ̂
y
l , σ̂

z
l ) are the Pauli matrices for spin l. n̂l correspondingly describes a unit

vector on the Bloch sphere. For separable N -particle states in a linear interferometer it was
shown that the quantum Fisher information is bounded by [10]

FQ ≤ N . (3.12)

Any state violating this bound (3.12) with

FQ
N

> m (3.13)

surpasses classical limits and witnessesm+1 - partite entanglement. For general spin-1/2 states
the upper bound is

FQ ≤ N2 (3.14)

which is called the Heisenberg-limit. The entanglement criterion (3.12) can be extended to de-
grees of freedom other than spin-1/2, as long as Ô represents a sum of local operators with a
bounded spectrum. If λmax and λmin are the largest and smallest eigenvalues, respectively, of
the operator Ô, then the right-hand side of equation (3.13) acquires the prefactor (λmax−λmin)2.
Viewing the quantum Fisher information again in the context of a phase estimation problem, the
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optimal phase uncertainty attainable with am-partite entangled state is

∆ϑ =
1√
mN

. (3.15)

The uncertainty ∆ϑ = 1/
√
N is called standard quantum limit (SQL) and gives the most precise

estimation when measuringN uncorrelated particles. Thus, equation (3.15) has the physical im-
plication that increasing the number of entangled particles yields a better estimation of the phase
shift ϑ. So again, FQ quantifies how sensitive the state is against the phase shift ϑ.

This is very similar to our intuitive understanding of the difference in phase sensitivity from
the quasi-probability distributions (Figure 1.4) of a coherent and a superimposed state. Ro-
tations eiϑŜy of the coherent spin state (1.13) aligned along the z-axis and characterized by∣∣θ = π

2 , ϕ = 0
〉
, can be detected with best possible phase resolution

∆ϑ =
∆Ŝz
∂
∂ϑ〈Ŝz〉

∣∣∣∣∣
ϑ=0

=

√
S/2

S
=

1√
N
, (3.16)

corresponding to the SQL. 〈Ŝz〉 and ∆Ŝz =
√

S
2 from equation (1.15) represent the mean and

standard deviation. This bound can be surpassed with the help of correlations and entanglement
of the collective spin state, such as depicted in Figure 1.4b.

To conclude, under the action of the unitary transformation (3.7) with suitable operator Ô, entan-
gled states become more distinguishable (i.e. evolve more rapidly) than separable states. Hence,
quantum correlations in the system can be exploited in order to enhance the sensitivity of a linear
interferometer.
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Part II.

Studying Multipartite
Entanglement in Spin-1 BECs
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4 Extracting Quantum Fisher Information from Quench Dynamics

Now that the fundamentals of spinor Bose gases, Bogoliubov theory, and quantum Fisher infor-
mation (QFI) have been introduced, we combine these concepts in order to study the multipartite
entanglement content of a spin-1 Bose-Einstein condensate, which is the major objective of this
thesis. Part of this strategy is to present an overarching framework of extracting the QFI from
quench dynamics using mean-field Bogoliubov theory, discussed in this chapter. Based on this
method, we study multipartite entanglement in spin-1 BECs, first, in single-mode approximation
(chapter 5) and, second, in an extended system (chapter 6).

Previous research revealed the possibility to create metrologically useful states with spinor Bose
gases, thereby going beyond classical limits [4, 2, 24]. So far, however, only lower bounds to
the QFI have been experimentally measured [25, 6, 5]. Extracting the QFI from equation (3.10)
is in general a hard task in both theory and experiment. A comparably new, but seminal ap-
proach [12] relates the QFI to dynamic quantities, in particular, the dynamic susceptibility. After
a weak quench, introducing new dynamics to the system, the dynamic susceptibility accounts for
the temporal evolution of quantum fluctuations. The connection to the QFI arises from the fact
that the sensitivity of a state towards a weak quench is determined by its fluctuations. Or in other
words, this approach extracts the amount of entanglement by means of the dynamic susceptibil-
ity, which contains information about the generation of correlations in the system.

In order to fully recap the potential of extracting QFI through dynamic susceptibilities, mean-
field Bogoliubov theory is a tool that enables us to describe the underlying physics of the system
and to compute relevant observables. Therefore, this chapter not only reviews the relation be-
tween dynamic susceptibilities and QFI, but also shows how first order correlation functions after
a weak quench can be computed from Bogoliubov theory. By doing so, we connect the two con-
cepts, Bogoliubov theory and QFI, and give an overview of the methodology applied within this
thesis.

4.1 Linear Response Theory

Dynamic susceptibility is a central quantity in linear response theory, describing the change of
time-dependent observables after a weak perturbation to an equilibrium system. Measuring this
quantity has therefore become a very effective and widely used method in condensed matter
physics for studying the dynamics of driving the system out of equilibrium [51].
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4.1. LINEAR RESPONSE THEORY

In thermal equilibrium, a quantum system is characterized by the density matrix

ρ0 =
1

Z
e−βĤ0 with Z = Tr{ e−βĤ0} , (4.1)

where Z is the partition function and β the inverse temperature, defined as β = (kBT )−1. Ap-
plying a sufficiently weak external force f(t) gives rise to a linear time-dependent perturbation
in the total Hamiltonian

Ĥ = Ĥ0 − f(t)Â , (4.2)

where Â is a time-independent operator. As a consequence of this perturbation, the density
matrix ρ(t) becomes time-dependent, and so does the ensemble average of the operator B̂(t)

B̂(t) = Tr{ρ(t)B̂} . (4.3)

The response function, through the so-calledKubo formula [52], relates the change of an ensemble-
averaged physical observable 〈B̂(t)〉 to an external force f(t) via

〈B̂(t)〉 = 〈B̂〉+

∫ t

−∞
dt′ f(t′)χBA(t− t′) , (4.4)

where 〈B̂〉 = Tr{ρ0 B̂} and f(t) is assumed to vanish for t → ∞. As indicated by its name,
linear response theory requires that the differential change of 〈B̂〉 is proportional to the external
disturbance f(t). The disturbances at different times act independently of each other, implying
that the response function χBA in (4.4) may only depend on the time difference t− t′ and is in-
dependent of any future perturbations. This causal behavior may be incorporated in the response
function by the requirement

χBA(t− t′) = 0 for t′ > t . (4.5)

Consider the special case of f(t) = λΘ(t), with quench strength λ and the Heaviside step func-
tion Θ(t) = 0 or 1 when t < 0 or t ≥ 0, respectively (Figure 4.1). The Kubo formula (4.4) then
relates the time-dependent response function up to linear order in perturbation to the operators
in Heisenberg picture as follows

〈B̂(t)〉 = 〈B̂〉+ λ

∫ t

0
dt′ χBA(t′)

χBA(t− t′) = iΘ(t− t′)〈[B̂(t), Â(t′)]〉 .
(4.6)

Since the response function χBA only depends on the time difference, it is very convenient to
introduce the Fourier transform of the response function χBA(ω) =

∫∞
−∞ dt e

iωtχBA(t), which
is called the frequency-dependent or generalized susceptibility. It is a complex function which
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Figure 4.1.: By adding a ’step function - like’ potential to the Hamiltonian (4.2) introduces dynamics to the
system which can be observed in the time-dependent change of an observable Ô(t). Figure
courtesy of Ricardo Costa de Almeida, SynQS Heidelberg.

consists of a symmetric (reactive) part χ′BA and anti-symmetric (absorptive) part χ′′BA as follows

χ′BA(ω) =
1

2
{χBA(ω) + χAB(−ω∗)}

χ′′BA(ω) =
1

2i
{χBA(ω)− χAB(−ω∗)} .

(4.7)

4.2 Quantum Fisher Information through Dynamic Susceptibilities

With the use of the Kubo formula (4.6) and the absorptive part of the susceptibility χ′′ (4.7), it
was shown [12] that the quantum Fisher information can be computed by integrating over the
frequency spectrum

FQ(T ) =
4

π

∫ ∞
0

dω tanh
( ω

2T

)
χ′′(ω, T ) , (4.8)

where T is the temperature. The strength of this expression is that the QFI becomes a quantity
which is straightforward tomeasure, even for large systems, at finite temperatures and in real time.

The connection between QFI and linear response theory can be understood from the definition
of the dynamic susceptibility

χ(ω, T ) = i

∫ ∞
0

dt eiωt tr
(
ρ
[
Ô(t), Ô

])
, (4.9)

where we have inserted Â = B̂ = Ô into (4.6). Accordingly, the dynamic susceptibility contains
information about quantum fluctuations, which determine the time evolution of Ô. From these
fluctuations, the QFI quantifies the sensitivity of a state towards external perturbation.

If the assumptions of a thermal initial state and a weak quench are fulfilled, the connection
between QFI and dynamic susceptibility always holds. However, relating the quantum Fisher
information to multipartite entanglement depends on the choice of the operator Ô. A suitable Ô
accounts for quantum correlations which enhance the metrological sensitivity of the state and, in
turn, are related to entanglement in the system. We explicitly examine this on the example of a
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bosonic spin chain in section 6.2.

An equivalent formulation of equation (4.8) in the time-domain can be rigorously obtained using
Fourier transformations [53]. Equation (4.8) contains essentially the integral of a product of two
odd function, tanh

(
−βω

2

)
and χ′′(ω), such that tanh

(
−βω

2

)
χ′′(−ω) = tanh

(
βω
2

)
χ′′(ω) is

even. Without loss of generality, the boundary of the integral can be changed according to

⇒ F =
2

π

∫ ∞
−∞

dω tanh

(
βω

2

)
χ′′(ω) . (4.10)

Furthermore, we rewrite (4.6) as follows

χ(t) =
d

dt

〈Ô(t)〉
λ

=
d

dt

〈Ô(t)〉 − 〈Ô〉
λ

. (4.11)

Performing the Fourier transform with the use of

χ′′(ω) =

∫ ∞
−∞

dt eiωtχ′′(t)

χ′′(t) =
1

2i
{χ(t)− χ(−t)} =


χ(t)
2i , t ≥ 0

−χ(−t)
2i , t < 0

,

(4.12)

leads to the quantum Fisher information [53]

FQ(T ) = 4πT 2

∫ ∞
0

dt
η(t)

sinh(πtT ) tanh(πtT )
. (4.13)

Here, we introduce the short form η(t) of the time-dependent change of Ô, normalized with
respect to the quench strength

η(t) :=
〈Ô(t)〉 − 〈Ô〉

λ
. (4.14)

We will make extensive use of (4.13) for the computation of the entanglement content in an ex-
tended spin-1 BEC, as demonstrated in Figure 4.2.

To conclude, multipartite entanglement can be deduced from many-body correlations contained
in experimentally accessible dynamic susceptibilities of a quantum system. Those can be, for
example, extracted after a weak quench introducing new dynamics to the system. We also recall
that in the case of a pure state at zero temperature, the quantum Fisher information becomes
considerably easier and can be computed from the variance of an observable (3.9).

4.3 Correlation Functions from Bogoliubov Theory

In either way, it is essential to calculate first and second order correlation functions in order to de-
termine the quantum Fisher information. To this end, this section presents a detailed description
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Figure 4.2.: Schematical extraction of the quantum Fisher information from simulated data: First, a
quench introduces dynamics to the system and leads to a time-dependent change in the ob-
servable which can be observed in a linear response measurement (left pannel). Second, the
QFI is computed from the temperature-dependent integral (4.13). The QFI is thus given by
the shaded area of the right pannel.

of how correlation functions can be computed from Bogoliubov theory in thermal equilibrium
and after a weak quench, including time evolution.

4.3.1 Thermal Equilibrium

As outlined before, thermal equilibrium is generally characterized by an equilibrium density ma-
trix ρ0 within the meaning of equation (4.1). Diagonalization of a bosonic Hamiltonian with the
help of Bogoliubov transformation (2.13) yields the quasi-particle spectrumω = (ω1, . . . ωn, ω1, . . . ωn)

and the quasi-particle modes b† and b, as described in section 2.1. We define the entries of the
so-called the correlation matrix Γ = 〈bb†〉, containing all first order correlation functions, as
follows

Γij = Tr
{
ρ0 bib

†
j

}
= 〈bib†j〉 . (4.15)

For the sake of simplicity, the hat ’̂ ’ on the operators is omitted within this section. Since
the quasi-particle basis corresponds to the eigenbasis of the problem with eigenenergies ωi, the
population of modes in thermal equilibrium is given by

〈β†i (z)βi(z)〉 = (exp(β~ωi)− 1)−1 . (4.16)

Performing the Bogoliubv transformations of the state a = T b, as outlined in section 2.1, the
correlation matrix Γa in the initial modes (here denoted by the subscript a) reads

Γa = 〈aa†〉 = T 〈bb†〉 T † = T Γ T † . (4.17)

As a consequence, first order correlation functions in the initial frame can be read off from the
elements of the correlation matrix Γa. This procedure will become considerably more compli-
cated if the problem is not diagonal anymore, as for example, after a weak quench. We derive
the correlation matrix and its time-evolution for this specific case in what follows.
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4.3.2 Time-Evolution Following a Weak Quench

Assuming a Hamiltonian of the form H(λ) = a†M(λ) a, which is described by the matrixM
depending on a quench parameter λ, we find two distinct Bogoliubov transformations diagonal-
izing the HamiltonianH(λ0) andH(λ) before and after the quench λ0 → λ, respectively. From
here on, operators and matrices in the initial basis are denoted by ”˜”, as, for instance, b̃. Ac-
cordingly, the Bogoliubov transformation T̃ diagonalizes the HamiltonianH(λ0) and, the same
does T for H(λ) as depicted in Figure 4.3. Both quasi-particle states b̃ and b are related to the
same initial state a via T̃ and T , respectively.

H(λ0) = b̃†( T̃ †M(λ0)T̃ ) b̃ = b̃†D̃ b̃, b̃ = T̃ −1a

H(λ) = b†( T †M(λ)T ) b = b†D b, b = T −1a .
(4.18)

Combining these two equations, the new quasi-particle operator can be expressed in terms of the
initial ones, b = T −1 T̃ b̃ , such that the Hamiltonian becomes

H(λ) = b̃†T̃ † T −1†T †︸ ︷︷ ︸
1

M(λ) T T −1︸ ︷︷ ︸
1
T̃ b̃ = b̃†T̃ †M(λ)T̃ b̃ . (4.19)

Here, it is important to note that T̃ †M(λ)T̃ is not diagonal any more. This reflects the fact
that the quench introduces new dynamics to the system, which is encoded in the off-diagonal
elements, thereby accounting for the redistribution of the occupation of modes.

λ0 1) Γ̃ (t0) initial, equilibrated state, t0

λ 2) Γ(t) 3) Γa(t) quenched state, t
T

T −1
qp

T̃

Figure 4.3.: Bogoliubov transformation form a group. That is why the transformation Tqp = T̃ −1T be-
tween the two quasi-particle modes b̃ = Tqp b can be calculated from the transformations
diagonalizing the Hamiltonian before and afer the quench. We will use this in order to pop-
ulate the modes in the inital basis and perform the time-evolution in the quenched state as
outlined in Figure 4.4.

We are interested in the time evolution of an observable O(t) under the quench λ0 → λ. In
general, time-dependent expectation values of observables can be computed from the partition
functionZ and the densitymatrix ρ0 in theHeisenberg picture via 〈Ô(t)〉 = Tr {ρ(t)O}. Making
use of the invariance of the trace under cyclic permutations and inserting the expression O =
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bb†, yields the time evolution of the correlation matrix Γ

Γ(t) = Tr
{
ρ0 e

iH(λ)tbb†e−iH(λ)t
}

= 〈bb†(t)〉 . (4.20)

Γ = 〈bb†〉 contains combinations of quasi-particle operators β◦i β�j , whereby � and ◦ denote
whether the hermitian conjugate is applied to β. The term β◦i β

�
j (t) = eiH(λ)tβ◦i β

�
j e
−iH(λ)t

can be computed from the commutator with the Bogoliubov Hamiltonian (4.19) according to the
Heisenberg equation of motion

d
dtβ
◦
i β
�
j (t) = i

[
H, β◦i β�j

]
− ∂

∂t

(
β◦i β

�
j

)
. (4.21)

The last term is zero because β◦i β�j is not explicitly time-dependent, such that the equations of
motion become

d
dtβ
◦
i β
�
j (t) = i

[
H, β◦i β�j

]
= i

[
n∑
k=1

~ωk{β̂†kβ̂k + β̂kβ̂
†
k}, β

◦
i β
�
j

]
. (4.22)

An exponential ansatz solves the time evolution, which can be formalized by a matrix product
using the unitary matrix E(t)

Γ(t) = E(t) Γ E†(t) . (4.23)

E(t) is a diagonal matrix resembling the form diag
(
e−i~ω1t, · · · , e−i~ωnt, ei~ω1t, · · · , ei~ωnt

)
in

the quench-basis. The exact form is specific to the equations of motion (4.22) and commutation
relations, which can be also seen from the example given in Appendix A.5.

Now that we have described the time-evolution and the transformations between quasi-particle
modes before and after a weak quench λ0 → λ, we put all the pieces together and compute the
correlation matrix Γa(t) at time t after the quench

Γa(t) = T E(t)T −1
qp Γ̃(t0) T −1 †

qp E†(t)︸ ︷︷ ︸
Γ(t)

T † . (4.24)

Given an initial population of quasi-particle modes in thermal equilibrium Γ̃(t0) = 〈b̃b̃†〉, we
use the eigenenergies of the quenched Hamiltonian in order to perform the time evolution with
E(t) in the quench basis. The obtained correlation matrix is then rotated back into the initial
modes by means of the compound Bogoliubov transformation Tqp = T̃ −1T (Figure 4.3). Fi-
nally, the correlation functions can be read off from the matrix elements of Γa. This scheme of
calculating Γa from equation (4.24) is also summarized in Figure 4.4.

To conclude, observables relevant to the calculation of the quantum Fisher information can be
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obtained from the correlation matrix Γa(t), which is given by the initial population of the quasi-
particle modes in thermal equilibrium, the Bogoliubov transformations T , T̃ , and the eigenvalues
ωi in the quenched system, as outlined in Figure 4.4.

Quench Recipe

1) Diagonalize the quadratic, equilibrium Hamiltonian using Bogoliubov theory:

H = b†D b with D = T †MT = diag(ω1, . . . , ωN , ω1, . . . , ωN )

2) Populate quasi-particle modes in thermal equilibrium at t = 0:

〈β†i (z)βi(z)〉 = (exp(β~ωi)− 1)−1

3) Construct unitary, time-evolution matrix E(t) from the equations of motion and the
eigenvalues ωi of the quenched systems

4) Perform time evolution according to: Γ(t) = E(t) T −1
qp Γ̃(t0) T −1 †

qp E†(t)

5) Rotate back into the initial modes: Γa(t) = T Γ(t) T †

6) Extract time dependent observables from first order correlation functions contained
in Γa(t) = 〈aa† (t)〉

Figure 4.4.: Methodology as applied within this thesis for extracting first order correlation function after
a weak quench using Bogoliubov theory.
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5 Quantum Fisher Information of a Spin-1 BEC in Single-Mode
Approximation

As outlined in the previous sections, Bogoliubov theory can be exploited to compute the quan-
tum Fisher information from the variance of a pure state at zero temperature. Due to the under-
lying assumptions of Bogoliubov theory, which significantly decrease computational efforts, it
is possible to study large many-particle systems such as spinor Bose gases. By employing the
scheme from section 4.3, we numerically investigate the QFI for a single-mode spin-1 BEC with
N = 12000 particles in the Broken-Axisymmetry (BA) phase in this section. We choose the BA
phase because a large many-particle entanglement can be expected due to a strong presence of
spin-changing collisions [21]. In addition to that, we compare the results to calculations based
on exact diagonalization of a system with N = 500 particles.

5.1 Single-Mode Approximation

The single-mode approximation [28, 7] assumes that the wave function for each spin component
retains the same spatial atomic distribution and, further, that this density profile is not affected by
spin dynamics. When interactions are weak and well below the critical temperature, almost all
particles are found in the zero momentum mode (k = 0). Additionally, a length scale separation
is provided by the different interaction strengths λs and λa in the main Hamiltonian (1.5)-(1.7),
which allows one to treat spatial and spin internal modes independently1. These assumptions are
valid in the limit where the spatial extension of the condensate is comparable to or smaller than
the spin-healing length. It thus justifies the approximation of the field operator by a product of
the ground state solution φ(r) of the Gross-Pitaevskii equation [26, 27] and the bosonic operator
âm

ψ̂m ≈ âm φ(r) . (5.1)

In this context, we use âm (â†m) as the operator annihilating (creating) a bosonic particle in the
mF = m hyperfine state. Integrating out the spatially dependent part, the second quantized form

1for bosons such as 87Rb and 23Na, one typically finds |λs| � |λa| [23].
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5.1. SINGLE-MODE APPROXIMATION

of the Hamiltonian (1.5) - (1.7) reads

ĤS = −λsN̂(N̂ − 1)− µN̂

ĤA = λa
{
â†1 â

†
1 â1 â1 + â†−1 â

†
−1 â−1 â−1 + 2â†1 â

†
0 â1 â0 + 2â†−1 â

†
0 â−1 â0

− 2â†1 â
†
−1 â1 â−1 + 2â†0 â

†
0 â1 â−1 + 2â†1 â

†
−1 â0 â0︸ ︷︷ ︸

SCC

}
ĤB = p (N̂1 − N̂−1) + q (N̂1 + N̂−1) .

The spatially integrated interaction strengths are given by 2λi = λi
∫
dr |φ(r)4| and N̂ =

N̂0+N̂1+N̂−1 denotes the total number of atoms in the condensate with N̂0 = â†0â0 and N̂±1 =

â†±1â±1. Hence, ĤS is a constant as long as there is no atom loss or change in the trapping poten-
tial and ĤA determines the non-trivial dynamics involving spin-changing collisions. The Zeeman
energies are taken into account by ĤB .

A vanishing linear Zeeman effect (p = 0) is assumed in this thesis which can be taken care
of experimentally by a rotating frame approximation [54, 55]. The second quantized form of the
single-mode approximation Hamiltonian (5.2) reads

ĤSMA =
(

2λN̂0 + q − λ
)(

N̂1 + N̂−1

)
+ λ

(
N̂1 − N̂−1

)2

+ 2λ
(
â†1â
†
−1â0â0 + â†0â

†
0â1â−1

)
︸ ︷︷ ︸

SCC

−µN̂ , (5.2)

where λa is simply denoted by λ from here on. We keep explicitly track of the total magnetization
M̂ = N̂1− N̂−1, which, in the absence of a linear Zeeman shift, becomes zero at the mean-field
level. Its fluctuations, however, can contribute to the dynamics. The Hamiltonian (5.2) operates
on a Fock basis represented by |N1;N0;N−1〉whereNi is the number of particles in themF = i

state [21]. By direct computation, one finds that the spin mixing dynamics through spin chang-
ing collisions (SCC) conserves both the total atom number and the magnetization. The first term
comprises density-density interactions, with a negative interaction constant λ < 0 for ferromag-
netic interactions and the quadratic Zeeman shift proportional to the magnetic field parameter
q. The chemical potential µ < 0 (for bosons) was introduced in order to fix the total amount of
particles in number-conserving Bogoliubov theory. Changing the value of the chemical potential
adjusts the total number of bosons in the condensate. Depending upon the physical conditions,
a given system can either be constrained to be at a fixed chemical potential (the grand canonical
ensemble) or have a fixed total number of bosons (the canonical ensemble). We will revisit the
important role of the chemical potential when considering numerical calculations of observables
in subsection 5.3.2 .

The spin-1 BEC in single-mode approximation gives rise to two quantum phase transitions (QPTs)

51



5.2. LIPKIN-MESHKOV-GLICK REPRESENTATION

with the critical values q = ±qc and qc = 4|λ|N . The phase diagram is depicted in Figure 5.1a
in terms of the occupation of the hyperfine spin states mF = −1, 0, 1. For a specific ratio of
interaction and Zeeman energies, we find the Broken-Axisymmetry phase in the regime where
|q| < qc. This phase is characterized by an occupation of all modes and, as can be seen from
Figure 5.1b, facilitating spin-changing collisions due to the comparably small energy difference
between the Zeeman sublevels.

(a)

(b)

Figure 5.1.: (a) The phase diagram of a spin-1 BEC in single-mode approximation consists of three quan-
tum phases. We focus on the Broken-Axisymmetry (BA) phase which is the only phase ex-
hibiting a population of all three modes in the mean-field ground state. (b) The interchange
of hyperfine states among themF -components is driven by spin-changing collisions. Exper-
imentally, the energy difference between the side modes (mF = ±1) and the central mode
(mF = 0) can be tuned by the magnetic field parameter q. The closer the energy levels, the
more likely are spin-changing collisions, leading to dynamical redisitribution of the occupa-
tions. Because of this, we expect strong presence of spin-changing collisions and therefore a
large amount of entanglement in the BA phase.

5.2 Lipkin-Meshkov-Glick Representation

The SMA Hamiltonian (5.2) from above can be studied in the more intuitive picture of Lipkin-
Meshkov-Glick (LMG) models [56]. The LMG model belongs to a class of spin models first
introduced by H. J. Lipkin, N. Meshkov and A. J. Glick [57]. The LMG Hamiltonian is of the
form ĤLMG = − g

N (Ŝ2
x+γŜ2

y)−hŜz which corresponds to a fully connected Ising Hamiltonian
of spin-1/2 particles where each spin interacts with all the other spins and the parameters g, γ
and h account for the interaction, anisotropy and external field strength, respectively [1, 49].
Within this representation, the SMA Hamiltonian (5.2) becomes a sum of two non-commuting
Lipkin-Meshkov-Glick Hamiltonians [1, 21] for the operators Ŝ and Â from equation (1.11),
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when neglecting constant terms

Ĥ = 2
(
λŜ2

x −
q

3
Ŝz

)
+ 2

(
λÂ2

y −
q

3
Âz

)
. (5.3)

For q = 0 and λ < 0, the ground state of the first and second term in (5.3) can be represented
by a N00N state aligned along the Ŝx and Ây axis. A N00N state is a coherent superposition of
all particles in the maximum and all particles in the minimum eigenstate of the corresponding
operator

|N00N〉 =
|N〉a |0〉b + eiφ |0〉a |N〉b√

2
, (5.4)

where φ is an arbitrary phase. Figure 5.2 showcases an example of a state with a and b being
states that are fully polarized in the Ŝx and−Ŝx direction, respectively. The N00N state belongs
to the same class of highly-entangled states such as the Schrödinger cat [58, 59] or Greenberger-
Horne-Zeilinger state [60]. The subtle difference is that the term N00N state is specific to indis-
tinguishable bosonic particles [61].

Figure 5.2.: The Wigner function of a N00N states (here, we use N = 14) reveals the structure of the
state on the Bloch sphere. The quasi-distribution exhibits an interference pattern along the
equator with positive and negative values. The pattern can be attributed to the entanglement
of this state and makes it metrologically more distinguishable compared to a coherent state
(Figure 1.4a), which gives already an intuition about the optimal rotation axis [35].

5.3 Self-Consistent Mean-Field Bogoliubov Theory

As outlined in section 2.1, Bogoliubov transformations can be used to diagonalize quadratic
Hamiltonians. However, our target Hamiltonian (5.3) is not of quadratic form. Hence, further
assumptions are needed in order to apply the suggested scheme from section 4.3 to the calcula-
tion of quantum Fisher information for a spin-1 BEC within single-mode approximation.

One possible simplification arises from the framework of mean-field theory which is a very com-
mon approach to describe quantum many-body systems with small quantum statistical fluctua-
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5.3. SELF-CONSISTENT MEAN-FIELD BOGOLIUBOV THEORY

tions compared to classical statistical fluctuations. It allows one to expand the Hamiltonian in
terms of fluctuations around the expectation value of the field

Ψ̂ ≈ 〈Ψ̂〉+ δΨ̂ . (5.5)

In Bose-Einstein condensates, this assumption is valid in the limit of large particle numbers, weak
interactions and sufficiently low temperatures when the depletion of the condensate by quantum
and thermal fluctuations can be neglected. The classical complex field 〈Ψ̂〉 is then macroscop-
ically occupied and commonly referred to as the ground state wave function of the condensate,
given by the Gross-Pitaevskii equation [26, 27].

By keeping track of all fluctuations δΨ̂ up to second order, an effective Hamiltonian of quadratic
form can be derived. Accordingly, the diagonalized Bogoliubov Hamiltonian then describes the
system by its characteristic quasi-particle excitations, which are closely related to the fluctuations
around the mean-field solution via Bogoliubov transformations. However, this approximation is
only valid as the number of particles remains large since the expectation values of the fields 〈Ψ̂〉
are normalized to the number of particles in the system, which becomes problematic in case of
increased fluctuations: The more excitations, the less particles can be found in the mean-field
ground state of the condensate. In subsection 5.3.2 we therefore introduce a self-consistent way
to fix the total particle number in numerical calculations.

5.3.1 Mean-Field Description

As outlines above, the quantum fields in the Hamiltonian (5.3) can be replaced by bosonic cre-
ation/annihilation operators. Because of the normalization of the wavefunction, the mean-field
substitution is then characterized by the atomic occupations 〈âi〉 ≈

√
〈â†i âi〉. We choose the

following semi-classical approximation

â†m →
√
Nζm , â†m →

√
Nζ∗m with ζm = |ζm|eiθm , (5.6)

where the complex vector ζ = (ζ1, ζ0, ζ−1) represents the amplitude and phase of the classical
field of themF -mode. We search for the mean field solution ζ which minimizes the ground state
energy E0. Inserting the above ansatz (5.6) into (5.2) yields the following equations

E0 = 2(q − λ)|ζ1|2N + 4λN2|ζ0|2|ζ1|2{1 + cos(θ1 + θ−1 − 2θ0)}
δE0

δθ0
= 8λN2|ζ0|2|ζ1|2 sin(θ1 + θ−1 − 2θ0)

!
= 0

δE0

δ|ζ0|2
= 4λN2|ζ1|2{1 + cos(θ1 + θ−1 − 2θ0)} − µN !

= 0

δE0

δ|ζ1|2
= 2(q − λ)N + 4λN2|ζ0|2{1 + cos(θ1 + θ−1 − 2θ0)} − 2µN

!
= 0 .

(5.7)
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We assume equal mean-field populations of the side modes ( |ζ1| = |ζ−1|), since the Hamiltonian
(5.2) is invariant under the exchange mF = 1 ↔ mF = −1 up to a global phase shift. The
chemical potential µ acts as a Lagrange multiplier −µN(

∑
0,±1 |ζm|2 − 1), thereby enforcing

the constraint of particle number conservation. The second equation from (5.7) implies that the
so-called spinor phase is fixed: θs = θ1 + θ−1 − 2θ0 = 0,±π,±2π, . . . [16]. In the same
manner, the third equation determines the chemical potential µ = 8λN |ζ1|2. Solving for the
third equation under the constraint

∑
0,±1 |ζm|2 = 1 yields two solutions for cos(θs) = ±1:

cos(θs) = +1 ⇒ |ζ0|2 =
1

2
− q

8λN
and cos(θs) = −1 ⇒ −qN = 0 . (5.8)

The second solution (cos(θs) = −1) implies that the energy minimum sits at the boundary
(|ζ0| = 0 or 1) for λ < 0 and is therefore an unstable solution. On the contrary, the first solution
(cos(θs) = 1) implies an energy minimum since the second derivative becomes negative. The
occupation of themF -mode is therefore parameterized in the BA phase by

|ζ0| =
√

1

2
− q

8λN
, |ζ1| =

1√
2

√
1

2
+

q

8λN
, (5.9)

and shown in Figure 5.3. Furthermore, we introduce ρ0 = |ζ0|2 = N0/N as the fractional
population of themF = 0 - component. A convenient parametrization [30] of the order parameter
is then given by

ζ1 =

√
1− ρ0

2
ei(θS/2+φL) ,

ζ0 =
√
ρ0 ,

ζ−1 =

√
1− ρ0

2
ei(θS/2−φL) .

(5.10)

Here, θS is the spinor phase θS = θ1 + θ−1 − 2θ0, capturing the relative phase between the so-
called side modes (mF = ±1) and the central mode (mF = 0). The Larmor precession phase
φL = (θ1 − θ−1)/2 corresponds to the phase difference between the mF = 1 and mF = −1

component. However, φL does not appear in the energy functional (5.7) and is therefore a random
phase φL ∈ [0, 2π] which is typically not controlled in experiments with spin-1 BECs [16]. It
performs rotations along the Ŝz axis, thereby mapping the dynamics from one su(2)-subspace
to the other (compare to section 1.2 and the mapping {Ŝx, Ŝy, Ŝz} → {Q̂yz, Q̂xz, Ŝz}). Without
loss of generality, it is not necessary to track the Larmor precession in most of our numerical
calculations and is therefore set to φL = 0, if not otherwise stated.
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2

2

Figure 5.3.: The magnetic field parameter q changes the mean-field occupation of themF -modes, thereby
yielding a separation into the Twin-Fock (TF), Broken-Axisymmetry (BA) and Polar (P)
phase according to their magnetic order. We observe that close to the BA-P transition the
occupation of the side modes vanishes, whereas the population of the central mode decreases
towards the BA-TF transition.

5.3.2 Quadratic Form of the SMA Hamiltonian

Expanding the Hamiltonian (5.2) up to second order in fluctuation δâi according to âi =
√
Nζi+

δâi, yields the effective, quadratic Hamiltonian

H(2)
eff =

(
δâ† δâ

)A B

B A

( δâ

δâ†

)
, (5.11)

where the mode δâ comprises the entries δâ = (δâ1, δâ0, δâ−1). The matrices A and B are
given by

A = λNc


q−λ−µ
2λNc

+ (ζ2
0 + |ζ1|2) 3ζ0ζ1 −ζ2

1

3ζ0ζ−1 −µ
2 + 2|ζ1|2 3ζ0ζ1

−ζ2
−1 3ζ0ζ−1

q−λ−µ
2λNc

+ (ζ2
0 + |ζ1|2)


and

B = λNc


ζ2

1 ζ0ζ1 (ζ2
0 − |ζ1|2)

ζ0ζ1 2|ζ1|2 ζ0ζ−1

(ζ2
0 − |ζ1|2) ζ0ζ−1 ζ2

−1

 .

A, respectively B denote the conjugated matrix, providing that the Hamiltonian is of the desired
hermitian form (2.5). We thus follow the diagonalization scheme as described in section 2.1 and
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find the Bogoliubov transformations diagonalizing the Hamiltonian via

D = T †
A B

B A

 T . (5.12)

After thermally populating the quasi-particle modes according to (4.16), the correlation matrix
(4.17) can be calculated using Bogoliubov transformation as outlined in the scheme from Fig-
ure 4.4. This gives access to all first order correlation functions. Consistent with the treatment of
the annihilation/creation operators in the Hamiltonian, however, the correlation functions need
to be expanded as well

〈â�i â◦j 〉 =
〈
{ 〈â�i 〉 + δâ�i } { 〈â◦j 〉 + δâ◦j }

〉
. (5.13)

Since the statistical quantum fluctuation around the mean-field ground state are assumed to be
Gaussian distributed with 〈δâi〉 = 0, equation (5.13) simplifies to

〈â�i â◦j 〉 = 〈â�i 〉〈â◦j 〉 + 〈 δâ�i δâ◦j 〉 . (5.14)

Here, we use again � , ◦ ,# and ? in order to denote whether the hermitian conjugate is applied to
the operator. The first term is given by the mean-field parametrization (5.6) and the second term
can be read off from the correlation matrix. Second order correlation functions 〈â�i â◦j â

#
k â

?
l 〉were

computed by expanding (5.13) up to second order in fluctuations and applying Wick’s theorem
(section 2.3).

5.3.3 Numerical Implementation

Regarding numerical parameterization, we consider the typical values: qc/~ = 1Hz and, cor-
respondingly, λ = −1/(4N) [62, 30, 63]. As outlined above, the total number of condensed
particles N can be adjusted, by changing the chemical potential µ, which sets an energy thresh-
old for the quasi-particle excitations. If fluctuations increase, the underlying mean-field ansatz
becomes invalid, such that the constraint on the number of condensed particles N0 and the fluc-
tuation of the total particle number

∑
i〈δN̂i〉 =

∑
i〈δâ

†
iδâi〉

N = N0 −
∑
i

〈δN̂i〉, (5.15)

is not necessarily fulfilled anymore. Within our numerical calculations, we take care of this
constraint by self-consistently adapting the chemical potential µ, such that (5.15) is satisfied.
This approach can be implemented to explore the thermal phase diagram relying on the extraction
of the mean-field occupation at finite temperatures, as outlined in Appendix A.2. Moreover, we
derive analytical expressions for the Bogoliubov modes, given in Appendix A.3, as a benchmark
to our numerical results. All calculations were performed numerically and cross-checked with
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the analytical expressions. Although the analytical approach requires further assumptions, it
qualitatively confirms the numerical results as demonstrated in Figure A.17 and Figure A.19.
Here, we will focus on the discussion of the numerical results, providing a clearer description of
the investigated quantities.

5.4 Quantum Fisher Information at Zero Temperature

As a first study, we compute the quantum Fisher information for a single-mode spin-1 BEC in
Broken-Axisymmetry phase at zero temperature from the variance of an operator Ô according
to FQ = 4 (∆ Ô)2 = 4

(
〈Ô2〉 − 〈Ô〉2

)
. A good choice for Ô is the key component to witness

multipartite entanglement, since the QFI formulates the sensitivity of a quantum state towards
a suitable rotation Ô = uĜ (3.7). This reflects the fact that not all classes of entangled states
are appropriate for quantum interferometry measurements [11, 1]. We further require that Ô is a
local operator of experimental relevance which can be represented within the underlying su(n)

algebra, here su(3). As described in section 1.2, we therefore refer back to the pseudospin-1
representation in terms of the collective Gell-Mann operators [21].

Since the Hamiltonian (5.3) is invariant under the exchange Ŝ ↔ Â, it is sufficient to focus
on only one of these subspaces in order to find a suitable operator. In the subspace {Ŝx, Ŝy, Ŝz}
the operators Ŝx and Ŝy contain spin-interaction terms (1.11), which are expected to play a crucial
role in the creation of entanglement and are therefore our operators of choice for the computation
of the quantum Fisher information. Rotations around the Ŝz axis, which are inherent to the sys-
tem due to the free precession at the Larmor frequency, map the Ŝy axis into the measurement
basis of Ŝx and vice versa. Consequently, it is expected that studying either of them already ex-
tracts relevant physical information for bounding the amount of entanglement in the system [21].
In fact, we have checked that numerical calculations show the same outcome for Ŝx , Ŝy , Âx,
and Ây when considering a corresponding shift in the Larmor phase and, for this reason, only
showcase the results for Ŝx in Figure 5.4.

The graph on the left pannel demonstrates that the Fisher information density FQ/N takes the
value 1 in the middle of the phase and increases when approaching the critical points±qc. Hence,
there is no entanglement witnessed at q = 0 but the same builds up as soon as the absolute value
of q increases. How can we interpret this finding amid our expectation from section 5.2 of a large
entanglement content at the center of the phase?
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Figure 5.4.: Quantum Fisher information for a single-mode spin-1 BEC in Broken-Axisymmetry phase described by Ĥ = 2(λŜ2
x −

q
3 Ŝz) + 2(λÂ2

y −
q
3 Âz), with

regard to spontaneous symmetry breaking of the ground state. Left pannel: Numerical calucaltions based on mean-field Bogoliubov theory suggest
that in the limit of large system sizes (N = 12000) the symmetry broken ground state shows no entanglement at q = 0. We observe, that the quantum
Fisher inforamtion increases towards the critical points which could be attributed to increased quantum fluctuations, thereby witnessing up to tri-partite
entanglement. Using exact diagonalization [20] for N = 500 particles (right pannel), the quantum Fisher information shows Heisenberg scaling of
the entanglement which is attributable to the symmetry unbroken N00N state and in very good agreement with results from [21]. We explicitly note
that both curves are independent of the particle number since the interaction parameter is normalized in such a way that the critical value remains the
same qc = 4|λ|N = 1.

59



5.4. QUANTUM FISHER INFORMATION AT ZERO TEMPERATURE

5.4.1 Spontaneous Symmetry Breaking of the Ground State

Similar investigations were done by Feldmann et al [21], showing a contrary result for the QFI.
In their analytical calculation, the QFI approaches the Heisenberg limit with FQ = N(N + 1)/2

in the center of the BA phase (q = 0). With the use of exact diagonalization [20], we repro-
duce these result for a system of N = 500 particles, shown in the right pannel of Figure 5.4.
The ground state of the system resembles a N00N state, as described in section 5.2. A look at
the Wigner distribution from equation (1.14) and Figure 5.2 reveals substructures of the state
[36], thereby giving a better intuition about the metrologically favored rotational axis. Due to the
emerging interference pattern in the quasi-probability distribution around the equator, rotations
along the Ŝx axis become more distinguishable when compared to a pure, coherent state. This
sensitivity towards rotation of the state is captured by the QFI, saturating the Heisenberg limit.

Figure 5.5.: Visualization of the analogy to spontaneous symmetry breaking of the Ising model in 2D.
The energy gap ∆E = E2 − E1 between the two cat states |Ψ1〉 an |Ψ2〉 closes in the
thermodynamic limitN →∞which leads to increased instability of the ground state towards
fluctuations.

However, the N00N ground state is also highly unstable against perturbations. This can be un-
derstood from Figure 5.5, providing an analogy to the Ising model in two dimensions. The en-
ergetically lowest lying state |Ψ〉 ∝ ( |↑〉 − |↓〉 ) is only a small energy ∆E apart from the first
excited state |Ψ〉 ∝ ( |↑〉 + |↓〉 ). As the energy gap closes in the thermodynamic limit (Fig-
ure 5.6), infinitesimally small fluctuations will break the symmetry of the system, resulting in a
state with all particles pointing either |↑〉 or |↓〉. Hence, spontaneous symmetry breaking trans-
forms the ground state from a highly entangled superposition state to a non-entangled state [49].

The concept of spontaneous symmetry breaking applies also to our studies. Choosing a finite
expectation value of the spin in one direction by applying the mean-field substitutions, explic-
itly breaks the symmetry of the system, thus explaining why the results are characterized by the
quantum Fisher information of a non-entangled state at q = 0 (left panel of Figure 5.4). The
mean-field ground state is best described at the center of the phase whereas the relative fluctua-
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(a) (b)

Figure 5.6.: (a)With the use of exact numerical diagonalization, we observe the strong decay of the energy
gap ∆E = E2−E1 at q = 0 between the ground state and first excited state for large particle
numbers (N = 200, . . . , 850). (b) Adding a bias field ε Ŝx to the Hamiltonian explicitly
breaks the symmetry and changes the variance of the operator Ŝx from its maximal to its
minimal value. The symmetry breaking happens when the bias field strength is comparable
to the energy gap, here ε ≈ 0.0005 for N = 500 particles.

tions increase with q → ±qc. When approaching the critical points, the order parameter Ŝx of
the QPTs changes continuously according to the decreasing occupation of the side modes and the
central mode towards the Twin-Fock and Polar phase, respectively (Figure 5.3). It was shown
that the QFI can be generally exploited as a signature for quantum phase transitions [12]. Its
increasing value towards the critical points is therefore in agreement with the expectation of a
scaling growth of the QFI for second-order phase transitions (left panel of Figure 5.4). This in
turn can be attributed to the growth of correlations, captured by the order parameter Ŝx, when
approaching the QPT. A quantum Fisher information density of FQ/N = 1 in the center of the
phase, however, corresponds to a non-entangled state.

According to the properties of a coherent spin state aligned along Ŝx, we would expect that the
variance (∆Ŝx)2 and, thus, the quantum Fisher information, vanishes in the middle of the phase,
as also revealed by exact numerical calculations in Figure 5.6 (b). We might attribute this dis-
crepancy to limitations of themean-field approachwhichmanifest themselves in neglecting phase
fluctuations, since âi →

√
Nζi+δâi. Another possibility to semi-classically expand the field op-

erator Ψ̂i ≈ 〈Ψ̂i〉+ δΨ̂i arises from the phase−density representation Ψ̂i
∼= eiθ̂i

√
n̂i, as we will

explain in chapter 6. Here, the field operator can be approximated by density and phase fluctua-
tions around the corresponding mean-field expectation value:

√
n̂i(z)→

√
ni(z) + 1

2
δn̂i(z)√
ni(z)

−

1
8
δn̂2
i (z)√
ni(z)

3 and e±i θ̂i → e±iθi(1 ± iδθ̂i −
δθ̂2i
2 ).

Using this expansion hints at a qualitatively different quantum Fisher information in the cen-
ter of the phase, as demonstrated in Figure 5.7. In order to mimic our results from above and to
obtain a positive-definite Hamiltonian, as required for the Bogoliubov transformation of the state,
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5.4. QUANTUM FISHER INFORMATION AT ZERO TEMPERATURE

we add a chemical potential to the Bogoliubov modes Bi (6.20) of the quadratic Hamiltonian,
i.e. H+ µ

∑
i=±1,0B

†
iBi. This is motivated by the notion of adding a bias field hŜx which sta-

bilizes the fluctuations [64] and likewise contains the terms
(∑

±1

√
n0
8n1

B†iBi +
√

n1
2n1

B†0B0

)
.

We further compare these results to the symmetry broken state from Figure 5.4 using exact diag-
onalization. As shown in Figure 5.7, the variance from exact diagonalization and phase−density
representation becomes zero in the center of the phase, as expected for a coherent spin state in
Ŝx-direction. More importantly, however, Figure 5.7 hints at a better match between mean-field
and exact numerical calculations when using the phase−density representation. That is why the
following studies of an one-dimensional spin-1 BEC (chapter 6) are based upon this expansion.
We will see that the fluctuations in the spatially extended BEC are stabilized by the coupling via
a kinetic term, with the advantage of not requiring a self-consistent treatment of the chemical po-
tential and particle number. Already at this stage, we can therefore anticipate the strong enhance-
ment of quantum fluctuation in the zero-dimensional (i.e. single-mode) spin-1 BEC compared
to the one-dimensional, extended system as expected for low-dimensional quantum many-body
systems [65].

Figure 5.7.: The comparison of the quantum Fisher information from the variance of a pure state at q = 0,
obtained from different mean-field descriptions and exact diagonalization, shows a qualita-
tively similar behavior with different onsets at q = 0. In particular, the results from the
mean-field expansion of the modes (âi →

√
Nζi + δâi) differs from exact numerical calcu-

lations. However, the results from the phase−density approach is in good agreement with the
exact diagonalization. Resolving the remaining discrepancies and investigating the influence
of different mean-field expansions on the estimation of the QFI is a task of ongoing research.

Referring back to the results outlined in Figure 5.5, we finally elucidate whether the symme-
try broken or unbroken ground state corresponds best to the physical nature of a spin-1 BEC in
single-mode approximation. From our point of view, the fragile stability of the symmetry unbro-
ken ground state will collapse at finite temperature and in the limit of large particle numbers as
described above and shown in Figure 5.6. Although having established themselves as a versatile
and well-controlled experimental platform, spin-1 BECs are usually not fully decoupled from the
environment. They are therefore subject to fluctuations in the optical and magnetic fields which
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5.4. QUANTUM FISHER INFORMATION AT ZERO TEMPERATURE

could explicitly break the underlying symmetry. In addition to that, experiments performed so
far were able to witness only a small amount of entanglement, particularly bi- and tri-partite en-
tanglement [25, 55]. All together, we are confident that our picture of a symmetry broken ground
state therefore suits experiments with spin-1 BECs in single-mode approximation rather well.

Regarding the limitations of single-mode approximation, it could be argued that it often does
not reflect the experiment in the best possible way since motional and spin degrees of freedom
are not fully decoupled. Furthermore, it is doubtful whether, in the context of the Eigenstate Ther-
malization Hypothesis [66], these systems can experience thermal relaxation. However, thermal
equilibrium is a major requirement for our computation of the QFI. Besides, we did not apply the
outlined quench recipe (Figure 4.4) to the single-mode approximation since the zero temperature
result for the symmetry broken ground state is already an upper bound on the quantum Fisher in-
formation at finite temperatures. Thus, the already relatively weak entanglement can only further
decrease for T ≥ 0. Further efforts are therefore needed in order to fully describe multipartite en-
tanglement in spin-1 systems beyond single-mode approximation. One natural way to overcome
these limitations is by introducing spatial degrees of freedom. For the remaining part of this the-
ses, we will therefore study the quantum Fisher information in an one-dimensional spin-1 BEC
using an extended Bogoliubov theory for quasi-condensates [13]. Therein, the above introduced
phase−density representation allows one to treat the spin-1 BEC in a comprehensive description
by systematic expansions in powers of the density fluctuations and of the spatial gradient of phase
fluctuations.
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6 Multipartite Entanglement in Spin-1 Quasi-Condensate (1D)

Low-dimensional quantum systems play a central role in the understanding of quantum matter.
They show very characteristic properties associated with their geometry [65], as, for example,
the enhancement of thermal and quantum fluctuations. In this way, the effective dimension has
strong implications on transport properties or relaxation dynamics in quantum many-body sys-
tems. In low-dimensional Bose gases, that is with the atomic motion frozen in one or two direc-
tions, large phase fluctuations restrict the coherence length of the bosonic field to a finite value.
This prohibits the forming of a condensate at finite temperature as demonstrated by D. Mer-
min, H. Wagner and P. Hohenberg [67, 68]. In presence of weak interactions and an anisotropic
trapping potential, however, quasi lower-dimensional condensates can occur and were experi-
mentally demonstrated [69]. They are good candidates for studying phenomena characteristic
to low-dimensional quantum systems, including multipartite entanglement which is the subject
to this thesis. In the following, we extend the studies from chapter 5 to the more involved one-
dimensional spin-1 BEC in the Easy-Plane (EP) phase, using an extended Bogoliubov theory
for quasi-condensates. We compute the amount of entanglement at finite temperatures through
dynamic susceptibilities following a weak quench (4.13) as described by P. Hauke [12] and in
chapter 4. Furthermore, we derive entanglement bounds relating the quantum Fisher information
to k-partite entanglement for generic spin states. These bounds generalize the results of [11] to
include systems of spins with non-uniform length.

6.1 Extension of Bogoliubov Theory to Spin-1 Quasi-Condensates

A powerful extension of Bogoliubov theory to quasi-condensates was derived by C. Mora and
Y. Castin [13] and is based on a phase−density formalism which describes the quasi-condensate
in the limit of weak interactions and low density fluctuations. It relies on the often well-founded
assumption that the density fluctuations of the Bose gas are strongly reduced in presence of re-
pulsive interactions [70, 71]. A spatial discretization is introduced in order to achieve a precise
definition of the phase operator. The global phase is not necessarily conserved but phase varia-
tions are assumed to vary smoothly between two neighboring points of the lattice model. This
enables a well-defined description of the underlying physics of Bose-Einstein quasi-condensates
in one dimension. A major part of this thesis is to adapt the general, extended Bogoliubov theory
for quasi-condensates to the special case of a spin-1 BEC, exhibiting additional spin degrees of
freedom compared to single-component BECs.

6.1.1 Effective Interaction in One Dimension

We consider a spin-1 BEC as described in chapter 1 and focus for the remaining part of the
thesis on an one-dimensional, elongated geometry (Figure 6.1). This geometry can be experi-
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mentally accessed by using a highly anisotropic trapping potential V (r) = 1
2(ω2
‖z

2 + ω2
⊥r

2
⊥)

with much smaller longitudinal than transversal trapping frequency ω‖ � ω⊥ [69] (Figure 6.1).
Here, we choose ω‖ = ωz and ω⊥ = ωx = ωy, and we may assume the ground-state wave func-
tion to be approximately separable, factorizing into a longitudinal and transversal part Ψ̂m =

Ψ̂m(z)Ψ̂⊥(x, y). The transversal wave function Ψ̂⊥ is the same for all three components and has
a weak time and z-dependence. Therefore, the corresponding transversal mode energy E⊥ =∫

dr⊥Ψ̂†⊥

[
− ~2

2m∇
2
⊥ + 1

2mω
2
⊥r

2
⊥

]
Ψ̂⊥ adds only a constant term to the Hamiltonian, which does

not affect the dynamics [72] and is omitted in what follows.

Figure 6.1.: Elongated, circular, and so-called pancake shaped trapping potential can be experimentally
generated by tuning the ratio of the trapping frequencies ω‖ and ω⊥. In this thesis we focus
on the elongated trapping geometry which can be achieved by ω‖ � ω⊥.

Besides, we still have to specify the interaction strength describing density-density (1.5) and
spin-spin (1.6) interactions. For dilute and weakly interacting spinor Bose gases, they relate to
the s-wave scattering length of the total spin-F channel, aF , via gF = 4π~2

M aF (see also equation
(1.3) and the review by Y. Kawaguchi and M. Ueda [15]). In three dimensions, the coupling con-
stants c0 and c1, which account for spin-independent and spin-dependent collisions, respectively
[73] read

c3D
0 =

g0 + 2g2

3
, c3D

1 =
g2 − g0

3
. (6.1)

The anisotropy of the one-dimensional quasi-condensate, however, changes the effective inter-
action strengths. The rescaled quantities used within this thesis become

ci =
c3D
i

2πa2
⊥

with a⊥ =

√
~

Mω⊥
for i = 0, 1 . (6.2)
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6.1.2 Discretization of Space

Following [13], we formulate the Hamiltonian (1.5)-(1.7) in terms of a discrete lattice model,
that is we put the particles into small boxes with equal length l and central position z

H =
∑
z

l

{ ∑
m

Ψ̂†m(z)

[
−~2∇2

2m
+ V (z)− µ+ q(fz)mm

]
Ψ̂m(z)

+
c0

2

1∑
m,m′=−1

n̂m(z)
[
n̂m′(z)− 1

l

]
+
c1

2

(
[n̂1(z)− n̂−1(z)]2 +

[
2n̂0(z)− 1

l

]
[n̂1(z) + n̂−1(z)]

+ 2 Ψ̂†1(z)Ψ̂†−1(z)Ψ̂0(z)Ψ̂0(z) + 2 Ψ̂†0(z)Ψ̂†0(z)Ψ̂1(z)Ψ̂−1(z)

)}
.

(6.3)

The kinetic, trapping and Zeeman energy can be identified from the first row in (6.3). The term
which is proportional to c0 denotes density-density interactions, whereas spin-dependent inter-
actions are proportional to c1, including spin-changing collision and terms accounting for the
imbalance between the side-modes, i.e. the magnetization of the system. The field operator in
phase−density representation reads

ψ̂i(z) ∼= eiθ̂i(z)
√
n̂i(z) (6.4)

and fulfills the commutation relations[
Ψ̂i(z), Ψ̂j(z)

]
=
iδzz′δij

l
,

[
n̂i(z), θ̂j(z)

]
=
iδzz′δij

l
,

[n̂i(z), n̂j(z)] = 0 and
[
θ̂i(z), θ̂j(z)

]
= 0 .

(6.5)

l denotes the grid spacing, θ̂i(z) the phase and n̂i(z) the density of the mF = i component of
the field operator at position z.

The possibility to treat space in a discretized way requires physical justification. We focus here
on the restrictions relevant to a highly degenerate and weakly interacting Bose gas: Sufficiently
large boxes of size l are needed in order to ensure low density fluctuations. The condition for a
large mean number of particles in a box and small relative particle number fluctuations is reached
[13] when

ni(z) l� 1 . (6.6)

Furthermore, performing a coarse-grained average over all physical quantities within the grid
spacing l requires l to be smaller than the characteristic length scales in order to extract the rel-
evant physics of the system. By comparing the interaction energies from the main Hamiltonian
(6.3), we can identify the characteristic length scales: The density healing length ξD = ~√

2mnc0
,
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associated with the typical density-density interaction energy ∝ nc0, gives the length scale in
which the density fluctuations in the BEC are removed by the interaction between condensed
particles. Correspondingly, we find the spin healing length ξS = ~√

2mnc1
, associated with spin-

spin interactions∝ nc1. It describes the length scale over which the condensate heals from local
defects such as vortices in 2D. Another characteristic length scale is given by the thermal de
Broglie wave length λT =

√
2π~2
mkBT

which describes the regime of quantum degeneracy occur-
ring at sufficiently low temperatures. According to above, the grid spacing l is therefor subject
to the following the constraints

l < ξD , l < ξs and l < λT . (6.7)

Combining the restrictions (6.6) and (6.7) imposes

ni(z)ξD � 1 , (6.8)

thereby enabling the mean-field ansatz, based on sufficiently large particle number and low den-
sity fluctuations. Spinor BECs with 87Rb typically feature a much smaller spin-healing length
compared to the density healing length ξD � ξS since |c1| � c0 [16], such that one immedi-
ately finds equation (6.8) fulfilled for the spin healing length as well. Further combining (6.6)
and (6.7) imposes the validity of the discrete model in the presence of quantum degeneracy and
therefore a condensate fraction in the weakly interacting dilute Bose gas

ni(z)λT � 1 . (6.9)

6.1.3 Dimensionless Formulation

Explicit numerical calculations in this thesis are performed for a homogeneous system, which
allows for considerable simplifications and is expected to contain most of the physical effects
[74, 75]. We focus on a box potential with fixed boundary conditions, comparing rather well to
state-of-the art experiments with spin-1 BECs as demonstrated in Figure 1.3. In general, it is
very convenient to write a dimensionless description by rescaling times and lengths according to

t̃ =
t

ts
, x̃ =

x

xs
. (6.10)

Quantities with a tilde ′̃ ′ are dimensionless. The choice of the scaling parameter xs yields a
corresponding time unit ts = mx2s

~ . As a consequence, the characteristic energy unit reads
Es = ~

ts
= ~2

mx2s
. The fields rescale according to Ψ̃m = x

d/2
s Ψm, where d is the spatial di-

mension. A typical length scale inherent to an one-dimensional Box potential (V (z < L) = 0)
is its extension L. That is why we refer to the choice for the scaling parameters xs = L and
ts = mL2/~.
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The above Hamiltonian (6.21) contains two types of terms. The first one, which we will re-
fer to as Ekin, contains the Laplacian operator ∇2. The second type, denoted by Eint, describes
either density-density or spin-spin interaction and is proportional to nc0 or nc1, respectively.
We straightforwardly obtain a non-dimensional form of the Hamiltonian, by rescaling the terms
corresponding to the following scheme:

Ekin → Ẽkin ∝ −
l̃

2
B̃†m(z̃) ∇̃2 B̃m(z̃) (6.11)

Eint → Ẽint ∝ l̃ ñ c̃iB̃†m(z̃) B̃m(z̃) . (6.12)

The dimensionless quantities are given by

c̃i =
ci

~xs/ts
, l̃ =

l

xs
and ñ = nxs . (6.13)

There is only a small range of parameters fulfilling the following two restrictions on the numerical
grid spacing l̃: On one hand side, l̃ should be large enough such that the phase operator still
remains well-defined, which is not given in the continuous limit [13]. On the other hand, l̃ should
be small enough in order to resolve the density healing length. Considering computational efforts
[72] and experimental realizability, we find that both constraints are best satisfied for l̃ = 1/200

(i.e. #boxes = 200) when choosing the remaining free parameters for the particle number and
interaction parameters as N = 20000 and c̃0 + c̃1 = 1, respectively. In addition to that, we
use c̃0/c̃1 = 200, which is a typical ratio for experiments with 87Rb spin-1 BECs [16]. Higher
particle numbers (N ≈ 80000 [55]), leading to smaller l̃, are desirable in order to improve the
comparability with experiments, which is further discussed in subsection 6.3.1. Within the scope
of this thesis, however, we do not consider smaller l̃ due to a lack of computational efficiency and
capacity. Nevertheless, higher particle numbers could in principle be employed in future studies.
All results outlined in this chapter are therefore performed using the above set of parameters.

6.1.4 Mean-Field Description

In order to derive the mean-field ground state and thus a parametrization of the mean densities
ni(z) = ζi(z)

√
n , we assume that all particles occupy the same single-particle state in both

coordinate and spin spaces. The semi-classical expansion ζi(z)
√
n replaces the field operator

Ψ̂i(z) of the Hamiltonian (6.3) and the expectation value of the latter defines an energy func-
tional. Minimizing this functional with respect to the condensate wave function ζm(z)

√
n under

the normalization constraint
∑

z

∑
m l |ζm(z)

√
n|2 = N allows one to deduce the order param-

eters ζ(z) = (ζ1(z), ζ0(z), ζ−1(z))T .

The mean-field phase diagram, defined by the magnetic order parameters ζ, is presented in Fig-
ure 6.2. In analogy to the Broken-Axisymmetry phase of a single-mode BEC, all modes are
occupied in the Easy-Plane (EP) phase of the extended system. There is a first-order quantum

68



6.1. EXTENSION OF BOGOLIUBOV THEORY TO SPIN-1 QUASI-CONDENSATES

phase transition (QPT) towards the Easy-Axis (EA) phase, involving a discontinuous change in
the mean-field parameter and therefore the density (Figure 6.3). In contrast, there is a second-
order phase transitions between the Easy-Plane (EP) and Polar (P) phase, with the continuous
order parameter of the side-mode population.

Figure 6.2.: Mean-field phase diagram of a spin-1 BEC in the (q, c1)-plane. The mean-field ground states
in the respective phases are given by Ψ =

√
n ζ. The acronyms AFM, P, EA and EP denote

the Anti-Ferromagnetic, Polar, Easy-Axis and Easy-Plane phase, respectively. We partic-
ularly focus on the EP phase, which is the analogue to the BA phase in the single-mode
approximation (see Figure 5.1a) and which is therefore expected to exhibit a large amount of
entanglement.

2 2

2

2

Figure 6.3.: Mean-field occupations |ζm|2 of themF = m hyperfine states as a function of the magnetic
field q. We observe that the density of the side modes continuously vanishes in the limit
q → qc, yielding a second-order phase transition towards the Polar (P) phase. In contrast,
there is a first-order phase transitions between the Eeasy-Plan (EP) and Easy-Axis (EA) phase,
involving a discontinuous change of the mean-field occupations.

In the special case of a uniform system (VT (z) = 0), the classical fields are spatially-independent
and can be analytically calculated in analogy to chapter 5. For the Easy-Plane phase (Figure 6.2),
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studied in this thesis, the mean-field solution is given by

ζ =
1√
2


e−iφ

√
1
2(1− q

2|c1|n)√
1 + q

2|c1|n

eiφ
√

1
2(1− q

2|c1|n)

 . (6.14)

φ = θ1 − θ−1 = 2φL, with φL being the Larmor frequency, specifies the azimuthal angle of the
transversal spin F̂⊥, and, thus, the direction of magnetization in the xy-plane. The mean-field
values, corresponding to the occupation of themF -modes, is visualized in Figure 6.3.

6.1.5 Characteristic Properties

In order to benchmark the numerical calculations and gain a better understanding of the under-
lying physics, we briefly discuss characteristic observables within the mean-field description of
an extended spin-1 BEC in the EP phase, with particular regard to correlations in the vicinity
of quantum phase transitions. We first examine the transversal magnetization F̂⊥ of the spin-1

(a) (b)

Figure 6.4.: (a) Transversal magnetization in EP phase with spinor phase θs = 0 and Larmor phase
φL = 0, such that it is fully described by F̂x and agrees with the theoretically predicted
curve from (6.15), given by the gray line in (a). As F̂⊥ = F̂x + iF̂y , the expectation value of
F̂y vanishes. F̂x therefore corresponds to the mean-field order parameter of the second-order
QPT towards the Polar phase. (b) Expectation value of spin operators as a function of the
Larmor phase φL. One clearly sees that the expectation values vanish when averaging over
the Larmor phase (i.e. integrating fromφL = −π toφL = π). The dashed lines are computed
from Bogoliubov theory, leading to slight deviations from the mean-field expectation value
for q → qc.

BEC. According to [76], the mean-field expectation value of F̂⊥ is given as a function of the
magnetic field parameter q

〈F̂⊥(φL, n, q)〉 = neiφL
√

1− (q/qc)2 . (6.15)
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The Larmor phase φL rotates the direction of magnetization in the xy-plane which can be seen
from Figure 6.4a. For φL = θS = 0, it follows that F̂⊥ is fully determined by F̂x and attains the
maximal value 〈F̂x(q = 0)〉 = n, reached in the EA phase, andminimal value 〈F̂x(q = qc)〉 = 0,
reached in the P phase, as can be seen from Figure 6.4b.

F̂x is the order parameter of the second-order EP-P phase transition, and so is Ŝx, being the
analogue of F̂x in the su(3) representation (1.12). As outlined above (chapter 5), extracting
the QFI with respect to the order parameter is of special interest because of its scaling growth
of correlations [12]. For these reasons, we use Ŝx for computing the QFI in the zero tempera-
ture ground state and from the dynamics following a weak quench Ĥ → Ĥ0 + λ

∑
z Ŝx(z) in

section 6.3

6.1.6 Bogoliubov Hamiltonian

In order to achieve a quadratic description, we first expand the Hamiltonian up to second order
in fluctuations around the z-dependent mean-field solution ζ(z) for the density ni(z) = ζi(z)n

and the mean phase θi(z) according to

√
n̂i(z)→

√
ni(z) +

1

2

δn̂i(z)√
ni(z)

− 1

8

δn̂2
i (z)√
ni(z)

3

e±i θ̂i → e±iθi

(
1 ± iδθ̂i −

δθ̂2
i

2

)
∀ i ∈ {−1, 0, 1} .

(6.16)

One restriction characterizing this expansion is that it requires density fluctuations 〈δn̂2
i (z)〉 to

be small in relative values. In the same manner, on-site phase fluctuations 〈δθ2
i (z)〉 need to be

small as well

〈δn̂2
i 〉

n2
i

� 1 , 〈δθ̂2
i 〉 � π. (6.17)

The parameter range at which these constraints are fulfilled is thoroughly studied by means of
numerical calculations for the extended spin-1 BEC in subsection 6.1.7. Provided that the grid
spacing l is small enough, the exponential function of the type ei(δθ̂i(z+l)−δθ̂i(z)) can be expanded
according to

ei(δθ̂i(z+l)−δθ̂i(z)) ≈ 1 + i{δθ̂i(z + l)− δθ̂i(z)} − 1
2{δθ̂i(z + l)− δθ̂i(z)}2. (6.18)

This means, that the phase fluctuations are allowed to vary smoothly between neighboring points.
Without loss of generality, we set the mean-field phases to zero, corresponding to a vanishing
spinor and Lamor phase, θs = 0 and φL = 0 in equation (6.14), respectively. In a second step,
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we normalize the operators with respect to the density

X̂i(z) =
δn̂i(z)

2
√
ni(z)

, P̂i(z) =
√
ni(z)δθ̂i(z) (6.19)

and define the Bogoliubov modes

B̂i(z) = X̂i(z) + iP̂i(z) with
[
B̂i(z), B̂

†
j (z
′)
]

=
δijδzz′

l
. (6.20)

Using this notation, we derive the quadratic Bogoliubov Hamiltonian in a similar way as outlined
in [13, 77, 75]. Omitting the operator symbols ’̂ ’, the Bogoliubov Hamiltonian reads

H(2) =
∑
z

l

2

(
B†j (z)(−

~2

2m
∇2)Bj(z) + h.c.

)
+
∑
z

l

2

{
c0

∑
i,j

√
ni(z)nj(z)

(
B†i (z)Bj(z) +Bi(z)Bj(z) + h.c.

)
+ c1

∑
i=±1

ni(z)
(
B†i (z)Bi(z) +Bi(z)Bi(z) + h.c.

)
− c1

∑
i=±1
i 6=j

ni(z)
(
B†i (z)Bj(z) +Bi(z)Bj(z) + h.c.

)
(6.21)

+ 2 c1

∑
j=±1

√
n0(z)nj(z)

(
B†0(z)Bj(z) +B0(z)Bj(z) + h.c.

)}

+
∑
z

l

2

{
− c1n0(z)

∑
i=±1

(
B†i (z)Bi(z) + h.c.

)
− 4c1n1(z)

(
B†0(z)B0(z) + h.c.

)
+ 2c1

∑
j=±1

√
n0(z)nj(z)

(
B†0(z)Bj(z) +B0(z)Bj(z) + h.c.

)
+ 2c1

∑
j=±1

√
n0(z)nj(z)

(
B†0(z)Bj(z) +B0(z)B†j (z)−B0(z)Bj(z)−B†0(z)B†j (z)

)
+ 2c1n0

(
B†1(z)B†−1(z) + h.c.

)}
.

The discrete Laplacian is a symmetric operator that couples different neighboring boxes through
the kinetic term

∇2B(z) =
1

l2
[Bi(z + l) +Bi(z − l)− 2Bi(z)] . (6.22)

6.1.7 Density and Phase Fluctuations

The validity of the extended Bogoliubov theory performed in this thesis is ensured by permitting
only small fluctuations on top of the mean-field ground state, as defined in (6.17). However,
the fluctuations also depend on the number of grid points. This is due to the fact that the phase
operator does not remain well-defined in the continuous limit l → 0 [13], which is revealed by
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the divergence in Figure 6.5. 1/l = 0.005 corresponds to the parameter we are using. There, the
constraint 〈δθ̂2

i 〉 � π is still fulfilled for a broad range of quadratic Zeeman shifts q.

Figure 6.5.: The scaling of phase fluctuations is highly sensitive on the choice of the grid spacing l and
diverges in the continuous limit l → 0. We choose l = 0.005 for our computations, which
remains well-defined for most magnetic field parameter values.

With this, we thoroughly study the behavior of density and phase fluctuations as a function of the
magnetic field parameters in Figure 6.6. In the limit of small densities, the mean-field assump-
tions generally break down and give rise to large relative fluctuations. Approaching the Polar
phase (q → qc), the population of the side modes (n1 = n−1) continuously decreases to zero
as depicted in Figure 6.3. Correspondingly, the phase and density fluctuations of the side modes
increase, as shown in Figure 6.6. We have checked that the inter-component and density-phase
fluctuations are much smaller than the density and phase fluctuations of the same hyperfine state.
The scaling of the relative density fluctuations when approaching the EP-P phase transition on
the right pannel of Figure 6.6 indicates, that the relative density fluctuations become larger than
10% for q/qc ≥ 0.8, thereby violating the constraint (6.17). That is why we define the regime at
which the mean-field assumptions are still well-founded as 0 ≤ q/qc ≤ 0.8.

A very similar behavior is observed for the spatial correlations of the density and phase fluc-
tuations, depicted in Figure 6.7 and Figure 6.8, respectively. Here, we examine the correlations
between the density/phase fluctuations at the center of the trap and the rest. We observe that the
density correlations decay at shorter distances compared to the phase correlations. This is due
to the fact that the box length is of the order of the density healing length. On the contrary, by
applying the characteristic expansion in small neighboring phase fluctuations (6.18), we allow
the fluctuations to vary smoothly from one lattice point to another.
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Figure 6.6.: Fluctuations increase with decreasing density. Since the side-mode populations strongly de-
crease upon approaching the QPT towards the Polar phase, both density and phase fluctua-
tions strongly increase with the magnetic field parameter q → qc. This hints at a break-down
of the extended Bogoliubov theory in this regime.

At this stage, it is also important to mention that the outlined extended Bogoliubov theory [13]
allows the correlations of the phase fluctuations to vanish at long distances, as can be seen in
Figure 6.8. Accordingly, phases far apart from each other can arbitrarily fluctuate. This does not
necessarily match the phase properties of an elongated spinor BEC, where the trapping geom-
etry stabilizes the phases, being tightly related to each other via the spinor phase. In principle,
a full three-dimensional treatment of the elongated BEC would be necessary in order to model
this behavior. However, we consider the fluctuations around the phase difference (given by the
spinor phase), to vary smoothly along the trap, and therefore, the extended Bogoliubov theory to
describe the underlying physics of spinor BECs in the low-dimensional limit rather well. More-
over, it allows for a comprehensive description through the expansions in density fluctuations
and the spatial gradient of phase fluctuations. That is why it is still highly preferred to treat the
spin-1 BEC in the extended Bogoliubov theory.

To summarize, we have analyzed the mean-field phase diagram and introduced an extended
Bogoliubov theory in order to make ourselves familiar with the underlying physics of a spin-
1 quasi-condensate and derive an appropriate mathematical description. Furthermore, we have
discussed a numerical implementation of the system and studied characteristic quantities as a
benchmark. Finally, we have looked at the behavior of phase and density fluctuations in order to
assess the validity of the method and to describe the physics in the EP phase. We have estimated
the regime 0 ≤ q/qc ≤ 0.8 at which the mean-field assumptions are well-founded. With this, we
have built a framework to determine the amount of entanglement in a spin-1 BEC, which is the
final goal of this thesis. To this end, we first derive entanglement bounds relating the quantum
Fisher information to the entanglement content of a spatially discretized spin configuration in the
upcoming section. This approach is then extended to a spin-1 BEC on a spatial grid as described
above. In this way, we finally extract the multipartite entanglement content of the system at both
zero and finite temperature in section 6.3.
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Figure 6.7.: Density fluctuations are uncorrelated everywhere except at very short distances, which is con-
sistent with our parametrization, choosing the density healing length of the order of the grid
spacing. Since the relative fluctuations increase with decreasing occupation of the modes,
we observe stronger correlations of the side-mode density fluctuations when approaching the
Polar phase, i.e. q → qc on the right panel. The same holds for the correlations of the central
mode density fluctuations when q → 0+.

Figure 6.8.: The spatial correlations of phase fluctuations are required to vary smoothly between neigh-
boring points, and thus show increased correlations as compared to the density fluctuations.
However, at large distance they become approximately uncorrelated. In line with the argu-
ments from Figure 6.7, we observe stronger phase correlations of themF = ±1 andmF = 0
mode when approaching q → qc and q → 0+, respectively.
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6.2 Entanglement Bounds for Spin Systems

Treating the spin-1 BEC in a discrete way amounts to grouping spinful bosons together into small
boxes. Thereby, the number of bosons and the orientations of their spins might vary between dif-
ferent boxes. Neglecting the spatial substructure within each box, the system can be described as
a state of collective spins of different length, coupled to each other. So far, only bounds for the
entanglement among uniform spins has been derived [11]. One question that therefore naturally
arises is, how entanglement bounds for generic states of distinct spins can be derived? And even
further, how can this in turn be applied to a distribution of spinful bosons on a spatial grid?

In order to answer this question, we first derive a generic bound for k-partite entanglement among
Ns different spins. Second, we use this result to compute entanglement bounds of a spinor BEC
for any desired particle distribution on an one-dimensional spatial grid.

6.2.1 Generic Configuration of Quantum-Mechanical Spins

As outlined in section 3.2, the best possible interferometric phase estimation using a linear, her-
mitian operator Ô is given by the largest spread in eigenvalues λ according to

(
∆Ô

)2
≤ [λmax − λmin]2

4
. (6.23)

If Ô is a spin operator of a spin-s system1, the largest and smallest eigenvalue is given by +s

(all spins up) and −s (all spins down), respectively, which maximizes the quantum Fisher infor-
mation for a pure state FQ = 4(∆Ô)2. According to that, it has been shown that k + 1-partite
entanglement is witnessed in a system of Ns spins of equal length s by

FQ/Ns > 4 k s2 (6.24)

apart from corrections for commensurability [11]. In the following, we investigate how this en-
tanglement bound generalizes to systems of Nl distinct spins with l = 1 . . . Ns as sketched in
Figure 6.9.

Applying the notion of k-producible states from section 3.1 to a state of Ns spins of different
length (Figure 6.9), the system can be partitioned in many ways by merging different spins to-
gether. We define the partition G = {gi} containing the groups gi with |gi| < k spins, as shown
in Figure 6.9. The cardinality of the partition |G| = G gives the number of groups. In this

1In this case, the operator Ô needs to be constructed from the underlying su(n) algebra. The Gell-Mann operators
from the su(2) subspaces of the su(3) algebra (1.11) fulfill these properties despite with the exception of G8

which requires the correct normalization.
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Figure 6.9.: Configuration of Ns distinct spins, which can be partitioned in different groups (here shown
is the example of one group, labeled g1). For the sake of simplicity, all spins in this sketch are
pointing in the same direction. This picture can be straightforwardly expanded to the below
discussion of spinful bosons on a spatial grid (subsection 6.2.2), where the spins s1, s2, . . .
simply refer to the collective spin of the particles within a box.

manner, the generic spin state can be written as a product state

|Ψ〉 =
G
⊗
i=1
|Ψi〉 . (6.25)

Assuming a local spin operator Ôi acting on the individual spin si of a spin-s system in analogy
to (3.11), the QFI with respect to the i-th group is given by

FQ

[
|Ψi〉 , Ôi

]
= 4

(∑
l∈gi

sl︸ ︷︷ ︸
Si

)2

. (6.26)

We call Si =
∑

l∈gi sl the accumulated spin of the i-th group. Optimizing over all possible
choices of partitions with gi ∈ G, the bound for the QFI reads

FQ ≤ max
{G}

( G∑
i=1

FQ

[
|Ψi〉 , Ôi

])
= max
{G}

[
4

G∑
i=1

(∑
l∈gi

sl︸ ︷︷ ︸
Si

)2 ]
. (6.27)

But what is the optimal configuration of groups that maximizes FQ?

A glance at Figure 6.10 provides an intuitive picture for the guideline towards answering this
question. Consider the following imagined procedure: We start with an arbitrary initial configu-
ration ofNs spins and cluster them inG− 1 groups of k spins and one group with the remaining
r spins, so Ns = kb NsG−1c + r. The next step is to pick two of the groups, S1 and S2 with
S1 ≥ S2, and optimize (6.27) in order to achieve the maximal possible QFI of the k-producible
state by interchanging spins among the two groups. This is illustrated on the example of panel
i.) in Figure 6.10: Without loss of generality the groups are ordered according to the size of their
accumulated spin, i.e. S1 ≥ S2 · · · ≥ SG. Step 1© takes the largest spin of the second group, de-
noted by slong, and interchanges it with the smallest spin of the first group, called sshort, thereby
modifying the accumulated spin according to S1 → S̃1 and S2 → S̃2. The optimization imme-
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diately follows from.

S̃2
1 + S̃2

2 = (S1 − sshort + slong)2 + (S2 − slong + sshort)
2

= S2
1 + S2

2 + 2(slong − sshort)
2 + 2(S1 − S2)(slong − sshort) ≥ S2

1 + S2
2

(6.28)

In a similar manner, S2
G−1 is optimized by filling the group gG−1 up with the largest spin from

the group gG, as described by step 2©. Panel ii.) shows the new spin configuration which is going
to be iteratively optimized from here on by repeating the interchange of spins as, for instance,
shown in step 3©. Since the optimization procedure does not depend on the initial configuration
of the spins, it always converges to the optimal configuration S̃opt1 ≥ S̃opt2 ≥ · · · ≥ S̃optG given
in panel iii.) of Figure 6.10. By ordering also the individual spins according to their lengths
s1 ≥ s2 · · · ≥ sNs , the optimal partition Gopt = {gopti } is given by

gopti = {sk(i−1)+i, . . . , sk i} , (6.29)

for at most k spins within each group, i.e. |gopti | ≤ k. Thus, the first group g1 contains the k
largest spins, g2 the next k largest spins, and so on. The last group gG contains the r smallest
spins. A heuristic explanation, why precisely this is the optimal spin configuration, is given by
the quadratic scaling of the quantum Fisher information with the spin length. Rewriting (6.26)
for the optimal grouping yields the maximal quantum Fisher information achievable

FQ ≤
[
4

G∑
i=1

( ∑
l∈gopti

sl

︸ ︷︷ ︸
S̃opti

)2 ]
(6.30)

and k-partite entanglement is witnessed by2

FQ > 4
G∑
i

(
k∑
l=1

sk(i−1)+l

)2

−→ at least k + 1 - partite entangled. (6.31)

Thus, optimizing for the accumulated spin within each group also maximizes the quantum Fisher
information. Taking G = Ns/k for r = 0, we immediately identify the bound (6.24) for k + 1-
partite entanglement in a system of Ns equal spins from FQ > 4(Ns/k) (ks)2 ⇐⇒ FQ/Ns >

4ks2.

2If the last group contains only r spins, we simply add k − r spins of length 0 to the group, such that the second
sum in (6.31) remains well-defined.
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Figure 6.10.: Outline for finding the spin configuration that maximizes the quantum Fisher information.
This procedure essentially optimizes the collective spin length of each group by the inter-
change of spins. The optimal configuration for k-partite entanglement (6.29) corresponds
to a state where the k largest spins are contained in the first group, the next k largest spins
in the second group and so on. The meaning of the optimization steps i.) - iii.) is explained
in detail in the main text.
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6.2.2 Spinor BEC on a Spatial Grid

It is straightforward to extend this analysis to a spatial distribution of spinful bosons, which is
especially relevant in view of experiments with spinor BECs. As outlined in section 6.1, the
mathematical approach for describing these systems is based on putting the BEC on a discrete
lattice model, where N particles are grouped within NB boxes (Figure 6.11). In experiments,
one-dimensional geometries are typically achieved with an elongated, harmonic trapping poten-
tial such that the density is largest at the center and smallest at the edge of the trap. Time-of-flight
absorption imaging maps the density distribution onto the pixel grid of a CCD camera, where
the observables and correlations are averaged within a the single pixel. This is in analogy to
our approach of putting the BEC onto small boxes, thereby assuming that the spatial substruc-
ture within each box is irrelevant3 and therefore best described by a collective spin akin to the
single-mode approximation. In comparison to experiments4, the grid spacing can be seen as the
resolution of the imaging process. In this case, the outlined approach can be straightforwardly
employed to find experimentally relevant bounds on the quantum Fisher information. In simple
terms, it boils down to the question of how many boxes are entangled with each other given a
specific distribution of spinful bosons.

... ...

Figure 6.11.: The spin-1 BEC can be partitioned inNB boxes of unit length such that the l-th box contains
Nl particles.

The largest bandwidth in eigenvalues, so to say the spin length of each box, is simply given
by the number of particles contained in this box. We can therefore exchange sl by the number of
particles Nl in (6.31). For the sake of simplicity, we assume again that the particle numbers Nl

with l = 1 . . . NB are ordered according to their size

N1 ≥ N2 ≥ · · · ≥ NNB , (6.32)

such that Ni corresponds to the i-th largest particle number. In total, there are G groups gopti ,
acquiring the same structure from above, such that gopt1 contains the k largest particle numbers.
By straightforwardly mapping the particle number of the spinful bosons to the collective spin of

3This is due to the fact that the density healing length was chosen on the order of the grid spacing.
4Considering for example an atom cloud of 200 µm, 200 boxes and a resolution below 1 µm [55].
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each box, the quantum Fisher information from above (6.31) becomes

FQ > 4
G∑
i=1

(
k∑
l=1

Nk(i−1)+l

)2

−→ at least k + 1 - partite entangled. (6.33)

Homogeneous Limit

In the case of a box potential, which can be approximately met in experiments (Figure 1.3),
the homogeneous density distribution is characterized by Ni = N = N

NB
∀ 1 ≤ i ≤ NB . The

Fisher information for a spin-1 system is then bounded by

FQ ≤ max
[
4N

2 ∑
i

|gi|2
]
, (6.34)

where |gi| is the cardinality of the i-th group of boxes. For a k-producible state,
∑

i |gi|2 is
bounded as well ∑

G

|gi|2 ≤ dk2 + r2 , (6.35)

where d = bNBk c is the integer divisor of NB by k and r = NB − dk is the rest [11]. Equation
(6.35) can be optimized by having as many |gi| = k as possible. For simplicity, we assume
r = 0. However, calculations can be straightforwardly extended to r 6= 0. Inserting (6.35) into
(6.34) and using N = N/NB , the following rule is obtained

FQ
NB

> 4N
2
k =⇒ k + 1 - partite entanglement . (6.36)

This is a generic bound, which can be straightforwardly expanded to k+1 - partite entanglement
of a spin-s systems if FQ/NB > 4N

2
s2 k. We identify the analogy to the bound for uniform

spins (6.24) by comparing the mean spin length per box Ns with the spin s and the number of
boxes NB to the number of spins Ns.

According to above, m-partite entanglement corresponds to a partition as suggested in (6.32),
where the first group contains the k largest particle numbers and the last group contains the k
smallest particle numbers. Examples for the spin-1 BEC are:

k = 1 : separable state, no entanglement =⇒ FQ ≤ 4
(
N
)2
NB

k = 2 : at least bipartite entangled =⇒ FQ > 4
(
N
)2
NB (6.37)

k = 3 : at least tripartite entangled =⇒ FQ > 8
(
N
)2
NB (6.38)

...

k = NB : NB -partite and maximally entangled =⇒ FQ = 4
(
N
)2
N2
B = 4N2
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As one can see, the Heisenberg limit is reached and the upper bound (6.23) is met in the case
of a fully entangled state. This corresponds to a state where all boxes are entangled with each
other. One minor limitation of this approach is that it does not take the entanglement among
the particles within a box into account, however, this resembles the coarse-graining process of
typical experimental measurements based on absorption imaging.

To conclude, the physical implication of (6.31) is that the largest value of the Fisher information
for an arbitrary configuration of spins of different length is achieved by successively maximizing
the spin length for each group within the partition. By putting the BEC into small boxes in ac-
cordance with the outlined extended Bogoliubov theory [13], the system can be described within
the notion of collective spin states. The bounds for an arbitrary configuration of spins is then
extended to bounds for a general distribution of spinful bosons on a spatial grid. In this way, we
derived experimentally relevant bounds relating the quantum Fisher information to the multipar-
tite entanglement content of a spin-1 BEC for both homogeneous and inhomogeneous particle
distributions. Along with the extraction of the QFI from quench dynamics and the calculation
of correlation functions using Bogoliubov theory, it completes the set of requirements that we
need in order to connect the quantum Fisher information with the amount of entanglement in
the spin-1 system. Using the derived bounds for a homogeneous density distribution (6.36), we
compute the QFI for a pure state at T = 0K and for a mixed state at finite temperatures through
dynamical susceptibility using (4.13) in the following section.

6.3 Signatures of Multipartite Entanglement in spin-1 BECs

We start out with computing the quantum Fisher Information at zero temperature from the vari-
ance of the global operator

∑
z Ŝx(z), which is the order parameter of the second-order EP-P

quantum phase transition (Figure 6.4b)

FQ = 4

{
∆

(∑
z

Ŝx(z)

)}2

= 4

{
〈
∑
z

Ŝx(z)
∑
z′

Ŝx(z′) 〉 − 〈
∑
z

Ŝx(z) 〉2
}
. (6.39)

In a second step, we compute the quantum Fisher information through dynamic susceptibilities
after a weak, global quench Ĥ → Ĥ0 + λ

∑
z Ŝx(z) as outlined in section 4.2. The time-

dependent observable 〈
∑

z Ŝx(z)(t) 〉 corresponds to the linear response from which the QFI
is calculated by integrating over temperature-dependent functions as given by equation (4.13)
and depicted in Figure 4.2. For both ways of calculating the QFI with respect to the operator∑

z Ŝx(z), the latter is expanded up to second order in fluctuations in analogy to equation (6.16)
and chapter 5.

After having computed the QFI, we apply the entanglement bounds (6.36) in order to relate
the variance (6.39) to k-partite entanglement. The results are presented in Figure 6.12 and Fig-
ure 6.13 and can be summarized as follows: There is a growth of entanglement witnessed by the
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QFI with respect to Ŝx when approaching the Polar phase as we would expect for this second-
order quantum phase transition [12]. In the same manner, there is no entanglement witnessed
close to the EA-EP transition, which agrees with our expectations for a first-order QPT with
discontinuous change in the density at zero magnetic field q = 0. The amount of entanglement
grows continuously with increasing field strength q up to 50-partite entanglement for q/qc ≈ 0.8.
In addition to that, it is important to note that the mean-field Bogoliubov approximation is valid
at q → 0+, but breaks-down when q → qc.

Figure 6.12.: Zero temperature limit of multipartite entanglement computed from quantum Fisher infor-
mation of spin-1 BEC in EP phase through dynamical susceptibilities (dyn. susc.) and the
variance (var.) of a pure state at T → 0. SQL denotes the standard quantum limit and HL
the Heisenberg limit, giving the lower and upper bound for multipartite entanglement in
the system. The graph therefore shows an increased multipartite entanglement between the
boxes for 0 ≤ q/qc ≤ 0.8. Due to a strong presence of density fluctuations (Figure 6.6), the
underlying assumptions of the extended mean-field Bogoliubov theory are considered to be
violated in the shaded region.

For a more detailed discussion, we first focus on the zero temperature limit of the QFI given in
Figure 6.12. In general, the multipartite entanglement calculated from dynamic susceptibilities
and the variance shows a similar behavior in the limit of T → 0 for moderate magnetic field pa-
rameters. For q/qc > 0.8, however, the curves strongly diverge. It is highly doubtable whether
the underlying physics can be still described within our framework of extended mean-field Bo-
goliubov theory in the shaded region of Figure 6.12. Diverging fluctuations (Figure 6.6) arise
naturally due to the vanishing density of the side modes (Figure 6.3) close to the EP-P quantum
phase transition. The essential assumptions, namely small density fluctuations in relative values(
〈δn̂2

i 〉/n2
i � 1

)
and a sufficient mean-field density compared to the grid spacing (6.6)- (6.8),

are violated. Furthermore, higher-order correlations were not incorporated into the calculation
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of the variance via Wick’s theorem. That is why the negative variance shows that these correla-
tions can not be neglected anymore and, thus, that the mean-field assumption becomes invalid5.
All in all, this may explain why the quantum Fisher information takes unreasonable values for
q/qc > 0.9 in Figure 6.12.

However, there remains also a small difference between the QFI from quench dynamics at small
temperatures and the variance of the pure state at intermediate q values which we would expect
to vanish in the limit of zero temperature. At the present time, we do not have a conclusive ex-
planation for this discrepancy. Although having performed broad numerical checks we can not
fully excluded subtle differences between the numerical integration of the time-evolved state and
the calculation of the variance. Moreover, the computation of higher-order correlation functions
could be improved in future studies by using the cumulant expansion outlined in A.6.

Figure 6.13.: Presence of multipartite entanglement in EP phase of spin-1 BEC at finite temperature.
The amount of entanglement was computed from the quantum Fisher information with re-
spect to the operator

∑
z Ŝx(z) through dynamical susceptibilities following a weak quench

Ĥ + λ
∑

z Ŝx(z). At least bipartite entanglement is witnessed in large parts of the phase
diagram. Stronger, up to 50-partite entanglement, is found for low temperatures and large
magnetic field parameters. The entanglement vanishes for temperatures on the order of the
characteristic energy scale due to increased thermal fluctuations.

5To be precise, the negativity arises from the fact that 4-th order fluctuations of the form 〈δÔδÔδÔδÔ〉 were
neglected compared to the term 〈δÔδÔ〉2 which is subtracted through the squared expectations value in the
computation of the variance.
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The heatmap in Figure 6.13 extends the analysis of multipartite entanglement to finite temper-
atures. The finite temperature QFI shows a very similar dependence on the magnetic field pa-
rameter q. There is multipartite entanglement witnessed in a large part of the phase diagram. As
expected, the amount of entanglement decreases with the temperature until vanishing at temper-
atures on the order of the characteristic energy6 of the system. This is a typical finding [53, 12],
since at this temperature scale large thermal fluctuations destroy the correlations in the system
which can be readily seen from expanding (3.10) for large temperatures. Regardless finite tem-
perature effects, one limitation of this approach is the extraction of the entanglement content for
larger q-values. It suffers from the same limitations associated with the break-down of the mean-
field assumption due to diverging quantum fluctuations. The latter invalidates the method in the
regime q/qc > 0.8, but we observe an increased multipartite entanglement between the boxes
for 0 ≤ q/qc ≤ 0.8 in Figure 6.13.

Last but not least, one major question that naturally arises from our results is, how the simu-
lated data compares to the experiment.

6.3.1 Experimental Considerations

First, it is important to note a difference between the numerical calculation of the variance
and a typical experimental measurement, where the Larmor Phase φL = (θ1 − θ−1)/2 be-
tween the mF = −1 and mF = 1 component cannot be controlled [55, 22]. In this regard,
the repetitive measurement of the observable averages over φL, which takes a random value
between −π and π. Consequently, the expectation value from many measurements vanishes∫

dφL〈Ŝx(φL)〉 = 0 as can be seen from Figure 6.4a. One has therefore to clearly distinguish be-
tween the typically measured variance (∆

∑
z Ŝx(z))2 =

∑
zz′
∫ dφL

2π 〈
∑

z Ŝx(z)
∑

z′ Ŝx(z′) 〉−
(
∑

z

∫ dφL
2π 〈Ŝx(z) 〉 )2, presented in Figure 6.14, and the quantum Fisher information from equa-

tion (6.39). Although, correlations up toN2 could in principle be experimentally observed [55],
they do not necessarily witness a large amount of entanglement. For these reasons it is important
to take care of this subtle difference when evaluating experimental data. Since the correspon-
dence of the variance and the QFI is only valid for pure states at T = 0K, we focus here on the
discussion of the experimentally more interesting case of extracting the QFI for a thermal state
through dynamic susceptibilities.

In order to thoroughly study the general applicability of a measurement protocol based on dy-
namical susceptibilities, we connect the dimensionless parameters used in this thesis with exper-
imental parameters. The length scale xs, corresponding to the extension of the box potential,
fixes all other scales. Energies and temperatures are therefore given in terms of Es = ~

ts
= ~2

mx2s

6Here, we normalize the temperature according to the energy scale Es = 1/L2, where L is the system size (sub-
section 6.1.3).
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Figure 6.14.: Variance as possibly observed in a repetitive experiment, where every measurement of the
observable Sx(z) is attained with random Larmor phase φL. These correlations do not
describe the quantum Fisher information.

and times in ts = mx2s
~ . The energy scale for experiments with spin-1 BEC, however, is usually

given by ~Hz. The conversion table 6.1 relates the two energy scales to each other for reasonable
extensions xs of the trapping potential7.

In contrast to experiments, where one typically finds an almost constant spin-changing colli-
sion rate [78], it is important to note that we consider the same particle number N = 20000

for all three scenarios outlined in Table 6.1, yielding different critical values qc = 2nc1. This
gives a first mismatch with typical one-dimensional spinor BECs, where larger particle numbers
(N ≈ 80000) are desired in order to decrease experimental noise, for example on the quadratic
Zeeman shift q. However, this is no fundamental limitation of our method since the simulations
can be straightforwardly extended to larger system when taking care of the constraints on the
spatial discretization (6.6) - (6.8). Due to a lack of computational capacity and time, we have not
performed computations for larger systems so far.

L [µm] Es [~Hz] ts [s] qc = 2nc1 [~Hz]

100 0.07302 13.69 14.604
200 0.01853 54.78 3.651
300 0.00811 123.25 1.622

Table 6.1.: Conversion of the energy and time scales used within this thesis to the experimentally relevant
scale of ~ Hz for different extensions xs of the trapping potential and N = 20000 particles.

Having a look at Table 6.1, we observe that the second row xs = 200µm fits best to today’s
experiments at SynQS, Heidelberg. Furthermore, the choice of partition sizes corresponding to
a few micrometers is in good agreement with experimental values, thereby reducing the influ-

7The discussion of the comparability and applicability of our method is done in view of state-of-the-art experiments
located at the SynQS collaboration, Heidelberg.
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6.3. SIGNATURES OF MULTIPARTITE ENTANGLEMENT IN SPIN-1 BECS

ence of classical correlations [55]. The critical value qc ≈ 4~Hz and temperature scales in the
millihertz, i.e. sub-nanokelvin 8 regime is what one would expect from the spin temperature
[78] (alltough reliable methods to rigorously measure the spin temperature are still missing). Re-
garding the time-scales, our simulations suggest measurement times of the order of ts, required
in order to faithfully extract the QFI through the quench dynamics, as depicted in Figure 4.2.
Especially for lower temperatures and small q-values coherence times of ≈ 10 ts lie far away
from experimentally feasible values. However, one could think of extrapolating the exponential
decay of the integrand (4.13) for larger q values and temperatures, where our simulations sug-
gest that 1− 5 ts could be sufficient to estimate the quantum Fisher information. We expect that
shorter coherence times will rather underestimate than overestimate the integral of (4.13), such
that already measurements on shorter time-scales could extract a finite multipartite entanglement
content. To conclude, there are no fundamental limitations for experimentally implementing the
work of this thesis.

8In our considerations, 20 ~Hz relates to approximately 1nK.
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Conclusion and Outlook

The course of this Master’s thesis allowed us to venture into the field of quantummany-body the-
ory. One reason that makes this field so fascinating is the thrilling phenomenon of many-particle
entanglement and the strong connection of theoretical and experimental studies. In this regard,
our investigations combine the two versatile concepts of spinor Bose gases and quantum Fisher
information and constitute a contribution towards a measurement protocol for the investigation
of multipartite entanglement through quench dynamics in spin-1 Bose-Einstein condensates.

Following a summary of basic concepts in Part I, we have presented our main results in Part II
of this thesis. Therein, chapter 4 has started out with deriving a detailed calculation scheme
for extracting the quantum Fisher information from quench dynamics using mean-field Bogoli-
ubov theory. In a first study, we have analyzed the quantum Fisher information of a pure state
at zero temperature for a spin-1 BEC in single-mode approximation (chapter 5). Diagonalizing
the Hamiltonian by means of both exact numerical calculations [20] and Bogoliubov transforma-
tions, we have elucidated the crucial influence of spontaneous symmetry breaking in determining
the amount of entanglement in the system. In Chapter 6 we have extended the investigation of
multipartite entanglement to one-dimensional spin-1 quasi-condensates [13] in a box potential.
The quantum Fisher information has been first computed at zero temperature for a pure state
and, second, through dynamic susceptibilities [12] at finite temperature after a weak quench
(Figure 6.13). After having derived analytic bounds for generic spin states, the amount of mul-
tipartite entanglement has been related to the QFI. This has led us to conjecture that there could
be indeed multiparticle entanglement witnessed in spin-1 BECs, especially in the vicinity of the
continuous phase transition between the Easy-Axis and the Polar phase.

There are many possibilities for conducting subsequent studies which could also clarify outstand-
ing questions and unresolved problems, regarding theoretical and experimental considerations.
In first place, the studies allow for a straightforward expansion to other operators and quantum
phases relevant to spinor BECs. One important open question is whether the growth of the quan-
tum Fisher information can be fully attributed to underlying microscopic mechanisms such as the
varying strength of the spin-mixing dynamics. Although having performed benchmark studies,
it remains unclear in how far artifacts of the breakdown of the mean-field assumption can be
excluded. For these reasons, it would be very helpful to systematically verify the outlined results
with methods other than mean-field Bogoliubov theory, for example, Matrix-Product states [79].
Furthermore, the time evolution could be benchmarked using classical statistical simulation [80],
based on the Gross-Pitaevskii equation [27] for Bose gases. Resolving the small difference of
the quantum Fisher information in the zero temperature limit (Figure 6.12) represents another
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important task for future studies. One possible starting point for an improved estimation of the
variance could be the implementation of the cumulant expansion (Appendix A.6) and Wick’s
theorem (Appendix 2.3) for higher-order correlation functions.

It is very appealing to implement this work in a measurement protocol for spin-1 BECs. State-of-
the-art experiments can in principle meet the requirements regarding optical resolution, trapping
potentials, and read-out schemes outlined in chapter 6, which is already an indication for the ap-
plicability of the method. First steps have been already taken in this direction. However, longer
coherence times would be desirable to fully extract the quantum Fisher information. Further-
more, a thermal state is a necessary requirement for our considerations. However, it is still an
open question of research whether the spin-1 BEC in one dimension can experience thermal re-
laxation under its own dynamics and, if yes, how to probe it. Additionally, the choice of partition
sizemight influence the effects of classical correlations due to the limited resolution of absorption
imaging [55]. Last but not least, the generic mathematical description of the extended system
outlined in this thesis allows one to readily extend the calculations to inhomogeneous density
distributions in one dimension. In this context, an additional analysis of the influence of the trap-
ping potential on the mean-field ground state [81] would be required. Besides, one could think of
studying different phase domains within a trap coupled via the kinetic term. To conclude, there
are still many possibilities to deepen our investigations and address further pertinent questions
to it.

All in all, our studies suggest the presence of multipartite entanglement in spin-1 BECs, which
could possibly be measured using an experimental protocol based on this work.
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Appendices

A.1 Wick’s Theorem

In this thesis, we useWick’s theorem [47] in order to compute higher-order correlation functions.
Before discussing the main aspects of this theorem, we introduce the concept of normal ordering
as, for instance, explained in [82]. For the sake of simplicity, we omit the operator symbol "ˆ",
and write ai = âi and O = Ô from here on. An operator O is called normal-ordered if all
creation/annihilation operators appear on the left/right. In particular, a product of operators of
the same type, is normally ordered. For such O we write : O :, for example

: a2a
†
1a
†
2 : = a†1a

†
2a2 = a†2a

†
1a2 for ai, a†i =̂ bosonic creation/annihilation operator

: c2c
†
1c
†
2 : = c†1c

†
2c2 = −c†2c

†
1c2 for ci, c†i =̂ fermionic creation/annihilation operator .

The very usefulness of the definition is the property that the expectation value on the ground
state |0〉 of a normally ordered operator is always zero

〈0| : O : |0〉 = 0 . (A.40)

The contractionO1O2 of two operatorsO1 andO2 is defined as the difference between the time-
ordered product (denoted by T ) and the normal-ordered product

O1O2 = T (O1O2)− : O1O2 : . (A.41)

Here, time-ordering refers to the ordering a product of operators, where each operator is defined
at one time, such that every operator has only later operators to the left and earlier operators to
the right. One can show by direct computation that

T (O1O2O3) = : O1O2O3 : + : O1O2O3 : + : O1O2O3 : + : O1O2O3 : (A.42)

= : O1 : O2O3 : + : O3 : O1O2+ : O2 : O1O3 . (A.43)

Wick’s theorem generalizes this to N operators as

T (O1O2 . . .ON ) = : O1O2 . . .ON : + : all contractions of distinct pairs : . (A.44)

Since the ground state expectation value of a normal ordered operator is zero, we define the time-
ordered contraction as O1O2 = 〈0|TO1O2 |0〉. There are two important consequences arising
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A.2. THERMAL PHASE DIAGRAM IN SINGLE-MODE APPROXIMATION

from Wick’s theorem (A.44) and the constraint (A.40) for N being an even number

〈0|TO1O2 . . .ON+1 |0〉 = 0 (A.45)

〈0|TO1O2 . . .ON |0〉 = 〈0|TO1O2 |0〉 . . . 〈0|TON−1ON |0〉+ all other contractions .

The first term contains a single unpaired operators and therefore vanishes. From the second equa-
tion, we identify the general rule that the non-vanishing expectation value of all even-ordered
N -point correlation functions can be determined by the first order correlation function. In par-
ticular, Wick’s theorem for bosonic (+1) and fermionic (−1) creation and annihilation operators
becomes

〈â1â2 . . . âN 〉 =
∑

partitionsP
(±1)P 〈âi1 âi2〉 . . . 〈âiN−1 âiN 〉 . (A.46)

A.2 Thermal Phase Diagram in Single-Mode Approximation

In this extension to section 5.3, we examine the thermal phase diagram of the single-mode system
using the above self-consistent mean-field Bogoliubov formalism. To this end, we are searching
for the temperature and magnetic field parameter regime at which the mean-field approximation
is still valid. Therefore, the quasi-particle modes are thermally populated and the number of
condensed atoms is self-consistently adjusted according to equation (5.15). The occupation of
the mean-field mode is presented as a function of the temperature and quadratic Zeeman shift in
Figure A.15 and the corresponding chemical potential can be read off from Figure A.16.

As expected, the mean-field assumption breaks down in the limit of high temperatures where
thermal fluctuations are strongly enhanced. This happens at much lower temperature for q close
to the critical point qc than in the middle of the phase. This can be understood from the growth
of fluctuations when approaching the quantum phase transition. Since many-particle excitations
are needed in order to destroy the mean-field ground state, it is plausible to obtain larger temper-
atures compared to the typical energy per particle. A particularly interesting finding of this map
is that the state is more unstable towards the Twin-Fock phase (q → −qc) than towards the Polar
phase (q → +qc). This can be understood from the fact that on the Twin-Fock side two modes
(mF = ±1) are still occupied while all particles sit in the central mode (mF = 0) in the Polar
phase. Since the relative fluctuations of the two modes are stronger compared to the ones of the
central mode, this gives a reasoning for an earlier break-down of the mean-field assumption. The
thermal phase diagram therefore provides an insight into the growth of correlations and a better
understanding for the reliability of the method at finite temperatures.
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A.2. THERMAL PHASE DIAGRAM IN SINGLE-MODE APPROXIMATION

Figure A.15.: Numerical simulation of the relative occupation of the mean-field mode in the BA phase
at finite temperature. We observe the break-down of the mean-field assumption through
the growth of thermal and quantum fluctuations, especially close to the quantum phase
transitions. Interestingly, the ground state is less stable towards the Twin-Fock phase (q →
−qc) than towards the Polar phase (q → +qc), which could be attributable to the fact, that
on the Twin-Fock side two modes (mF = ±1) are still occupied while all particles sit in
the central mode (mF = 0) in the Polar phase. The temperature is expressed in units of
critical magnetic field parameter qc = 1~Hz.

Figure A.16.: Chemical potential in the BA phase at finite temperature from self-consistent numerical
calculations. The heatmap resembles the structure of the mean-field diagram, thereby un-
derlining the close connection between the chemical potential and the conservation of the
number of particles in the system.
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A.3. ANALYTICAL APPROACH TOWARDS SMA BOGOLIUBOV TRANSFORMATIONS

A.3 Analytical Approach towards SMA Bogoliubov Transformations

In this supplementary analysis to section 5.3, we analytically derive Bogoliubov transforma-
tions of the state which diagonalize the Hamiltonian (5.2) within the single-mode approximation
(SMA). Ideally, one finds one highly occupied and two empty modes, thereby reducing the pa-
rameter space to two modes. In this case, the basis transformation can be represented in terms of
2× 2 matrices and easily solved analytically, as shown on the examples in subsection 2.2.2.

We start out with choosing the following ansatz for Bogoliubov transformation T with β̂ = T α̂ β̂

β̂
†

 =

(
U 0

0 U†

)
︸ ︷︷ ︸

T

(
α̂

α̂†

)
. (A.47)

The quasi-particle modes β̂ and β̂
† should obey bosonic commutation relations (T IT † = I)

and fulfill the normalization condition

U−1 = U† and
∑

j=1,2,3

U2
ij = 1 for i = 1 , 2, 3 . (A.48)

Additionally, the fluctuations in linear order should vanish in the new basis. Plugging this mean-
field ansatz into the Hamiltonian (5.2) yields the linear part

Ĥlin =
(

4λN
3
2 ζ2

0 +N
3
2 (q − λ)− µ

√
N
)(

ζ−1α̂1 + ζ1α̂−1 + ζ1α̂
†
1 + ζ−1α̂

†
−1

)
+
(

8λN
3
2 |ζ1|2ζ0 − µ

√
Nζ0

)(
α̂0 + α̂†0

)
,

which can be rewritten in matrix form
Λ1ζ−1

Λ0ζ0

Λ1ζ1



ζ1 U12 U13

ζ0 U22 U23

ζ1 U32 U33



β̂d

β̂fz

β̂θ

 !
= const. (A.49)

with Λ1 = 4λN
3
2 ζ2

0 +
√
Nq and Λ0 = 8λN

3
2 ζ2

1 . The expressions β̂ = (β̂d , β̂fz , β̂θ) was
chosen in analogy to [83], where β̂d represents the highly occupied, so-called density-mode.
Solving for (A.49) under the constraints (A.48), the final transformation becomes

β̂d

β̂fz

β̂φ

 =


sin(φ)√

2
cos(φ) sin(φ)√

2
1√
2

0 − 1√
2

cos(φ)√
2
− sin(φ) cos(φ)√

2


︸ ︷︷ ︸

U


α̂1

α̂0

α̂−1

 , (A.50)
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using the parametrization sin(φ) =

√
1−q/2qc

2 =
√

2|ζ1| and cos(φ) =

√
1+q/2qc

2 = |ζ0|. These
transformations correspond to the result from [83] and the Bogoliubov Hamiltonian reads

Ĥ(2 ≈
(
β̂θ β̂†θ β̂fz β̂†fz

)

C D 0 0

D C 0 0

0 0 E F
0 0 F E




β̂†θ

β̂θ

β̂†fz
β̂fz

 , (A.51)

with matrix entries

C = −6λN sin2(φ) cos2(φ) + λN
[
sin4(φ) + cos4(φ)

]
+

1

2

[
(q − λ) cos2(φ)− µ

]
D = λN

(
sin2(φ)− cos2(φ)

)2
E =

1

2

[
q − λ− µ+ 2λN cos2(φ)

]
F = −λN cos2(φ) .

(A.52)

Thus, we obtain a Bogoliubov transformation with orthogonal modes that can be mapped onto a
polar state with one highly occupied mode. Computing the quantum Fisher information with re-
spect to the operator Ŝx from these transformation (Figure A.17) compares very well to the results
outlined in Figure 5.4. The same holds for the occupations of the mean-field mode and the self-
consistently adjusted chemical potential in Figure A.19a and Figure A.17. The small discrepancy
between the analytical benchmarks and the exact numerical implementations could be attributed
to the fact that the mapping onto two empty and one highly occupied mode neglects fluctuations
on top of the highly occupied mode which limits the analytical approach. Thus, the latter appears
to be less robust when approaching the quantum phase transitions, especially in the region close
to the Twin-Fock phase where fluctuations are expected to be stronger (Figure A.19a). The same
holds for the high temperature limit. Neglecting fluctuations on top of the highly occupied mode
is still a good approximation for small temperatures according to the expansion of the occupa-
tions from Bose-Einstein statistics in this limit 〈β̂†dβ̂d〉 ∝ (exp(E/(kBT )) − 1)−1 ≈ kBT/E.
However, the occupation scale linearly with the temperature as demonstrated in Figure A.18.
Hence, the comparison to the analytical studies is only valid in the limit of T → 0, underlying
the conclusions drawn from the numerical results.
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Figure A.17.: The analytical calculation of the quantum Fisher information with respect to operator Ŝx

for the SMA Hamiltonian H = 2(λŜ2
x −

q
3 Ŝz) + 2(λÂ2

y −
q
3 Âz) compares very well to

the numerical results presented in Figure 5.4. There is no entanglement witnessed at the
center of the BA phase, but the same builds up as soon as the absolute value of q increases.

Figure A.18.: Fluctuations on top of the mean-field mode scale linearly with the temperature. Thus, ne-
glecting these fluctuations is only valid at low temperatures and introduces systematical
errors at larger temperatures.
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(a)

(b)

Figure A.19.: Analytical benchmark of the occupation of mean-field mode (a) and the chemical potential
(b) in the Broken-Axis symmetry phase at finite temperature. The blue (a) and gray (b)
areas mark regions in the phase diagram where the mean-field assumption can not be self-
consistently fulfilled anymore. The results resembles the ones from numerical calculations
(Figure A.15 and Figure A.16) but show an earlier break-down close to quantum phase
transitions at lower temperatures, which can be attributed to neglecting fluctuations on top
of the mean-field mode.
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A.4 Energy Spectrum of spin-1 BEC in SMA from Exact
Diagonalization

For further discussions on spontaneous symmetry breaking in the single-mode spin-1 BEC, es-
pecially in view of the comparability of different mean-field methods and exact diagonalization
(Figure 5.7), we study the eigenenergies of the system in this supplementary analysis. The struc-
ture of the spectrum in Figure A.20 reveals a substantial change at q/qc ≈ 0.7, thereby hinting
at a shift of the quantum critical point due to large fluctuations in the system.

Figure A.20.: The energy spectrum obtained from exact diagonalization of the SMA Hamiltonian (5.3)
reveals a degeneracy of the ground state energy E0 for q/qc < 0.7. Moreover, a large
gap between the energy of the degenerate ground state and the next excited state can be
observed. This supports the conclusion of a spontaneous symmetry breaking of the frag-
ile, superimposed ground state. However, for larger q-values the notion of spontaneous
symmetry breaking can not be applied. At q/qc ≈ 0.7 the structure of the eigenenergy
spectrum substantially changes and removes the degeneracy. This is an indication of a
shift of the quantum phase transition due to large fluctuations in the system. Moreover, it
could explain the growth of fluctuations for magnetic field parameters q/qc ≥ 0.7, which
was generally observed throughout our studies. It therefore also verifies the choice of the
regime 0 ≤ q/qc ≤ 0.8 at which the mean-field assumption is considered to be valid in the
extended system. Last but not least, the two plots for different particle numbers (N = 200
above andN = 650 below) do not indicate a significant shift of the quantum critical point,
however, the suspicion of a finite size scaling could be addressed in future studies.
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A.5 Equations of Motion in Extended Spin-1 BEC

As outlined in chapter 4, the time-evolution of the correlation matrix is obtained from the Heisen-
berg equations of motion (4.21). Therefore, the commutator of the quasi-particle modes and the
Bogoliubov Hamiltonian needs to be computed. We explicitly perform these calculations on the
example of the mean-field Bogoliubov description in the extended system (chapter 6), thereby
omitting the operator symbol ′̂ ′

d
dtγ(t, z′) = i

[
H, γ(z′)

]
= i
[
H, β◦k(z′)β�l (z′′)

]
= i

∑
z

∑
j

Ej(z) {β†j (z)βj(z) + βjβ
†
j (z)}, β

◦
k(z′)β�l (z′′)

 (A.53)

Using the commutation relation [βi(z), β
†
j (z
′)] = 1

l δzz′δij and identity [AB,CD] = A [B,C]D+

CA [B,D] + [A,C]BD + C [A,D]B, we derive the following equations of motions for any
combination of two quasi-particle operators up to second order

d

dt
β†k(z

′)βl(z
′′)(t) = 2i

l {Ek(z
′)− El(z′′)}β†k(z

′)βl(z
′′)

d

dt
βk(z

′)β†l (z
′′)(t) = −2i

l {Ek(z
′)− El(z′′)}βk(z′)β†l (z

′′)

d

dt
βk(z

′)βl(z
′′)(t) = −2i

l {Ek(z
′) + El(z

′′)}βk(z′)βl(z′′)

d

dt
β†k(z

′)β†l (z
′′)(t) = 2i

l {Ek(z
′) + El(z

′′)}β†k(z
′)β†l (z

′′)

(A.54)

Writing the Bogoliubov modes with mF components bz1 =
(
β1(z1) β0(z1) β−1(z1)

)
as

b =
(
bz1 bz2 · · · b†z1 b†z2 · · ·

)
yields to the correlation matrix of the form

Γ = bb† =



bz1b
†
z1 bz1b

†
z2 · · ·

bz2b
†
z1 bz2b

†
z2

. . .
... b†zn−1bzn−1 b†zn−1bzn

b†znbzn−1 b†znbzn


. (A.55)

The following unitary matrix E(t) solves equation (A.54) by an exponential ansatz and evolves
the correlation matrix in time, Γ(t) = E(t) Γ(0) E†(t) , with

E(t) = diag

[
e−

2i
l E1(z1)t, e−

2i
l E0(z1)t, e−

2i
l E−1(z1)t · · · , e

2i
l E1(zn)t, e

2i
l E0(zn)t, e

2i
l E−1(zn)t

]
.

(A.56)
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A.6. CUMULANT EXPANSION

A.6 Cumulant Expansion

In chapter 6 we apply a specific expansion of the field operator in terms of phase-density for-
malism which describes the quasi-condensate in the limit of weak interactions and low density
fluctuations. Thereby, we assume the phase fluctuations to vary smoothly between neighboring
points. However, when computing first order correlations of the type

〈Ψ̂†i (z)Ψ̂j(z
′)〉 = 〈

√
n̂i(z) ei[θ̂j(z

′)−θ̂i(z)]
√
n̂j(z′) 〉 , (A.57)

z and z′ are not neighboring points of the lattice any more. Thus, the difference in the fluctuation
of the phase can become arbitrary large since the fluctuations are uncorrelated at large distances.
This can be seen also seen from Figure 6.8, where the correlations of the phase fluctuations
decrease with distance. Hence, fluctuations can differ arbitrary large at points far apart from each
other. In order to cure this divergence, we introduce a cumulant expansion of the exponential in
powers of the phase difference up to second order in fluctuations, thereby using the short-writing
ϑ ≡ δθ̂i(z)− δθ̂i(z′):

〈eiϑ〉 = e〈−ϑ
2〉/2 . (A.58)

For any operator with zero mean it can be proven by induction that the following identity holds
using Wick’s theorem

〈eiϑ〉 = 〈
∞∑
n=0

in

n!
ϑn〉 〈ϑ〉=0

= 〈
∞∑
k=0

i2k

(2k)!
ϑ2k〉 =

∞∑
k=0

(−1)k

(2k)!
〈ϑ2k〉

~
=

∞∑
k=0

(−1)k

(2k)!

2k!

k!2k
〈ϑ2〉k =

∞∑
k=0

1

k!

(
−〈ϑ2〉

2

)k
(A.59)

= e〈−ϑ
2〉/2 .

~ to proof: 〈ϑ2k〉 =
2k!

k!2k
〈ϑ2〉k

1. base case: k = 1⇒ 〈ϑ2〉 = 〈ϑ2〉

2. step case: k = n+ 1 :

〈ϑ2(n+1)〉 = 〈ϑ2nϑ2〉 Wick
= 〈ϑ2n〉〈ϑ2〉(2n+ 1) =

(2n)!

n!2n
〈ϑ2〉n〈ϑ2〉(2n+ 1)

=
(2n)!

n!2n
〈ϑ2〉n+1 (2(n+ 1)− 1) 2(n+ 1)

2(n+ 1)
=

2(n+ 1)!

(n+ 1)!2n+1
〈ϑ2〉n+1 .
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With this, we can now compute the first order correlation function from equation (A.57) as fol-
lows

〈Ψ̂†i (z)Ψ̂j(z
′)〉 = 〈

√
δn̂i(z) ei(θ̂j(z

′)−θ̂i(z))
√
δn̂j(z′)〉

=
√
ninje

i(θj−θi)e〈−ϑ
2〉/2
{

1 +
i

2ni
〈δn̂i(z)ϑ〉+

i

2nj
〈ϑ δn̂j(z′)〉

− 1

8n2
i

(
〈δn̂2

i (z)〉 − 〈δn̂i(z)ϑ〉2
)

(A.60)

− 1

8n2
j

(
〈δn̂2

j (z)〉 − 〈ϑ δn̂j(z′)〉2
)

+
1

4ninj

(
〈δn̂i(z)δn̂j(z′)〉 − 〈δn̂i(z)ϑ〉〈ϑ δn̂j(z′)〉

)}
.

For small fluctuations, the cumulant expansion agrees (up to second order) with the standard
expansion of (A.57), which can be seen from expanding e〈−ϑ

2〉/2 for small ϑ2 and neglecting
the quartic terms in (A.60). Since the computation of the QFI from dynamic susceptibilities is
performed within a quadratic theory our results agree with the first order correlation functions
extracted from the cumulant expansion. However, the same does not apply to the second order
correlator in the computation of the variance. Future work should therefore carefully consider
the potential effects of the cumulant expansion, for instance, in order to achieve an improved
estimation of the variance. The above equations could be taken as a starting point for generally
extracting higher-order correlation functions for smoothly varying phase fluctuations.
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