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A prerequisite for the comprehensive understanding of many-body quantum systems is a charac-
terization in terms of their entanglement structure. The experimental detection of entanglement in
spatially extended many-body systems describable by quantum fields still presents a major challenge.
We develop a general scheme for certifying entanglement and demonstrate it by revealing entangle-
ment between distinct subsystems of a spinor Bose-Einstein condensate. Our scheme builds on the
spatially resolved simultaneous detection of the quantum field in two conjugate observables which
allows the experimental confirmation of quantum correlations between local as well as non-local
partitions of the system. The detection of squeezing in Bogoliubov modes in a multi-mode setting
illustrates its potential to boost the capabilities of quantum simulations to study entanglement in
spatially extended many-body systems.

Entanglement between spatial regions of isolated quan-
tum systems is at the heart of phenomena such as
eigenstate thermalization [1, 2] and many-body localiza-
tion [3, 4]. Spatial entanglement has been experimen-
tally assessed with high precision in small systems with
discrete degrees of freedom, such as spins or few particle
systems [5–8]. These methods rely on the experimental
capability of preparing and maintaining pure states as
well as detection on the single-particle level. These re-
quirements are exceedingly hard to fulfill in generic sit-
uations in nature where many particles interact and the
system is described by continuous quantum fields. Here
we show that the spatially resolved joint measurement
of non-commuting field quadratures allows certifying en-
tanglement in these situations with no assumptions about
the purity of the global state.

Our experimental platform is a spin-1 Bose-Einstein
condensate (BEC). We work in a regime where the
relevant dynamics is captured by the quantum field
Φ̂(y) = Ŝx(y)− iQ̂yz(y) with the spin-component Ŝx and

quadrupole-component Q̂yz [9]. We jointly measure the
two field quadratures which implements a spatially re-
solved direct sampling of the corresponding phase-space
distribution. This allows us to examine the phase-space
distributions of local subsystems as well as the global sys-
tem which is a key ingredient for entanglement detection.

For our experiments, we initially prepare a BEC of
87Rb atoms in the magnetic substate mF = 0 of the
F = 1 hyperfine manifold. This corresponds to the vac-
uum state of the quantum field Φ̂(y). By a controlled
energy shift of mF = 0 we initiate spin-mixing dynamics.
This leads to squeezing of the field quadratures (Φ̂+Φ̂†)/2
and (Φ̂† − Φ̂)/2i, corresponding to the conjugate spin-1
operators Ŝx and Q̂yz [9], and to the build-up of entangle-
ment between spatial subsystems [10–12]. We access the

phase-space distribution of the quantum field by coupling
the F = 1 hyperfine manifold to F = 2 which serves as an
ancillary system (see [13] and SM for details). In each ex-
perimental realization we measure the populations of the
magnetic substates in the F = 1, 2 manifolds, from which
we estimate the expectation values Sx(y) and Qyz(y), re-
spectively. This estimation can be done with high pre-
cision, since approximately 600 atoms contribute on av-
erage to the signal at each position y after integrating
over the transversal directions and the spatial resolution
of 1.3µm.

Entanglement is defined as inseparability of the quan-
tum state with respect to specific partitions of the sys-
tem. Given the spatial resolution of our imaging we are
able to analyze general partitions via

Φk = Nk
∑
y

fk(y)Φ(y) (1)

where the partitions are parameterized by the function
fk(y). The normalization Nk is chosen such that the
corresponding operators fulfill the commutation relation
[Φ̂k, Φ̂

†
k] = 2. This normalization is possible, since we

detect the commutator of the observables Ŝx and Q̂yz
(for the connection to the detected particle numbers in
F = 1 and F = 2 see SM).

Our readout scheme gives us access to the phase-space
distribution in any partition and the direct sampling al-
lows analyzing correlations between them. To demon-
strate this capability, we tune the spin-mixing process
into resonance with the third excited mode of the ex-
ternal potential [14, 15] and let the system evolve for
800 ms (see Fig. 1(a)). Prior to imaging, we switch off
the longitudinal confinement to let the atomic cloud ex-
pand by a factor of 4 to an extension of about 80µm.
The corresponding phase-space distribution of the global
observables, i.e. fk(y) = 1 is shown in Fig. 1(b), which
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FIG. 1. Sampled phase-space distributions of global and local
observables: (a) Schematics of the level scheme for the phys-
ical preparation of the target state and of the longitudinally
expanded atomic cloud. The initially populated mF = 0 level
is tuned (shading) close to resonance with the third excited
eigenmode in mF = ±1 via off-resonant mw dressing. In the
right part, the dashed lines indicate the evaluation regions
with a length of 20µm each. (b) and (c) show the sampled
phase-space distributions for the global observables and for
the local subsystems, respectively. The corresponding parti-
tioning functions are shown in the insets. The state has been
prepared by 800 ms of spin-mixing dynamics which results in
a non-Gaussian distribution in the local partitions. The red
and yellow points highlight single experimental realizations il-
lustrating the strong correlations between the individual sub-
systems. These correlations strongly suppress the fluctuations
of the global observables leading to a Gaussian distribution
as shown in (b). (d) shows a quantitative analysis of the first-
order coherence between different subsystems revealing strong
anti-correlations between neighboring partitions.

features an isotropic Gaussian distribution.
In Fig. 1(c) we show the phase-space distributions for a

local analysis corresponding to the partitioning functions
as indicated in the insets. These distributions are highly
non-Gaussian and characterized by large fluctuations. In
conjunction with the observed small fluctuations in the
global observables shown in Fig. 1(b) this implies strong
correlations between the spatial subsystems. To reveal
the structure of the correlations present we evaluate the
first-order coherence

Ck,l =
〈Φ∗k · Φl〉√
〈|Φk|2〉 · 〈|Φl|2〉

k, l ∈ {1–4} (2)

where 〈·〉 indicates the average over all experimental re-
alizations. C = |C|eiθ is in general a complex quan-
tity where the absolute value |C| quantifies correlations
between the local fields and the relative angle between
the fluctuations of the local fields is given by θ. In
Fig. 1(d) we find θ to be changing by π between neighbor-
ing subsystems demonstrating strong anti-correlations as
expected from the spatial structure of the populated
third excited mode. That these correlations are found

in any phase-space orientation can be seen explicitly in
the examples shown in Fig. 1(c), where two realizations
in orthogonal phase-space directions are highlighted in
red and yellow.

In the following we will show that knowledge of cor-
relations between quantum fields in different partitions
can be used to certify entanglement. For this, we tune
the spin-mixing dynamics such that the two energetically
lowest trap modes are squeezed as shown in Fig. 2(a).
We choose an evolution time of 100 ms in the squeezing
regime. Microscopically this corresponds to a mean num-
ber of 32 atoms in the magnetic substates ±1 compared
to the initial BEC of 4 × 104 atoms. In order to exper-
imentally confirm the expected squeezing of the phase-
space distribution in each mode, we choose the partitions
indicated in the insets of Fig. 2(b). The corresponding el-
liptical phase-space distributions are shown in the upper
row of Fig. 2(b). We compare the standard deviations
of the data with the ones expected for the vacuum state
as indicated by the blue and black lines, respectively.
We find for both partitions fluctuations below the classi-
cal limit, where the maximally squeezed orientations are
marked by red lines. This confirms the squeezing in the
two modes. Due to the energy difference between the two
modes, the relative orientation ∆ΘS of the two squeez-
ing directions evolves dynamically when switching off the
mw dressing of mF = 0. Employing different hold times
we prepare ∆ΘS ≈ 0◦ and 90◦.

For a quantitative analysis of the squeezing level the
photon shot noise, readout splitting and technical noise
that contribute to the measured signal have to be taken
into account. For the data shown in Fig. 2 we find after
subtracting the photon shot noise contribution minimal
fluctuations of 0.7± 0.1. The vacuum fluctuations of the
ancillary states limit the level of fluctuations to 0.5 for a
perfectly squeezed state. Taking those into account leads
to an inferred squeezing of−3 dB. For reaching this detec-
tion limit the off-resonant excitations during the splitting
pulses have to be suppressed to a level of smaller than
10−5.

Strikingly, even though both spatial modes feature
squeezing for the two situations with ∆ΘS ≈ 0◦ and 90◦

the spatial entanglement structure differs. For a rela-
tive orientation of 0◦ the local phase-space distributions
shown in the lower row of Fig. 2(b) are similar to the
ones found within the mode partitions and also feature
fluctuations below the classical limit. In contrast, for
an angle of 90◦ the local distributions exhibit enhanced
fluctuations exceeding those of the vacuum state. Since
this analysis corresponds to a partial trace over the com-
plement of the respective subsystem, finding increased
fluctuations in the remaining system is an indication of
spatial entanglement.

In order to rigorously show the presence of entangle-
ment we derive an entanglement witness W [16] for the
experimentally realized joint measurements. Our mea-
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FIG. 2. Superposition of two squeezed vacuum states. (a) Illustration of simultaneous spin-mixing in two spatial modes (blue
and red). The initially populated mF = 0 level is tuned (shading) close to resonance with two energetically lowest eigenmodes
in mF = ±1 via off-resonant mw dressing (upper part). This results in simultaneous squeezing in the two modes with relative
squeezing angle ∆ΘS (lower part). (b) Phase-space distributions for different partitioning functions as indicated in the insets
of each panel. We prepare two different relative squeezing angles of ∆ΘS ≈ 0◦, 90◦ which are shown in the left and right part,
respectively. The blue ellipses show the 2 s.d. interval of the distribution and the black dashed circles show the fluctuations
expected for the initial vacuum state (including photon shot-noise). The upper row reveals the squeezing in the individual
modes, where the red lines indicate the axis of smallest fluctuations. In the case of ∆ΘS ≈ 0◦ we find squeezing in the local
partitions while for ∆ΘS ≈ 90◦ the fluctuations are increased along all directions compared to the vacuum state (lower row).

surement strategy allows extracting the field component
along arbitrary orientations θ via Fk(θ) = Re(Φ†ke−iθ)
with k ∈ {L,R} from the sampled local phase-space dis-
tributions, where Re() denotes the real part. These quan-
tities allow us to evaluate the following criterion fulfilled
for all separable states [17]:

W =∆2u(θL, θR) + ∆2u(θ′L, θ
′
R)

− (| sin(∆θL)|+ | sin(∆θR)|) ≥ 0 ,
(3)

where u(θL, θR) = [FL(θL) + FR(θR)]/
√

2 and ∆θk =
θk−θ′k. Here, | sin(∆θk)| accounts for the bound of the lo-
cal uncertainty relation and assumes equal atom numbers
in the two partitions (for the imbalanced case see SM).
Since the local observables are determined in joint mea-
surements the bound has been adapted with respect to
its original form [17] by exploiting this knowledge about
the measurement process [18, 19]. The fluctuations in
u(θL, θR) quantify the degree of correlation between the
subsystems and W < 0 signals the presence of entangle-
ment.

From the sampled phase-space distributions we evalu-
ate the variances ∆2u(θL, θR) for any pair of angles. Fig-
ure 3(a) shows that for the two relative squeezing angles
shown in Fig. 2 we observe pronounced minima where the
fluctuations are suppressed below the atomic shot noise
limit (∆2u = 1). We find a violation of Eq. (3) by min-
imizing W over all pairs of analysis angles. As the last
term in Eq. (3) only depends on the relative angles ∆θk,

we minimize the variances with respect to θk for each
choice of ∆θk. The resulting values of W are shown in
Fig. 3(b), where regions of W < 0 are visible. For the
case that the squeezing ellipses in the two modes have the
same orientation, i.e. ∆ΘS = 0◦, (see Fig. 2(b)) we find
that the witness does not flag entanglement between the
left and right half, although the phase-space distributions
of both halves feature squeezing. For ∆ΘS = 90◦ our wit-
ness detects entanglement consistent with the enhanced
fluctuations in the local partitions shown in Fig. 2(b).
In this case, we find for the witness a minimal value of
−0.51± 0.14 for ∆θL = 0.53π and ∆θR = 1.45π, where
we subtracted the independently characterized photon
shot noise contribution of 0.13 (see SM). We also find en-
tanglement between the two halves for different relative
orientations of the squeezing ellipses, e.g. ∆ΘS = 45◦

(see SM).

Having established the experimental capabilities of our
method, we now turn to a multimode situation which is
the interesting regime for quantum simulation of many-
body systems. Here, we study the quantum structure of
multiple spatial modes in a box-like trapping potential
(see Fig. 4). We confine the atoms to the central part
of a weak harmonic trapping potential (with longitudi-
nal and transversal trap frequencies of 2π × 1.5 Hz and
2π × 170 Hz, respectively) by adding two repulsive bar-
riers which are spaced by 84µm. This leads to a flat
atomic density as shown in Fig. 4(a). The spin inter-
action strength of 1.2 Hz allows us to vacuum squeeze
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FIG. 3. Witnessing entanglement between subsystems.(a)
Fluctuations in the observable u quantifying correlations be-
tween the subsystems as a function of the local field projection
angles, θL and θR. Here, the blue regions signal fluctuations
below the atomic shot noise limit. While for ∆ΘS = 0◦ (left)
we observe fluctuations for specific angle pairs, the continu-
ous diagonal band of reduced fluctuations seen for ∆ΘS = 90◦

(right) is what allows witnessing entanglement. (b) Entangle-
ment witness as a function of local relative angles, where the
blue regions signal entanglement. For each pair of local rela-
tive angles, we minimized the first line of equation (3). The
point of minimal W is indicated by the black cross. The cor-
responding pair of local orientations is indicated in (a).

different spatial modes simultaneously since the energy
difference between the ground and third excited mode of
the box potential is only 1.2 Hz.

Our experimental observations directly reveal the
squeezing in the individual Bogoliubov modes by tak-
ing them as partitioning functions fk(y) (see Fig 4(b)
insets). For a single realization we evaluate the field in
mode k according to Eq. (1). Experimentally, we find
squeezing for the four lowest spatial modes by examining
the phase space distributions at 100 ms evolution time
(see Fig. 4(b)). The width of the distributions (shown as
coloured ellipses) are smaller than expected for the ini-
tially prepared vacuum state (black circle) and amount
to a maximal inferred squeezing of −8 dB .

From the fluctuations along the anti-squeezed axis we
infer a mean number of less than 6 atoms in each Bo-
goliubov mode. Compared to the overall atom number
of ∼ 3× 104 this correspond to a regime of low depletion
where the Bogoliubov approximation is valid. In this
regime uncorrelated squeezing dynamics of each mode is
expected [20]. We explicitly confirm that these modes
are independent by evaluating the first-order coherence
Ck,l (see Eq. (2)) between the individual partitions as
shown in Fig. 4(c). This highlights a major advantage
of our detection scheme as extracting these coherences
would be experimentally challenging and resource in-
tensive with sequential projective measurements. There

FIG. 4. Simultaneous vacuum squeezing of multiple Bogoli-
ubov modes. (a) Schematics of box-like trapping potential
implemented by combining an elongated attractive harmonic
dipole potential (red) with two repulsive barriers (green). The
detected BEC density shown in the lower part (yellow). (b)
Sampled phase-space distributions for the partitionings in-
dicated in the insets, which reveal vacuum squeezing in the
four energetically lowest Bogoliubov modes. The colored solid
lines indicate the 2 s.d. interval of the distribution and the
dashed black lines show the fluctuations expected for the ini-
tial vacuum state including photon shot noise. (c) Ck,l for
the data shown in (b). This confirms the independence of the
individual Bogoliubov modes as expected in the low depletion
limit.

mode-selective spin rotations as well as a large number
of relative analysis angles would be required.

We present a very general strategy to extract corre-
lations between various partitions of the system as well
as their entanglement structure. This lays the ground for
resolving the role of entanglement in different phenomena
such as thermalization of isolated quantum systems [21],
the emergence of hydrodynamics and quantum effects in
gravity with analog quantum simulators [22]. Since our
entanglement detection scheme is model independent it
may be employed for certifying quantum operation of
an analog simulator, a task that is indispensable when
exploring phenomena beyond the reach of classical de-
vices [23].
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SUPPLEMENTARY MATERIAL

State Preparation

After condensation the atoms populate the state (F,mF) = (1,−1) in a magnetic field of 1.44 G, where F and mF

denotes the hyperfine manifold and the magentic substate, respectively. To transfer the atoms into the state (1, 0)
we employ two resonant mw π-pulses coupling the states (1,−1) ↔ (2, 0) and (2, 0) ↔ (1, 0). To remove residual
atoms in (1,±1) we apply a magnetic field gradient, after which we let the magnetic field stabilize again for 100 ms.
To remove any atoms in F = 2 and atoms in (1,±1) that might have been generated during the 100 ms hold time
for example via off-resonant spin-mixing, we apply two light pulses which couple the F = 2 manifold to the excited
state 52P3/2 and push the atoms via optical forces out of the trap. In between we employ two mw π-pulses to transfer
atoms from (1,±1) to (2,±1).

At a magnetic field of 1.44 G the second-order Zeeman-shift leads to an energy shift of ≈ −150 Hz of the state (1, 0)
with respect to (1,±1). Compared to the spin-spin interaction strength of ≈ 4 Hz, this shift therefore inhibits the
creation of atom-pairs in (1,±1). To initiate spin-mixing we off-resonantly couple the states (1, 0) and (2, 0) with
a blue-detuned mw. This shifts the energy of the state (1, 0) with respect to (1,±1) and allows us to control the
spin-mixing process.

Trapping potentials

For the experiments described in the main text, we employ two different trapping geometries. For the measurements
presented in the first three figures, the atoms are confined in a crossed dipole trap consisting of two red-detuned
focused laser beams at a wavelength of 1030 nm. This generates a harmonic confinement with trapping frequencies
ω‖ = 2π× 50 Hz and ω⊥ = 2π× 170 Hz in longitudinal and transversal direction, respectively. In our case, the spatial
distribution of the BEC in longitudinal direction is well described by the Thomas-Fermi approximation, which means
that the atomic distribution mimics the shape of the external trapping potential up to the chemical potential, which in
our experiments is typically about 2 kHz. The interactions between the atoms in the states (1, 0) and (1,±1) leads to
an effective external potential for the spin-mixing process [14]. For small number of atom pairs in (1,±1) this effective
potential is close to harmonic for the two energetically lowest modes and box-like for the energetically higher modes.
Compared to the external potential the energy difference in this effective potential is much lower and amounts in our
case to about 4 Hz. Since the spin-mixing dynamics has an interaction strength of about 2–3 Hz in this geometry, this
means that we can tune the pair-creation process selectively into resonance with a single mode or a combination of
two external modes.

For the measurements in the multimode regime (Fig. 4 in the main text), we employ a box-like trapping geometry.
For this the atoms are condensed in the cross-dipole trap as before. Subsequently we ramp down one of the confining
dipole traps to let the atomic cloud expand in the remaining weakly focused laser beam. Simultaneously, using two
blue-detuned laser beams we generate a repulsive potential with a width of about 84µm around the center of the
harmonic trap. Over this distance the harmonic potential is approximately constant and, thus, this setup yields a
box-like confinement for the atomic cloud. In this geometry the energy levels are given by ≈ 0.08 Hz · n2 leading to
an energy difference between the ground and third excited mode of ≈ 1.2 Hz. This is also the relevant energy spacing
for spin-mixing as in the Thomas-Fermi approximation the effective potential is again a box with a width of 84µm.
In this trap geometry the interaction strength is typically 1.2 Hz, which means that multiple spatial modes can be
tuned close to resonance simultaneously.

Joint measurement of two conjugate field components

For the definition of Ŝx and Q̂yz we choose here the one given in [9]. Note that in the main text we use a different
normalization. These two observables are given in second quantization as

Ŝx(y) =
1√
2
â†1,0(y) [â1,+1(y) + â1,−1(y)] + h.c.

Q̂yz(y) =
i√
2
â†1,0(y) [â1,+1(y) + â1,−1(y)] + h.c.

(S1)
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Transfer to Mapping of

mw mwmw rf

FIG. S1. Sketch of the readout sequence for the joint measurement of Sx and Qyz

where â
(†)
(F,mF)

(y) is the annihilation (creation) operator in the state (F,mF) and at position y and h.c. denotes the

Hermitian conjugate. These two operators fulfill the commutation relation

[Ŝx, Q̂yz] = −i[2N̂0 − (â†(1,+1) + â†(1,−1))(â(1,+1) + â(1,−1))] (S2)

where the operator N̂0 denotes the particle number operator in the state (1, 0). In the limit of small depletion, the
commutator is approximated by −i 2ntot, where ntot is the total atom number.

For a joint measurement of these two conjugate observables we employ the following sequence, illustrated in Fig. S1.
After expansion of the atomic cloud we use three mw π/2-pulses to couple the magnetic substates mF = 0,±1 in
F = 1 to the corresponding substates in the F = 2 manifold. With this, we transfer on average half of the atoms to the
F = 2 hyperfine manifold, which serves as an auxiliary system for the readout and with that allows the simultaneous
extraction of two conjugate observables in a single experimental realization.

As we are interested in the transversal spin and quadrupole degree of freedom we use a radio-frequency (rf) pulse,
which, on a spin sphere, implements a π/2-rotation. The frequency of this rf pulse is chosen such that it has the
same detuning in the F = 1 and the F = 2 hyperfine manifold. At the chosen magnetic field of 1.44 G, the resonance
frequencies in the two hyperfine manifolds differ by 4.4 kHz, leading to a detuning of the rf pulse by 2.2 kHz. This
is more than five times smaller than the employed resonant Rabi frequency of 12 kHz, which means that the rf-pulse
can be used to implement a spin rotation corresponding to a resonant π/2-pulse in each manifold.

In F = 1 this rotation maps the observable Ŝx onto the measurable populations in the states (1,±1). The relative
phases of the mw pulses determine which observable is mapped onto the populations in the F = 2 manifold. By
changing the phase of the mw pulse coupling the states (1, 0)↔ (2, 0) by π/2 we can change the observable from the
spin component Ŝx to the quadrupole component Q̂yz. We independently calibrated the phases of the mw pulses such
that after the readout sequence we extract in each partition the two observables from the measured populations via

Skx =

∑
y f

k(y)[n(1,+1)(y)− n(1,−1)(y)]√∑
y f

k(y)2[n(1,+1)(y) + n(1,−1)(y)]
=
∧ Ŝkx√

2nktot

Qkyz =

∑
y f

k(y)[n(2,+2)(y)− n(2,−2)(y)]√∑
y f

k(y)2[n(2,+2)(y) + n(2,−2)(y)]
=
∧ Q̂kyz√

2nktot

(S3)

where n(F,mF)(y) is the measured atom number in the state (F,mF) at position y and nktot denotes the total atom

number in partition k. We define the quantum field Φ̂ via these observables, which are normalized to the atom number
found in each partition, via Φk = Skx − iQkyz, such that the corresponding operator obeys the commutation relation:

[
Φ̂k, Φ̂

†
k

]
=

[
Ŝkx√
2nktot

− i
Q̂kyz√
2nktot

,
Ŝkx√
2nktot

+ i
Q̂kyz√
2nktot

]

=
i

ntot

[
Ŝkx , Q̂

k
yz

]
= 2.

(S4)
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Configuration Partition Measured Minimal Fluctuations Inferred Squeezing

harmonic trap, symmetric (left+right) 0.73± 0.09 −3.4+1.4
−2.2 dB

∆ΘS = 90◦ antisymmetric (left-right) 0.77± 0.12 −2.7+1.6
−2.6 dB

left half 1.63± 0.17 +3.5+0.6
−0.7 dB

right half 1.45± 0.17 +2.8+0.7
−0.9 dB

harmonic trap, symmetric (left+right) 0.75± 0.08 −3+1.2
−1.7 dB

∆ΘS = 0◦ antisymmetric (left-right) 0.74± 0.09 −3.2+1.4
−2.0 dB

left half 0.73± 0.08 −3.4+1.3
−1.9 dB

right half 0.77± 0.09 −2.7+1.2
−1.8 dB

box trap ground mode 0.71± 0.10 −3.8+1.7
−2.8 dB

first excited mode 0.62± 0.09 −6.2+2.4
−6.0 dB

second excited mode 0.68± 0.10 −4.4+1.9
−3.5 dB

third excited mode 0.58± 0.07 −8.0+2.7
−9.0 dB

TABLE I. Measured fluctuations and inferred squeezing

FIG. S2. Entanglement witness. Same as Fig. 3 in the main text with 50 ms of evolution time.

Measured squeezing values

In Table 1, we provide the measured fluctuations and inferred squeezing values for the measurements shown in the
main text. In order to infer the squeezing, we take into account the effect of the joint measurement, which is described
in detail in [13]. In our case, the measured minimal fluctuations are connected to the inferred squeezing value ξk via

ξk = 10 · log10

[
2
(
∆2Fk(θmin)− 0.5

)]
(S5)

Entanglement verification for ΘS = 45◦

In addition to the two relative squeezing angles described in the main text, we prepare a relative squeezing angle
ΘS = 45◦. Here, this is achieved via a shorter evolution time of the spin-mixing dynamics of 50 ms. The corresponding
plots showing the correlations and the witness for entanglement between the left and right half of the atomic cloud
are shown in Fig. S2. In this situation, we measure for the entanglement witness given in Eq. (3) W = −0.39± 0.14
certifying entanglement between the left and right half.
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FIG. S3. Imaging Calibration. The left and right panels show the atom number fluctuations as a function of the total atom
number measured in F = 1 and F = 2, respectively. The dashed lines are linear fits to the data while the black lines are the
theoretical expectation for a coherent state without technical fluctuations.

Imaging Calibration

Details about our imaging system and the calibration procedure are reported in [24]. To reduce imaging noise we
employ a fringe removal algorithm as detailed in [25].

To check the calibration of our imaging we prepare a coherent spin state with approximately equal mean atom
numbers in the states (1,±1) and (2,±2), respectively. Starting from the state (1,−1) we use two mw π-pulses
coupling the states (1,−1) ↔ (2, 0) and (2, 0) ↔ (1, 0). Analogous to the experimental sequence described above we
carefully clean any residual atoms in the states (1,±1) and in the F = 2 manifold. The only difference here is that we
apply the mw together with the cleaning light pulses after the expansion of the atomic cloud. This ensures that the
last cleaning is performed as close as possible to the readout pulses and at low atomic density which minimizes the
probability for transferring atoms to (1,±1) via collisional interactions. After this cleaning, we use a mw π/2-pulse
to generate an equal superposition of the states (1, 0) and (2, 0). Subsequently, an rf π/2-pulse is used to prepare an
equal superposition of the states (1,±1) and (2,±2). In F = 2 a small fraction, i.e. 12.5%, of the initial atom number
remains in the state (2, 0) after the rf pulse. To control the total atom number, we vary the height of the external
potential during condensation.

In order to mitigate technical noise contributions, we divide the atomic signal into two halves and extract the atom

number difference n
−,L/R
F = n

L/R
(F,+F ) − n

L/R
(F,−F ) in each half and for each manifold F = 1, 2. We subtract the value of

the right half from the one of the left to obtain n−F = n−,LF − n−,RF . For each setting of the atom number we compute
the variance ∆2n−F and plot it as a function of the measured mean atom number 〈n(F,+F ) +n(F,−F )〉 in the respective
manifold as shown in Fig. S3. For a coherent state one expects to find multinomial fluctuations of the populations
implying ∆2n−F=1,2 = 〈n(F,+F ) + n(F,−F )〉.

From a fit to the data we extract a slope of 1.03 ± 0.03 for F = 1 and a slope of 1.05 ± 0.04 for F = 2 which is
consistent with coherent state fluctuations. For the offset we find 3, 000± 170 for F = 1 and 2, 900± 240 for F = 2.
These values include the photon shot noise contribution of 1, 500 for F = 1 and 1, 300 for F = 2 which we compute
via Gaussian error propagation from the number of detected photons.

Entanglement Witness

In this supplementary section we give a proof of Eq. (3) of the main text. We drop operator hats here for notational
convenience.

Inseparability criteria based on variance sums: We first recall the inseparability criterion reported in Ref. [17]
using a notation which will be convenient in the following. We will subsequently adapt this criterion to the case of
jointly measured observables. Let

u = O1,L +O1,R (S6)

v = O2,L +O2,R (S7)

where Oi,k are Hermitian operators (observables) acting on subsystem k of a bipartite system. Any separable state
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ρ =
∑
i piρi,L ⊗ ρi,R obeys

∆2u+ ∆2v =
∑
i

pi
(
〈u2〉i + 〈v2〉i − 〈u〉2i − 〈v〉2i

)
(S8)

=
∑
i

pi
(
〈O2

1,L〉i + 2〈O1,L〉i〈O1,R〉i + 〈O2
1,R〉i + 〈O2

2,L〉i + 2〈O2,L〉i〈O2,R〉i + 〈O2
2,R〉i − 〈u〉2i − 〈v〉2i

)
(S9)

=
∑
i

pi
(
∆2O1,L + ∆2O1,R + ∆2O2,L + ∆2O2,R

)
(S10)

+
∑
i

pi〈u〉2i −

(∑
i

pi〈u〉i

)2

+
∑
i

pi〈v〉2i −

(∑
i

pi〈v〉i

)2

(S11)

≥
∑
i

pi
(
∆2O1,L + ∆2O2,L + ∆2O1,R + ∆2O2,R

)
(S12)

≥
∑
i

pi (|〈[O1,L, O2,L]〉i|+ |〈[O1,R, O2,R]〉i|) (S13)

= |〈[O1,L, O2,L]〉ρ|+ |〈[O1,R, O2,R]〉ρ| . (S14)

In this derivation we used the definition of the separable state ρ and of the variance in line (S8). The index i in the
expectation value means that it is taken with respect to the product state ρi = ρi,L ⊗ ρi,R, and the index ρ denotes
an expectation value with respect to the full state. In line (S9) we used that ρi is a product state (i.e. we used
the separability of ρ) to factorize 〈O1,LO1,R〉i = 〈O1,L〉i〈O1,R〉i. Lines (S10) and (S11) are simple rearrangements
using 2〈O1,L〉i〈O1,R〉i = 〈u〉2i − 〈O1,L〉2i − 〈O1,R〉2i . To obtain (S12) we used that line (S11) is bounded below by
zero due to the Cauchy Schwarz inequality x2y2 ≥ |x · y|2 for the vectors xi =

√
pi and yi =

√
pi|〈u〉i|, which gives∑

i pi〈u〉2i = (
∑
i pi)

(∑
i pi〈u〉2i

)
≥ |
∑
i pi|〈u〉i||

2 ≥ (
∑
i pi〈u〉i)

2
. Next, in line (S13), we used that from Heisenberg’s

uncertainty relation it follows that ∆2O1,L + ∆2O2,L ≥ 2∆O1,L∆O2,L ≥ |〈[O1,L, O2,L]〉i|. At this point the derivation
below will use that for jointly measured observables a modified uncertainty relation applies. In the last step (S14)
we used that the expectation values of the commutators are state independent. In the original publication [17] the
authors considered the quadrature operators x and p, for which this is satisfied. In our case it is not a priori the case.
However, when working in the regime of undepleted state mF = 0, the quantities Sx and Qyz map to x and p in the
sense that their commutator becomes state independent, which justifies this step.

Generalized Arthurs Kelly uncertainty relation: We now show that for observables measured jointly by
coupling the system to a set of ancillary modes, the right hand side of the uncertainty relation increases by a factor
of two.

The inseparability criterion discussed above assumes that the observables O1 and O2 are measured in independent
runs of the experiment. Two incompatible observables, i.e. observables that do not commute or are not diagonal in
the same basis, like position and momentum, cannot be measured simultaneously in the sense that the probability
distribution over the measurement outcomes of both observables cannot be determined in a single measurement set-
ting. When considering generalized measurements, physically realized by the coupling to meter systems (or auxiliary
systems), it turns out that the means (expectation values) of incompatible observables can be determined simulta-
neously but the probability distribution of the outcomes becomes broadened compared to the original operators, i.e.
what we measure is always an observable that approximates the original one with limited precision [26]. In other
words a joint measurement always approximates incompatible observables as it introduces errors with respect to the
ideal measurement of each of them [27]. This limited precision is what leads to a modified uncertainty relation for
jointly measured observables. We will now formally derive an uncertainty relation for a specific setting with bosonic
modes following the arguments of Arthurs and Kelly [18]. This result will then be used in the bipartite case to derive
the entanglement witness for jointly measured observables. We remark that it has been shown that jointly measured
observables cannot be used to exclude local hidden-variable theories [28, 29].

We consider a system on n bosonic modes (system modes) which are supplemented by m ancillary modes. We
prepare the system modes in a certain state ρs and the ancillary modes are initially empty. Thus the total system

is in state ρ = ρs ⊗ |0〉 〈0|⊗m. The readout consists in a sequence of unitary operations UR =
∏
k U

(k)
R , with

U
(k)
R = exp[−itkH(k)

R ] generated by Hamiltonians of the form H
(k)
R =

∑
αβ h

(k)
αβa

†
αaβ where α, β label system and

ancillary modes, and subsequent detection of the occupations of all the modes. From the measured probability
distribution P (N1, . . . , Nn+m) we can extract observables 〈Õ〉 = 〈

∑
α eαNα〉 and their moments. We consider a

pair of observables Õ1, Õ2 of this form, which means that their expectation values are first moments of the measured
distribution. The distribution of measured outcomes, P , provides an approximation to two non-commuting observables
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O1, O2 ([O1, O2] = O3 6= 0), defined below, which act on the system modes only. With the state after applying the

readout operation ρf = URρU
†
R we can write expectation values as

〈Õ〉ρf = tr(ÕURρU
†
R) = tr(U†RÕURρ) = 〈O + δO〉ρ = 〈O〉ρ . (S15)

Since H
(k)
R are quadratic UR enacts a linear transformation of the operators aα and thus U†RÕUR is still quadratic

in the mode operators. Here we have defined O as the part containing operators acting on system modes only and
δO as the part containing terms that are at least linear in auxiliary mode operators. Since the auxiliary modes are
unoccupied before the readout is applied, the expectation value of δO with respect to ρ vanishes, which we used in the
last step in Eq. (S15) to show that the mean of Õ equals the mean of O. Thus, the approximate measurement using
the auxiliary modes yields the correct means but δO accounts for the ”error” introduced by the joint measurement,
which manifests in an increased variance of U†RÕUR compared to O. In the following we will make repeated use of
the fact that expectation values with respect to ρ of operators linear in δO vanish.

The commutator of two jointly measured observables Õ1 and Õ2 vanishes as jointly measured observables have
to be diagonal in the same basis by definition (they are just linear combinations of number operators in our case).
Therefore we have

0 = 〈[Õ1, Õ2]〉ρf = 〈[O1 + δO1, O2 + δO2]〉ρ = 〈[O1, O2]〉ρ + 〈[δO1, δO2]〉ρ (S16)

and thus |〈[O1, O2]〉ρ| = |〈[δO1, δO2]〉ρ|. With this the uncertainty relation for jointly measured observables becomes

∆2Õ1∆2Õ2 =
(
〈Õ2

1〉ρf − 〈Õ1〉2ρf
)(
〈Õ2

2〉ρf − 〈Õ2〉2ρf
)

(S17)

=
(
〈(O1 + δO1)2〉ρ − 〈O1 + δO1〉2ρ

) (
〈(O2 + δO2)2〉ρ − 〈O2 + δO2〉2ρ

)
(S18)

=
(
∆2O1 + ∆2δO1

) (
∆2O2 + ∆2δO2

)
(S19)

≥ (∆O1∆O2 + ∆δO1∆δO2)
2

(S20)

≥
(

1

2
|〈[O1, O2]〉ρ|+

1

2
|〈[δO1, δO2]〉ρ|

)2

(S21)

= |〈[O1, O2]〉ρ|2 (S22)

Here we used that the ancillary modes are empty for ρ to obtain line (S19). Line (S20) is an elementary inequality, and
in the last line we used the equality of the absolute values of the commutators derived above. The added fluctuations
due to the joint measurement manifest as the additional fluctuations due to the ancillary modes in Eq. (S20).

Inseparability criterion and application to the spinor BEC case: Applying the resulting uncertainty
relation, ∆2Õ1,k∆2Õ2,k ≥ |〈[O1,k, O2,k]〉ρ|2, in the derivation of the inseparability criterion of Duan et al. [17] we
obtain the following criterion for jointly measured observables: If ρ is separable, then

∆2u+ ∆2v ≥ 2 (|〈[O1,L, O2,L]〉ρ|+ |〈[O1,R, O2,R]〉ρ|) . (S23)

To certify entanglement between the right and left half as described in the main text, we choose u = [FL(θL) +
FR(θR)]/

√
2 and v = [FL(θ′L) + FR(θ′R)]/

√
2. In terms of the extracted quantities in F = 1, 2, these field components

along θ are explicitly given in Eq. (S3) via Fk(θ) = Re(Φke−iθ) = cos(θ)Skx + sin(θ)Qkyz. This means that the relevant
operators in eq. (S23) are

O1(2),k =
1

2
√
nktot

(
cos(θ

(′)
k )Ŝkx + sin(θ

(′)
k )Q̂kyz

)
. (S24)

Thus, the relevant commutation relations are

[O1,k, O2,k] =
1

4nktot

[
cos(θk)Ŝkx + sin(θk)Q̂kyz, cos(θ′k)Ŝkx + sin(θ′k)Q̂kyz

]
= − i

2
sin(θk − θ′k).

(S25)

In the last step we again used nktot ≈ nk0 , which is well fulfilled for weakly squeezed states. Inserting this into Eq. (S23)
yields Eq. (3) in the main text.
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