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Abstract

BrainScaleS-2 is a spiking neuromorphic platform that promises accelerated em-
ulation of biological neural networks. As a first step towards emulating memory
consolidation in recurrent neural networks that incorporate the synaptic tagging
and capture (STC) hypothesis and calcium dynamics in their synaptic model, we
investigate the behavior of a single synapse. We simulate the standard plasticity
protocols for a single synapse that induce different plasticity mechanisms. We then
account for the computational time required by the digital circuits of BrainScaleS-2
to update the synaptic weights. By simulating the model using different timescales,
we show that the root-mean-squared error (RMSE) in synaptic weights obtained at
a slow timescale compared to synaptic weights obtained at the original timescale can
be tolerated up to a certain time beyond which the behavior of the protocols diverges
from their expected behavior. We argue that the final assessment of the weight up-
dates depends on the full-network simulation where we use memory performance
measures that depend on the synaptic weights.
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Introduction

With the rising need for parallel and energy-efficient computing, the standard Von
Neumann computer architecture fails to satisfy these requirements due to its mem-
ory constraints and use of sequential commanding that hinder the computing per-
formance (Schuman et al., 2022). Inspired by the human brain’s architecture and
connectivity, neuromorphic computing promises to fulfill these needs using a spik-
ing neural network architecture. Neuromorphic architectures possess processing-
memory collocation similar to the neuron-synapse functionality in the brain assum-
ing the neurons and synapses to be the primary computational units (Schuman
et al., 2022). Neuromorphic computing has gained even more popularity with the
advancement of artificial intelligence and the demand for powerful hardware with
low-power features by which it can offer significant advantages to many fields such
as autonomous systems including sensors, brain machine interfaces, and robotics
(Indiveri and Liu, 2015). This computing paradigm is also used to solve machine
learning tasks using large-scale neural modelling or very-large-scale spiking neural
networks (Indiveri and Liu, 2015). For research purposes in computational neuro-
science, neuromorphic computing can speed-up the simulation of biological neural
networks (Indiveri and Liu, 2015).

The neurological function we are considering in this work is memory consolidation
in recurrent neural networks. Memory is a cognitive function of the brain that
is associated with learning; whether gaining new knowledge or modifying existing
knowledge, this knowledge is stored in the brain in the form of a memory trace
(Nadel and Land, 2000). One of the established theoretical explanations to the
learning-memory association is referred to as Hebbian learning which depends on
the spiking activity of the presynaptic and postsynaptic neurons (Luboeinski and
Tetzlaff, 2021). A consistent firing of the presynaptic neuron elicits postsynaptic
spikes and drives the postsynaptic calcium concentration. Depending on this con-
centration, the synapse is either strengthened in a process referred to as long-term
potentiation (LTP) or weakened in a process referred to as long-term depression
(LTD) (Luboeinski and Tetzlaff, 2021).

Memory involves a variety of dynamics, starting with encoding which is the initial
learning of information. Information is then stored by a process referred to as con-
solidation to maintain information over time. Memory consolidation is performed
in two stages; the first stage is synaptic consolidation, which involves local molec-
ular processes and morphological changes of the synapse (Lamprecht and LeDoux,
2004). The second stage is systems consolidation which occurs at a higher level,
mainly between the hippocampus and neocortex to maintain information for a pro-
longed period (Luboeinski and Tetzlaff, 2021). Finally, the stored information is
accessed through retrieving or recalling (Luboeinski and Tetzlaff, 2021).

More details on plasticity are explained in the theory on synaptic consolidation, in
which both plasticity mechanisms, LTP and LTD, involve two phases (Lamprecht
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and LeDoux, 2004). The early phase is characterized by the increase in calcium
concentration, while the late phase is characterized by insertion of neurotransmitter
receptors in the case of LTP and their removal in the case of LTD (Lamprecht and
LeDoux, 2004). However, the transfer from the early phase to the late phase was not
resolved for a long time. Plasticity is input-specific and occurs at specific dendrites
of the neuron, while proteins necessary for late-phase plasticity are synthesized and
trafficked from inside the cell to this specific synapse, so it was unclear how the
neuron can identify the synapse that should be strengthened or weakened (Luboein-
ski and Tetzlaff, 2021). To explain this transfer, the synaptic tagging and capture
(STC) hypothesis was proposed. This hypothesis states that early-phase plasticity
initiates the creation of a short-lasting protein-synthesis-independent ‘synaptic tag’
as a potential for a long-lasting change in synaptic efficacy but not a commitment
itself (Frey and Morris, 1997). If the proteins needed for the late-phase transfer
are sufficient, the tagged synapse captures these proteins and late-phase plasticity
is induced (Frey and Morris, 1997). Consequently, this tag serves as the indicator
for the neuron to know which synapse is involved in the plasticity mechanism, but
the tag does not guarantee the transfer to the late phase.

The STC hypothesis was able to explain memory consolidation in single synapses
and feedforward neural networks, but only recently Luboeinski and Tetzlaff (2021)
verified that STC can explain and improve memory consolidation in recurrent neu-
ral networks. Recurrent networks are the most prevalent networks in the brain,
especially when it comes to memory functions, so understanding the underlying
mechanisms behind recurrent-network models is essential for understanding mem-
ory functions in the brain.

In this work, we aim to emulate memory consolidation in biological networks on the
neuromorphic BrainScaleS-2 system using the STC hypothesis and calcium dynam-
ics for plasticity. We rely on the simulations and approach provided by Luboeinski
and Tetzlaff (2021) in their work on memory consolidation in recurrent neural net-
works. We focus on single-synapse behavior and start by reproducing simulations of
single-synapse plasticity using standard plasticity experiments. We then define the
constraints imposed by the emulation of a single synapse on BrainScaleS-2 (Pehle
et al., 2022). Specifically, we account for the computation time required by the
digital circuits to update synaptic weights by reproducing the simulations at slower
time steps. To assess the feasibility of this approach, we use the root-mean-squared
error (RMSE) to compare the synaptic weights obtained at the slow time steps with
the synaptic weights obtained using the simulation time step defined in (Luboeinski
and Tetzlaff, 2021). We conclude that using slower timescales is a feasible solution
for the hardware emulation but should be further assessed during the full-network
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simulation.

Methods

2.1 Single-Synapse Simulation

2.1.1 Plasticity Scheme

In this section, we describe the neurological mechanisms behind the used synaptic
model in fig. 2.1. The model incorporates the calcium dynamics according to the
STC hypothesis. In this model, spikes arriving from presynaptic neuron j and oc-
curring at times tnj along with the total synaptic weight wji affect the postsynaptic
membrane potential vi of postsynaptic neuron i. If the membrane potential ex-
ceeds a threshold, a postsynaptic spike is elicited at time tmi . The presynaptic and
postsynaptic spikes drive the postsynaptic calcium concentration cji which induces
early-phase plasticity, quantified by the early-phase weight hji. If the synapse is
tagged, and the protein amount synthesized pi during the early phase is sufficient,
late-phase plasticity is induced, quantified by the late-phase weight zji.

Figure 2.1: The synaptic model integrating various mechanisms of calcium dependent
synaptic plasticity and the STC hypothesis. Modified from Luboeinski and Tetzlaff (2021).

2.1.2 Model Equations

All equations governing the single-synapse plasticity are adopted from Luboeinski
and Tetzlaff (2021). The dynamics of the postsynaptic membrane potential follow
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the integrate-and-fire neuron model and are described in eq. (2.1):

τmem
dVi(t)

dt
= Vrev − Vi(t) + R · (Ibg(t) + Istim(t) + Isyn,i(t)) (2.1)

with reversal potential Vrev, membrane time constant τmem, membrane resistance R,
external background current Ibg(t), external stimulus current Istim(t), and synaptic
current Isyn,i(t). The synaptic current Isyn is defined as:

Isyn,i(t) =
∑
j

∑
tkj

wji · exp
(
−(t− tkj − tax,delay)/τsyn

)
(2.2)

with axonal time delay tax,delay and synaptic time constant τsyn. For a single synapse,
the background current and the stimulation current are set to zero. The membrane
potential for the single synapse thus reduces to eq. (2.3).

τmem
dVi(t)

dt
= Vrev − Vi(t) + R · Isyn,i(t) (2.3)

The calcium dynamics follow eq. (2.4) with τc being the calcium time constant,
cpre being the contribution of presynaptic spikes, cpost being the contribution of
postsynaptic spikes, and tc,delay being the delay of calcium concentration triggered
by presynaptic spikes.

dcji(t)

dt
= −cji(t)

τc
+ cpre

∑
n

δ(t− tnj − tc,delay) + cpost
∑
m

δ(t− tmi ), (2.4)

The dynamics of the early-phase weight are governed by eq. (2.5) with Θ[.] being
the Heaviside function and τh being a time constant. The first term of eq. (2.5)
describes a relaxation of the early-phase weight to its initial value h0, the second
term describes early-phase LTP with rate γp for calcium concentration above the
threshold θp, and the third term describes early-phase LTD with rate γd for calcium
concentration above the threshold θd.

τh
dhji(t)

dt
= 0.1 (h0 − hji(t)) + γp(1 nC− hji(t)) ·Θ[cji(t)− θp] (2.5)

− γdhji(t) ·Θ[cji(t)− θd] + ξ(t),

The term ξ(t) =
√
τh[Θ(cji(t)− θp) + Θ(cji(t)− θd)] σpl Γ(t) describes the calcium-

dependent noise-driven fluctuations with standard deviation σpl, and Gaussian white
noise Γ(t) with mean zero and variance 1

∆t
, where ∆t is the time step for numerical

computations. Knowing the early-phase weight, the protein amount is updated
using eq. (2.6) where α is the protein synthesis rate and θpro is the protein synthesis
threshold.

τp
dpi(t)

dt
= −pi(t) + α Θ

[(∑
j

|hji(t)− h0|

)
− θpro

]
(2.6)

The dynamics of the late-phase weight depend on the protein amount, early-phase
weight, and a tagging threshold θtag.

τz
dzji(t)

dt
= pi(t) · (1− zji(t)) ·Θ[(hji(t)− h0)− θtag] (2.7)

− pi(t) · (zji + 0.5) ·Θ[(h0 − hji(t))− θtag]

Finally, the total synaptic weight is given by:

wji(t) = hji(t) + h0 · zji(t) (2.8)
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2.1.3 Plasticity Protocols

Stimulating the synapse is performed through Poisson presynaptic spikes. To ac-
count for different plasticity forms of the synapse, we use the standard plasticity
protocols which vary by strength and frequency described in fig. 2.2 for stimulating
a single synapse. Tetanic (high-frequency) stimulations induce potentiation due to
the high calcium concentration while low-frequency stimulations induce depression
due to the moderate calcium concentration. On the other hand, strong stimulations
cause the tagging of the synapse and the synthesis of a sufficient protein amount
whereas weak stimulations only cause the synapse tagging without a sufficient syn-
thesis of protein amount. Consequently, the strong tetanic stimulation (STET)
protocol induces early-phase and late-phase LTP whereas weak tetanic stimula-
tion (WTET) protocol induces only early-phase LTP. On the other hand, strong
low-frequency stimulation (SLFS) protocol induces early-phase and late-phase LTD
whereas weak low-frequency stimulation (WLFS) protocol induces only early-phase
LTD.

Figure 2.2: Standard protocols for the the induction of early- and late-phase synaptic
potentiation and depression. From supplementary information of Luboeinski and Tetzlaff
(2021).

2.1.4 Simulation Scheme and Parameters

For the differential equations defined in section 2.1.2, we use the explicit Euler
method to update all the model parameters (Kong et al., 2021). More specifically,

let dy(t)
dt

= F (t, y) be a first-order differential equation. The linear approximation of
y(t) at tn+1 around tn is:

y(tn+1) = y(tn) + (tn+1 − tn) ·
dy

dt

∣∣∣∣
t=tn

(2.9)

For a regular time step ∆t = tn+1 − tn, we can re-write the explicit Euler formula
as (Kong et al., 2021):

y(tn +∆t) = y(tn) + ∆t · F (tn, y(tn)) (2.10)
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By following the plasticity scheme in section 2.1.1, the weights for the different
protocols are computed for a total duration of 8 hours and a time step ∆t = 0.2
ms. Poisson presynaptic spikes are simulated according to the plasticity protocols
in section section 2.1.3, and the parameters presented in the equation are provided
in table 2.1 (Luboeinski and Tetzlaff, 2021).

Symbol Value Description

∆t 0.2 ms
Duration of one time step for numerical

computation

τmem 10 ms Membrane time constant

τsyn 5 ms Synaptic time constant

tax,delay 3 ms Axonal spike delay

tref 2 ms Refractory period

R 10 MΩ Membrane resistance

Vrev −65 mV Reversal potential

Vreset −70 mV Reset potential

Vth −55 mV Threshold potential for spiking

h0 0.420 075 nC Initial early-phase weight

tc,delay 0.0188 s
Delay of postsynaptic calcium influx after

presynaptic spike

cpre 1 Presynaptic calcium contribution

cpost 0.2758 Postsynaptic calcium contribution

τc 0.0488 s Calcium time constant

τp 60 min Protein time constant

τz 60 min Late-phase time constant

γp 1645.6 Potentiation rate

γd 313.1 Depression rate

θp 3 Calcium threshold for potentiation

θd 1.2 Calcium threshold for depression

σpl 0.290 436 nC s−1/2 Standard deviation for plasticity
fluctuations

α 1 Protein synthesis rate

θpro 0.210 037 nC Protein synthesis threshold

θtag 0.084 014 9 nC Tagging threshold

Table 2.1: Neuron and synapse model parameters. Adapted from Luboeinski and Tetzlaff
(2021).
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Figure 2.3: Photograph of the full-size BrainScaleS-2 chip. Modified from Billaudelle
(2022).

2.2 Hardware Emulation

2.2.1 BrainScaleS-2

BrainScaleS-2 (fig. 2.3) is a neuromorphic chip enclosing 512 silicon neurons where
each neuron can form up to 256 synapses (Pehle et al., 2022) and has dynamics that
follow the adaptive exponential integrate-and-fire (AdEx) model proposed by Brette
and Gerstner (2005). BrainScaleS-2 possesses several features that allow fast emula-
tion of biological neural networks. First and foremost, the neuron dynamics evolve
at a 1000-fold accelerated timescale relative to real time due to the time constants
of the complementary metal oxide semiconductor (CMOS) technology it uses (Pehle
et al., 2022). Second, the chip adapts a hybrid plasticity scheme which combines
an analog circuit for emulating neuron and synapse dynamics and a digital circuit
for control and calculations (Pehle et al., 2022). Applying these concepts for mem-
ory consolidation, the stimulating presynaptic spikes and the resulting postsynaptic
spikes will be injected to the analog circuit which will emulate the neuronal dynam-
ics, and the digital circuit will calculate the synaptic weights and protein amount.
Concerning the calcium concentration, the link between the spike occurrences and
the weight updates, it will be computed using a special feature of the analog circuit,
but its details will not be discussed in this report.

2.2.2 Constraints

The analog circuit requires the total synaptic weight to emulate the neuronal dy-
namics shown in eq. (2.1) for the postsynaptic membrane potential. Since this
weight is updated regularly by the plasticity rule, the postsynaptic spikes should be
read-out and the calcium concentration should be sampled to compute the protein
amount and update the synaptic weights. Specifically, the calcium concentration
will be computed by a special feature of the analog circuit, so it is an analog signal
that needs to be converted to a digital signal using the column-parallel analog-to-

7



digital converter (CADC). It has been established in benchmarking procedures for
BrainScaleS-2 that a single CADC read-out requires 1.7 µs assuming the default
plasticity processing unit (PPU) clock frequency of 250 MHz (Billaudelle, 2022).
The CADC performs the read-out in parallel for up to 256 neurons (Billaudelle,
2022).

For computing the synaptic weights and protein amount, the single instruction,
multiple data (SIMD) unit can calculate 128 8-bit or 64 16-bit integers in parallel
(Pehle et al., 2022). We need to update four parameters per neuron, namely the
early-phase weight, protein amount, late-phase weight, and total synaptic weight.
The operations performed by these updates using the Euler formula (eq. (2.10)) re-
quire 50 ns per instruction. After computing the weights and protein amount, these
need to be updated through write instructions performed by the PPU. Each write
instruction can update weights for 256 synapses per single neuron in 160 ns, so this
has to be repeated for 256 neurons by each PPU. An estimate of the time consumed
by the operations required for weight updates is presented in table 2.2.

Operation
Involved
Hardware

Unit

Number of
Instructions
per Operation

Time per
Instruction

Total Time

Analog
read-out and
sampling

CADC 1 1.7 µs 1.7 µs

Early-phase weight
computation

SIMD 17 50 ns 850 ns

Late-phase weight
computation

SIMD 16 50 ns 800 ns

Protein amount
computation

SIMD 9 50 ns 450 ns

Total synaptic-weight
computation

SIMD 2 50 ns 100 ns

Writing weights PPU 256 160 ns 40.96 µs

Table 2.2: Required time by BrainScaleS-2 to perform operations necessary for synaptic
weight updates at 250 MHz clock frequency. An operation involves 256 neurons.

The time step used in the simulation was ∆t = 0.2 ms which translates to 0.2 µs on
BrainScaleS-2 if the dynamics are maintained. The organization of instructions and
pipelining should be further investigated to have a clear estimate of the required
time. Furthermore, the network is sparsely coupled, and the probability of connec-
tivity is 0.1 (Luboeinski and Tetzlaff, 2021), which might reduce the time required
for computations and writing weights. Given these two considerations, more infor-
mation and benchmarking are needed to exactly estimate the total time required
for weight updates by BrainScaleS-2 for the full network emulation. Nevertheless,
the information in table 2.2 clearly shows that 0.2 µs is not sufficient to perform
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read-outs, sampling, calculations, and writing.

To resolve this issue, we propose using a slower timescale for updating the synaptic
weights on BrainScaleS-2. We define a new simulation scheme to study the effect of
the slow update on the synaptic weights (fig. 2.4). In this simulation, the membrane
potential and calcium concentration are updated at the base timescale (∆t = 0.2
ms) since they will be emulated by the analog circuit of BrainScaleS-2. The pro-
tein amount and synaptic weights are updated at a slow timescale since they will
be computed by the digital circuits of BrainScaleS-2. We refer to the timescale at
which we update the protein amount and synaptic weights as an “update time”.
The simulation is repeated for 100 trials for 5 different update times ranging from
10 ms to 300 ms.

Figure 2.4: Fast and slow timescales for single-synapse simulation. Presynaptic spikes
correspond to continuous-time dynamics that will be injected to the analog core of
BrainScaleS-2. The membrane potential and calcium concentration are updated at a fast
timescale in the simulation since they will be emulated on the analog core of BrainScaleS-2.
Synaptic weights will be computed by the digital circuits of BrainScaleS-2. These weights
have long time constants, so it is expected that updating them at slow timescales would
still achieve the target behavior.

2.2.3 Measures of Performance

The RMSE at each update time is used to quantify the error in synaptic weights
and protein amount that results from using slower time updates. The ground truth
for calculating the RMSE are the values of synaptic weights and protein amount
obtained at the base timescale (∆t = 0.2 ms) for the same random seed. Assessing
the total synaptic weight is also useful since it plays a significant role in the behavior
of the full network. According to eq. (2.7), the total synaptic weight couples the
early-phase weight with the late-phase weight. The early-phase weight always con-
verges to the same equilibrium value, so it is not as informative to assess its change
with time. It is more convenient to look at the final value of the late-phase weight
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as it is decoupled from the early-phase weight.

Results

3.1 Single-Synapse Simulation using the Base

Timescale

The results of reproducing the single-synapse simulation for the four different plas-
ticity protocols are shown in fig. 3.1. Each protocol was executed 100 times to
generate different spike timings. The synaptic weights in fig. 3.1 agree with those
obtained in the single-synapse simulations of Luboeinski and Tetzlaff (2021) number-
wise and behavior-wise. All protocols induce early-phase plasticity indicated by the
dynamics of the early-phase weight. On the other hand, only strong protocols induce
late-phase plasticity. STET induces late-phase LTP shown by the increase in the
late-phase weight while SLFS induces late-phase LTD shown by the decrease in the
late-phase weight. The variability of weights due to the variability in spike timings
across different trials is shown by the margins around the plots. This variability is
higher in the WTET and SLFS protocols compared to STET and WLFS protocols.

3.2 Impact of Different Timescales

A boxplot of the RMSE for all 100 trials is shown in fig. 3.2. For the STET, WTET,
and WLFS protocols, the RMSE for the synaptic weights and protein amount re-
mains almost unchanged up to an update-time of 0.02 s. For the weak protocols,
the late-phase weight remains zero showing a correct behavior for the protocols at
slower timescales. The SLFS protocol has high RMSE values relative to the rest of
the protocols even at low update times. Having a look at the final late-phase weight
for the strong protocols (fig. 3.3), the median final late-phase weight for the STET
protocol remains close to that at the base timescale for update times up to 0.05 s.
The interquartile range (IQR) for the STET protocol is approximately 0.02 nC at
the base timescale, and it remains close to this value for update times up to 0.02
s. For the SLFS protocol, the median final late-phase weight also remains close to
that at the base timescale for update times up to 0.05 s. However, the IQR for the
SLFS protocol is approximately 0.5 nC at the base timescale, which is higher than
that of the STET protocol, but it also remains almost unchanged for update times
up to 0.02 s. For update times greater than 0.05 s, the behavior of SLFS is off as
the final late-phase weight reaches 0 or even positive values for some spike timings
indicating the absence of late-phase plasticity or late-phase LTP.
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Figure 3.1: Impact of strong and weak tetanic and low-frequency stimulation protocols
described in fig. 2.2 on a single synapse. The simulation is carried out for 100 trials using
the synapse and neuron parameters listed in table 2.1 and a simulation time step of 0.2
ms. The lines correspond to the average weights across the 100 trials, and the bands
correspond to one standard deviation from the average. The results are in agreement with
those obtained in figure 2 of Luboeinski and Tetzlaff (2021)

Discussion

4.1 Simulation Results

From the single-synapse simulations we carried out, we aim towards emulating a
single-synapse on the neuromorphic BrainScaleS-2 system. We first reproduced the
results of the single-synapse behavior to standard plasticity protocols using a model
that incorporates calcium dynamics proposed by Luboeinski and Tetzlaff (2021).
The base time step of 0.2 ms used in Luboeinski and Tetzlaff (2021) is not suffi-
cient for updating synaptic weights on BrainScaleS-2. We then accounted for this
constraint in a simulation that uses fast and slow timescales, and we assessed this
simulation scheme using RMSE of synaptic weights at each update time. We found
out that the RMSE can be tolerated up to certain update times, but further assess-
ment is needed with the full-network simulation.
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Figure 3.2: RMSE results obtained from updating protein amount and synaptic weights
at slow timescales. The simulations are carried out for 100 trials. The unit of RMSE for
synaptic weights is nC.

Figure 3.3: Final late-phase weight for the STET and SLFS protocols at different
timescales over 100 trials. Note that the update time of 0.0002 s is the base timescale
to be compared with slower timescales.

Looking at the time constants of our physical system in table 2.1, the base time step
is sufficient for the evolution of all the system dynamics. This allows us to consider
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that the variability in synaptic weights (fig. 3.1) is attributed to the variability in
spike timings especially for the WTET and SLFS protocols. In these two proto-
cols, the stimulation frequency is high relative to the stimulation duration, so the
average number of spikes is low, but the spikes can also vary in number and timing
resulting in a variability of weight values. For example, the SLFS protocol involves
a stimulation frequency of 20 Hz over a stimulation duration of 0.15 s. On aver-
age, this results in 3 spikes per stimulation duration. However, the resulting spikes
would range from 0 up to a number larger than 3 spikes for some trials. Even for
a low number of spikes, the timing between spikes differs, which affects the calcium
concentration and hence the synaptic weights. We can do a similar analysis for the
WTET protocol which involves a stimulation of 100 Hz over a duration of 0.2 s. On
average, this results in 20 spikes per stimulation duration, but the resulting spikes
could vary between 0 to a number higher than 20 for some trials. For the STET
protocol, the number of spikes is high, with an average of 100 spikes per stimulation
duration. No matter the differences, the high number of spikes that occur close to
eachother within a duration of 1 s produces a robust behavior in synaptic weights.

The effect of spike-time variability appears more significantly when updating the
synaptic weights at slower timescales. The SLFS protocol has the highest RMSE
values among all protocols (fig. 3.2), which can be attributed to the variability in
spike times to a great extent. This is further verified by the final value of late-phase
weight that maintains a high but consistent IQR and a consistent median up to 20
ms (fig. 3.3). The high error values can also be explained by the decay in calcium
concentration during the update-time interval especially if the number of spikes is
lower than the average. A similar reasoning can be applied for the early-phase weight
error in the weak protocols which possess a low number of spikes, noting that with
the slow update times, the behavior of the weak protocols is still correct in terms of
no late-phase plasticity.

Combining the results from all protocols, update times up to 20 ms seem to be rea-
sonable for the weight updates and can account for the time needed for the digital
circuit to perform computations and PPU write instructions as well as CADC read
instructions. However, we cannot judge how acceptable the resulting weights are
unless we simulate the full network and have a clear idea about its behavior in terms
of learning and memory recall with the modified plasticity rule. It is important to
note, however, that the learning and recall protocols in the network use a stimula-
tion frequency of 100 Hz over stimulation duration of 0.1 s and a break duration
of 0.4 s. This stimulation scheme resembles that of the STET protocol, but the
number of spikes and spike variability during a stimulation duration resembles that
of the WTET protocol which is stimulated over 0.2 s. More simulation should be
done in this sense to study the effect of spike variability at slow update times for
the network stimulation and recall.

4.2 Outlook

For emulating the single-synapse plasticity protocols on BrainScaleS-2, further steps
should be completed. The calcium concentration which links the spike occurrences
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to the weights update will be computed by the analog circuit through exploiting
special hardware features related to the AdEx model. Once the calcium concentra-
tion traces are computed on the analog core, they will be sampled for the weight
updates. The simulations in this work were performed based on regular sampling
of the calcium trace, but a stochastic sampling can be also investigated to improve
performance. To emulate memory consolidation as faithfully as possible and obtain
the expected biological behavior, the hardware parameters should be fine-tuned to
the biological parameters. This requires mapping the total synaptic weight to an
adequate range, tuning the adaptation module for the calcium concentration trace,
and possibly tuning the neuron parameters such as its firing threshold. The corre-
sponding performance can then be assessed by the resulting postsynaptic spikes and
the obtained synaptic weights.

The behavior of the single-synapse emulation on BrainScaleS-2 would provide in-
sights for emulating the full network presented in Luboeinski and Tetzlaff (2021).
For the network behavior, different measures are used for assessing the memory and
recall performance, namely the mutual information of the neural activity during
learning and recall, and the pattern completion coefficient. As per the simulation in
Luboeinski and Tetzlaff (2021), the network requires 2000 neurons, but BrainScaleS-
2 has 512 neurons. The bulk performance relies on a cell assembly whose size is 150
neurons, and the rest are control neurons. An immediate solution is to keep the
cell-assembly size and decrease the number of control neurons since they would have
low activity. Another solution is to scale the full-network size, that is the cell-
assembly and control neurons. This imposes a challenge on the memory behavior
of cell assembly which could be resolved by strengthening the learning and recall
stimulations.

Conclusion

In this work, we set the first building block towards emulating memory consolida-
tion in a recurrent neural network on the neuromorphic BrainScaleS-2 system. We
studied the behavior of a single synapse that incorporates the STC hypothesis by
simulating standard plasticity protocols that induce different plasticity mechanisms.
We then introduced the hardware constraint, namely the update time of the digital
circuit, and ran simulations for different timescales to study the corresponding ef-
fect on the synaptic weights. The simulation results showed acceptable errors in the
synaptic weights up to certain timescales, but reliable assessment of errors would
be performed with full-network simulations using memory performance measures.
Further steps are needed for faithful emulation of single-synapse plasticity including
analog computation of calcium concentration and mapping the biological parameters
to hardware parameters. Emulating the full network is the second stage after un-
derstanding the single-synapse behavior on BrainScaleS-2. The network emulation
imposes even more challenges in terms of update times, memory performance, and
network size. Nevertheless, using BrainScaleS-2 seems promising as this platform is
designed to maximize precision in reproducing numerical simulation results (Indiveri
and Liu, 2015).
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